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Abstract: As one of the key products of the whole wood custom home, the study of environmental
protection coating technology for wood wallboard has practical significance. Waterborne acrylic
acid (WAA), as an important research object of environmentally friendly coatings, has been studied
mainly in the area of modification. However, there is less research on its application to the field of
wood wallboard. Herein, we developed a facile strategy to prepare WAA resin coatings with excellent
performance using SiO2 nanoparticles as modifiers and explored the feasibility of wood wallboard.
In this work, a simple mechanical compounding method was used to modify the WAA resin coatings
by adding nano-SiO2, aiming to improve their physicochemical properties such as hardness and
abrasion resistance while maintaining gloss. It was found that nano-SiO2 showed different effects
on the viscosity, gloss, adhesion, and abrasion resistance of WAA resin coating. The combined
performance results showed that the wood wallboard finishes exhibit excellent performance when
the modifier nano-SiO2 was added at 1 wt% in the WAA resin coating. This present work shows that
the nano-SiO2-modified WAA resin coating for wood wallboard has a broad application prospect.

Keywords: wooden wallboard; waterborne acrylic acid resin coating; nano-SiO2; coating film properties

1. Introduction

Nowadays, a whole wooden household has become a general trend in the industry
because it caters to consumers’ pursuit of high quality, environmental protection, and a per-
sonalized life [1–3]. The whole wooden household can save consumers a lot of trouble when
decorating, and the “one-stop” service concept caters to the needs of current consumers.
Therefore, many wood companies integrate various resources to launch whole wooden
household products to meet consumer demand [4–7]. Moreover, wooden wallboard is
exactly one kind of whole wood home improvement product. Finishing the surface of
wooden wallboard can not only make up for the defects of natural wood but also give it
certain physical and chemical properties. However, the research on the coating of wooden
wallboard is still based on traditional coating technology, and the research on the develop-
ment of environmental protection coatings is still less [8–10]. Besides, the development of
water-based resin coatings suitable for wood wallboard needs urgent research [11–15].

With the rising awareness of environmental protection and the strict requirements for
environmental quality, the development of water-based environmental protection coatings
has been promoted [16–18]. Compared with traditional wood coatings using oil-based paint,
water-based environmentally friendly coatings use water as a dispersant or solvent, which
enters the air as water vapor in the evaporation process, greatly reducing the emission of
volatile organic compounds (VOC) [19,20]. Therefore, the water-based coating ensures that
it is environmentally friendly from the source. Furthermore, only resin and some additives
of water-based coatings are extracted from petroleum, which saves a lot of petroleum
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resources and reduces the dependence on fossil resources [21–23]. In addition, compared
with other water-based coatings, waterborne acrylic acid (WAA) resin coating has a lower
economy and a certain potential to be applied to the painting of wood wallboard [24–27].

WAA resin coating has performance defects such as weak abrasion resistance, low
chemical resistance, and general hardness, while nano-SiO2 has excellent hydrophilicity,
stability, and reinforcement [28–30]. As far as we know, the modification of WAA resin
coatings by nano-SiO2 can effectively improve the relevant physicochemical properties
(such as hardness, gloss, adhesion, and resistance to adhesion) of the coatings [31–35].
Therefore, it is of practical significance to study the coating technology of modified WAA
resin coatings by applying them to the painting of wood wallboard.

In this study, we modified the WAA resin coatings with nano-SiO2 using a simple
mechanical co-blending method. Subsequently, the modified WAA resin coatings were
applied to the finishing of the wood wallboard, and the surface properties of the paint
films were investigated. Furthermore, this study also provides a basis and reference for the
coating technology of WAA resin as a coating raw material for wood wallboard.

2. Materials and Methods
2.1. Materials

Silicon dioxide nanoparticles (Nano-SiO2, 30 nm) were supplied by Nanjing Lisheng
Chemical Company (Nanjing, China). Waterborne acrylic acid (WAA) was obtained from
Changzhou Guangshu Chemical Technology Co., Ltd. (Changzhou, China). A light white
oak wall panel (100 × 100 × 18 mm), made of 30 µm thickness of the red oak veneer, was
supplied by Dehua TB New Decoration Material Co., Ltd., Huzhou, China. The moisture
content of the panel was 11.2%. Distilled water was used in the experiments, and other
reagents were used directly without any treatment.

