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Abstract: Achieving high-efficiency optoelectronic devices often requires the development of high
transparency in the extended range and high-conductivity materials, which can be ensured by
the high mobility of charge carriers being used as the electrode. Among the candidate materials,
transparent conductive indium zinc oxide (IZO) has attracted significant interest because of its
superior electron mobility (5−60 cm2/V·s) and the thermal stability of its structure. In this study,
the IZO films were deposited by the radio frequency magnetron sputtering of the IZO ceramic
target (containing 10 wt.% ZnO) by varying the two variables of the substrate temperature and
the oxygen content in the working gas. Here, the importance of the deposition of the IZO films
at a low substrate temperature, not exceeding 100 ◦C, in order to get the minimum values of the
film resistivity is revealed. At a substrate temperature of 100 ◦C, the film deposited in pure argon
demonstrated a minimum resistance of 3.4 × 10−4 Ω·cm. Despite the fact that, with the addition of
O2 in the working gas, an increase in resistivity was observed, the IZO film that deposited under
0.4% O2 content demonstrated the highest mobility (µ = 35 cm2/V·s at ρ = 6.0 × 10−4 Ω·cm) and
enhanced transparency in the visible (VIS, 400−800 nm) and near-infrared (NIR, 800−1250 nm) ranges
(TVIS ≥ 77% and TNIR ≥ 76%). At an oxygen content above 0.4%, a significant deterioration in
electrical properties and a decrease in optical characteristics were observed. SEM and XRD studies
of the microstructure of the IZO films allowed the clarification of the effect of both the substrate
temperature and the oxygen content on the functional characteristics of the transparent conducting
IZO films.

Keywords: TCO; thin films; indium zinc oxide; transparent electrode; magnetron sputtering;
mobility; transmittance

1. Introduction

Transparent conductive oxide films (TCO films), due to their high transmittance and
low resistivity, have been extensively used as electrodes in various optoelectrical devices,
including photovoltaic solar cell [1,2], flat panel display [3], light-emitting diodes [4–6],
sensors [7], etc. Conventional TCO materials, such as In2O3:Sn (ITO), highly doped ZnO
(with Ga, Al, In, B, etc.) and SnO2:F, are steadily under study and have been widely utilized
in the device industry [1,2,6,8–10]. However, a critical problem in achieving good electrical
performance for these materials is an unavoidable high-temperature process in order
to activate dopants by substrate heating up to 300 ◦C directly during film deposition or
during subsequent postannealing, which severely limits their application in the dynamically
developing area of optoelectronic devices on organic flexible substrates, also called flexible
and stretchable optoelectronics [7,11]. A boom in interest in recently emerging fields,
such as flexible display using organic light-emitting diodes (OLED) and tandem solar

Coatings 2022, 12, 1583. https://doi.org/10.3390/coatings12101583 https://www.mdpi.com/journal/coatings

https://doi.org/10.3390/coatings12101583
https://doi.org/10.3390/coatings12101583
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/coatings
https://www.mdpi.com
https://orcid.org/0000-0001-6426-5006
https://orcid.org/0000-0002-0524-7606
https://doi.org/10.3390/coatings12101583
https://www.mdpi.com/journal/coatings
https://www.mdpi.com/article/10.3390/coatings12101583?type=check_update&version=2


Coatings 2022, 12, 1583 2 of 12

cells stacked with perovskite and Cu(In,Ga)Se2 (CIGS), has led to new requirements for
transparent electrodes. For OLED application, the control of the film microstructure and
the film surface roughness associated with it, as well as the adjustment of the electrode
work function, come to the fore [12,13]. In turn, the widening of the transparency window
of the TCO electrode to the NIR region, while maintaining its good electrical performance,
is one of the most important tasks applied to CIGS-based solar cells [14–16].

Currently, an indium zinc oxide system is one of the more promising materials for TCO
films due to its high transmittance, good electrical properties, thermal stability and lowest
deposition temperature. Moreover, a tunable work function, high etching rate, smoother
surface and resistance to moist heat are the prominent features of IZO thin films, which are
very important aspects for OLED display applications [13,17]. Regarding the use of IZO
films as transparent electrodes in tandem solar cells, a very important fact is the opportunity
to achieve a much lower NIR absorption due to their low charge-carrier density, which is
compensated by their exceptionally high electron mobility that simultaneously allows for a
high conductivity [16,18,19].

IZO thin films with varying compositions have been deposited by various deposi-
tion technologies, such as sputtering [13,16,17,19], pulsed laser deposition [20], thermal
evaporation [21], atomic layer deposition [22] and wet-solution process [23].

Among them, sputtering is the most established deposition technique due to its great
advantages, such as a high deposition rate, high-quality film and simple scalability to
large deposition areas [8,24], despite the fact that it can lead to plasma damage, resulting
in degradation of the device’s performance. Sufficient studies have been devoted to
achieving good electrical properties while maintaining high optical transmittance through
optimizing magnetron sputtering conditions [17,19,25–30]. Initially, studies focused on
the effects of the specific doping concentration [25,30], oxygen partial pressure [19,29] and
temperature regime [17,28] on the functional properties of the IZO films. Often, the results
obtained differed from each other due to the peculiarities of the growth conditions in a
particular experiment.

In this study, we are going to explore the effects of the two key important variables
of the substrate temperature and the oxygen content in the working gas on the final
functional properties of the IZO (In2O3 with 10 wt.% ZnO) films by using a magnetron
sputtering setup, which had been equipped with a specially designed multi-position drum-
type substrate holder [31]. The substrate holder allows for quick growth temperature
optimization for different materials due to the simultaneous growth of films on substrates
at different controlled temperatures in a single vacuum run [31,32], i.e., for each value of
the oxygen content, a set of IZO thin-film samples differing from each other only in the
deposition temperature will be obtained simultaneously.

2. Materials and Methods
2.1. IZO Thin Films Synthesis

A series of IZO films were fabricated by the radio frequency (rf) magnetron sputtering
of an IZO ceramic target (90 wt.% In2O3 and 10 wt.% ZnO) on soda-lime glass slides
(25 × 25 × 1.1 mm) at substrate temperatures of room temperature (RT), 100, 200 and
300 ◦C under different contents of oxygen c(O2) in an Ar-based working gas mix (from 0.0
to 2.0%).

The IZO ceramic target in the form of a 2-inch disk was synthesized as follows.
Submicron powders of In2O3 (99.99% purity) and ZnO (99.95% purity) under a weight
ratio of 9:1 were used as a starting powder mix. The powder mixture was successively
subjected to 5 h of dry mixing in a ball mill, 8 h of annealing in air at 900 ◦C and repeated
5 h of processing in a ball mill. Then, the prepared powder mix