2.2. Preparation of Nano-SiO2-Modified WAA Resin Coating

WAA resin coating was reinforced with different content of nano-SiO2 by mechanical
blending method. Briefly, weighed 100 g of WAA resin coating into a baker (Jiangsu Lele
Teaching Equipment Co., Ltd., Taizhou, China) and added 15 g of deionized water for
dilution. Subsequently, the nano-SiO2 was added to the resin emulsion at 0.5 wt%, 1 wt%,
1.5 wt%, 2 wt%, 2.5 wt%, and 3 wt% of the WAA mass. Then, stirred with a magnetic
stirrer (RH BASIC S025, Aika Instrument Equipment Co., Ltd., Guangzhou, China) at
500 r/min for 2 h at room temperature to make the dispersion uniform (the specific
formulation is shown in Table 1). Finally, it was placed in an ice bath and sonicated with
an ultrasonic crusher (NY-JY98-IIIDN, Changzhou Empei Instrument Manufacturing Co.
LTD, Changzhou, China) for about 2 min to make the nano-SiO2 uniformly dispersed in
the resin emulsion.

Table 1. The proportion of nano-SiO2 in WAA resin in different samples.

Component
Samples

1 2 3 4 5 6

WAA (g) 100 100 100 100 100 100
Deionized water (g) 15 15 15 15 15 15
Nano-SiO2 (g) 0.5 1 1.5 2 2.5 3

2.3. Preparation of WAA Finished Wood Wallboard

In order to test the paint film performance of the WAA resin coating modified by
nano-SiO2, it was applied on the surface of the wooden wallboard by spraying with a spray
gun. Typically, pour the modified waterborne acrylic topcoat into the spray can of the gun
(W-71, IWATA, Fukushima-Ken, Japan) and keep the nozzle discharge to a minimum. Then,
spraying wooden wallboard with 4 guns by the “crossed” method (first horizontal spray
and then vertical spray), controlling the paint output of 48 g/cm2 per gun (error range is
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30–80 g/cm2). Finally, the sprayed specimen was placed in the humidity chamber (LHS-
80HC-I, Shanghai Yiheng Scientific Instrument Co., Ltd., Shanghai, China) with forceps for
drying (humidity chamber temperature was 25 (±0.5) ◦C, relative humidity was 70 (±1)%),
it will be taken out to test the relevant performance after 7 days of drying.

2.4. Characterizations

Fourier transform infrared spectroscopy (FT-IR, Cary630, Agilent Technologies Inc.,
Santa Clara, CA, USA) was carried out to determine the characteristic absorption peak
of WAA coating before and after nano-SiO2 modification. The samples were mixed with
KBr at a mass ratio of 1:8 in a mortar. After that, the mixture was ground uniformly and
pressed under a pressure of 16 MPa. The spectrum was recorded from the wavenumber
from 4000 cm−1 to 500 cm−1 at 2 cm−1 resolution with 48 scans. A scanning electron
microscope (SEM) was operated to investigate the morphology and structure with a JEOL-
7800F (JEOL Ltd., Tokyo, Japan) at an accelerating voltage of 20 kV. The physical and
mechanical properties of WAA coating were analyzed in accordance with corresponding
Chinese Standards. The gloss of the coating film of WAA before and after nano-SiO2
modification was tested by the glossmeter (YG60S 60◦, Voda Precision Instrument Co.,
Ltd., Wuhan, China) according to GB/T9754-2007. The specific test method is as follows:
place the calibrated glossmeter on the coating surface and test 6 values at different parts;
calibrate the glossmeter every three data readings. If the difference between the maximum
value and the minimum value is less than 20% of the average value, record the data and the
average value, otherwise re-select the test piece for testing. An abrasion tester (BGD-523,
Biaogeda Precision Instrument Guangzhou Co., Ltd., Guangzhou, China) was carried
out to investigate the abrasion resistance of wood wallboard coated with WAA coating
reinforced by nano-SiO2. We evaluated the abrasion resistance of painted wood wallboard
after 100 times of grinding, and the unit of abrasion resistance was mg/100 r according to
GB/T1768-2007. Moreover, take the average of three values as the abrasion resistance. The
pencil hardness method was used to test the hardness of WAA paint film before and after
modification (GB/T23999-2006). A pencil hardness tester (BGD 507/S, Biaogeda Precision
Instrument Guangzhou Co., Ltd., Guangzhou, China) with a pencil of a certain hardness
was used to scratch 7 mm on the surface of the coating at a speed of 1 mm/s. Meanwhile,
the hardness of the pencil was changed from soft to hard, and the hardness of the pencil was
indicated when the coating showed 3 mm or more scratches. The adhesion was measured
by a paint film scriber (BEVS 2202, BEVS Industrial Co., Ltd., Zhuhai, China) at 2 mm
intervals according to GB/T9286-1998, and the adhesion level was evaluated according to
the peeling of the paint film.

3. Results and Discussion
3.1. FT-IR of WAA Resin Coating Modified by Nano-SiO2

The characteristic functional group and characteristic absorption peak of WAA resin
before and after nano-SiO2 modification were investigated using FT-IR. The FT-IR spectra
of WAA modified with 1.5% nano-SiO2 were used for comparison. It can be seen from
Figure 1 that the FT-IR spectra of the WAA coatings showed similar absorption peaks after
the modification of nano-SiO2, which indicates that the modification of nano-SiO2 did not
destroy the basic structure of the WAA coatings by chemical reaction. The characteristic
absorption peaks of the samples were observed at approximate peaks of 3400–3300, 2930,
2850, 1730, 1450, 1400, 1240, and 1140 cm−1 (Figure 1). As can be seen from the FT-IR
spectrum, the stretching vibration peak near 3400–3300 cm−1 was caused by the hydroxyl
group in the WAA coating [36]. In addition, additional absorption peaks were observed
between 2930 and 2850 cm−1 in the FT-IR spectra of the WAA, which corresponded to the
antisymmetric stretching vibrational peaks and symmetric stretching vibrational peaks of
-CH2 and -CH, respectively [37]. Furthermore, the peaks at 1730, 1450, and 1400 cm−1 were
attributed to the absorption peaks of C=O, C-O, and -COO- in the carboxyl group of the
WAA coating, respectively [38]. Moreover, sharp absorption peaks were shown between
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1240 and 1140 cm−1, which were ascribed to the antisymmetric stretching vibration peaks
and symmetric stretching vibration peaks of ester groups in WAA resin. When SiO2
nanoparticles were added to the WAA resin coatings, no new FT-IR characteristic peaks
were seen in the nano-SiO2/WAA coatings, indicating that no chemical reaction occurred
to create the new functional group.
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3.2. Micromorphological Analysis

Figure 2 shows SEM morphology images of WAA resin before (a and b) and after
(c and d) being modified by nano-SiO2. It can be seen from Figure 2a,b that many small
particles are dispersed on the surface of the unmodified WAA paint film, which is caused
by the pigment particles and other additives in the WAA paint [39]. The irregular lamellar
structure can be seen from the cross-sectional view of the pure WAA paint film. Moreover,
there are many holes between the lamellae, which are caused by the disordered arrangement
of particles in the paint and the air bubbles generated during coating. The existence of these
holes makes the lamella loose, which manifests as low hardness and poor wear resistance
of the paint film at the macroscopic level.

After the addition of nano-SiO2 to the WAA resin coating, the paint film (Figure 2c,d)
was dispersed with small particles similar to the pure WAA paint film surface. However,
there are some large particles were also unevenly dispersed on the surface of the WAA paint
film after being modified by nano-SiO2. This was attributed to the fact that nano-SiO2 is
very easy to agglomerate, and the large particles formed by agglomeration were dispersed
in the coating. As can be seen from the modified WAA paint film, there are some large
holes and raised large particles distributed at the interface of the paint film (circles in the
figure), which are caused by the agglomerated large particles of nano-SiO2 being pulled
out when the paint film is sheared. This indicates that nano-SiO2 can be embedded and
combined with WAA coatings, and the agglomeration of nano-SiO2 makes its dispersion in
WAA coatings poor, which directly affects the appearance and performance of the modified
WAA coatings.
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Figure 2. The SEM images of WAA films before (a,b) and after (c,d) nano-SiO2 modification.

3.3. Effect of Nano-SiO2 Addition on the Gloss of WAA Paint Film

The specific effect of nano-SiO2 addition on the gloss of WAA paint film is shown in
Figure 3. It can be found from the figure that the gloss of the paint film decreases with the
increase in nano-SiO2 addition. The gloss of the paint film was 24.1, 23.1, 20.9, 19.0, 18.7,
and 16.8 when the content of nano-SiO2 was increased to 3 wt%, respectively. According to
the actual product requirements for the gloss of the paint film for matte, to assess whether
it meets the performance of the paint film, 0.5 wt% ≤ nano-SiO2 content ≤ 1.5 wt% is in
line with the product requirements.
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3.4. Effect of Nano-SiO2 Addition on the Abrasion Resistance of WAA Paint Film

The effect of nano-SiO2 addition on the abrasion resistance of WAA coating film is
shown in Figure 4. The abrasion resistance of the paint film was evaluated by the weight
loss value of 100 r paint film [40]. It can be seen from the figure that the weight loss value
of the paint film is negatively correlated with the wear resistance of the paint film when
the relevant process conditions are consistent. The 100 r abrasion weight loss value of
the paint film was 0.237 g, 0.228 g, 0.214 g, 0.209 g, 0.127 g, 0.117 g, and 0.162 g when the
content of nano-SiO2 was increased to 3 wt%, respectively. When the nano-SiO2 addition
was 0–2.5 wt%, the basic trend of the wear loss value is reduced, and the best abrasion
resistance performance was achieved when the addition amount was 2.5 wt%. However,
the weight loss value of the paint film at 0.5 wt% was slightly higher than the wear value
when it was not added. The main reason may be that one of the measured specimens
had a large abrasion value, which can be largely ignored as abnormal data. When the
addition amount reached 3 wt%, the paint film wear weight loss value increased, but it
was lower than the pure WAA paint film. This is due to the large specific surface area
of nano-SiO2, which caused uneven distribution in the solution and self-agglomeration,
resulting in an increase in the abrasion value of the paint film. The addition of nano-SiO2
can improve the hardness of WAA paint film, but when the addition of nano-SiO2 reaches
a certain value, the hardness of the paint film is enhanced, the film becomes brittle, and the
wear resistance is reduced. Therefore, 1 wt% ≤ nano-SiO2 content ≤ 2.5 wt% is more in
line with the abrasion resistance of WAA paint film.
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3.5. Effect of Nano-SiO2 Addition on the Hardness of WAA Paint Film

The effect of nano-SiO2 addition on the hardness of WAA paint film is shown in
Figure 5. The hardness of pure WAA coating can only reach 2B, which does not meet the
requirements of the corresponding standard for water-based paint hardness greater than or
equal to B. It is obvious that the addition of nano-SiO2 can effectively improve the hardness
of paint film. As we know, nano-SiO2 is a nanomaterial with a crystal effect, so adding it to
WAA resin can improve the hardness of the coating. When the added amount of nano-SiO2
was in the range of 0.5 wt%–2.5 wt%, the hardness of the paint film was increased to B.
When the addition amount is 3 wt%, the hardness of the paint film reaches its best HB.
However, according to Figure 4, the corresponding abrasion resistance was the worst at
this time. Therefore, a comprehensive assessment of hardness and abrasion resistance with
0.5 wt% ≤ nano-SiO2 content ≤ 2.5 wt% is more consistent.
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3.6. Effect of Nano-SiO2 Addition on the Adhesion of WAA Paint Film

The effect of nano-SiO2 addition on the adhesion of WAA paint film is shown in
Figure 6. Generally speaking, the adhesion requirements for water-based finishes for wood
wallboard are as follows: adhesion (scribe spacing 2 mm/level) less than or equal to 1 level.
When the addition amount of nano-SiO2 increased from 0 to 3 wt%, the adhesion grades
were 1, 1, 1, 1, 2, 2, and 3, respectively. The adhesion of the coating decreased with the
increase in the nano-SiO2 addition, and the adhesion was the worst when the addition
amount reached 3 wt%. This was due to there being too many SiO2 nanoparticles that could
not be effectively dissolved and leading to structural instability. Although the adhesion
grade was grade 1 when the nano-SiO2 content was less than 1.5 wt%. However, the
adhesion was the best when no modifier was added, and the adhesion was the worst
when the amount of modifier was more than 1.5 wt%. Therefore, 0.5 wt% ≤ nano-SiO2
content ≤ 1.5 wt% is more in line with the adhesion of WAA paint film.
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3.7. Optimal Process

After the above analysis, the amount of modifier nano-SiO2 added to meet the indexes
of gloss, hardness, abrasion resistance, adhesion, and cost of the modifier of WAA paint
film is shown in Table 2. Taking the above performance factors into account, the film
performance of WAA is superior when the content of nano-SiO2 is 1 wt% or 1.5 wt%.
Moreover, according to the construction and cost, the construction simplicity when the
addition amount is 1 wt% is better than that of 1.5 wt%. This is because the nano-SiO2 in
the WAA coating is easily adsorbed to each other and agglomerates. Therefore, with the
increase in the amount of nano-SiO2 added, the particles in the WAA coating increase, and
the construction difficulty increases. In addition, the cost of adding 1.5 wt% was higher
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than that of 1 wt%. Therefore, combining the above factors, the modified WAA coating
prepared at 1 wt% nano-SiO2 addition has excellent performance.

Table 2. The optimal amount of nano-SiO2 addition for each performance index.

Performance Index Nano-SiO2 Addition Conforming to the Process

Glossiness 0.5 wt%, 1 wt%, 1.5 wt%
Hardness 0.5 wt%, 1 wt%, 1.5 wt%, 2 wt%, 2.5 wt%, 3 wt%

Abrasion resistance 1 wt%, 1.5 wt%, 2 wt%, 2.5 wt%
Adhesion 0.5 wt%, 1 wt%, 1.5 wt%

Cost 0.5 wt% < 1 wt% < 1.5 wt% < 2 wt% < 2.5 wt% < 3 wt%
Optimal process 1 wt%

4. Conclusions

In this study, a simple mechanical compounding method was used to modify the WAA
coating with nano-SiO2 serving as a modifier. Meanwhile, the feasibility of using it on the
surface of wood wallboard to enhance its paint film properties was investigated. The FT-IR
spectrum results showed that the modification of WAA coatings with nano-SiO2 did not
produce new chemical functional groups, indicating that the basic structure of WAA resin
was not destroyed. Thus, the basic properties of nano-SiO2 were maintained. In addition,
it is clear from the SEM images that the addition of nano-SiO2 changes the dispersion
properties of WAA coatings, which, in turn, affects the performance of the corresponding
coatings. Moreover, the hardness, gloss, adhesion, and wear resistance of WAA after being
modified by nano-SiO2 showed different degrees of enhancement. This indicates that the
WAA coating modified by nano-SiO2 is beneficial for enhancing the paint film properties
on the wood wallboard surface. Based on various convenient factors, the properties of the
paint film coating on the wooden wallboard can reach their best performance when the
content of nano-SiO2 in the WAA coating is 1 wt%. This work demonstrates the potential
application of nano-SiO2 in WAA coatings and provides a new perspective for the design
of new formaldehyde-free waterborne coatings.
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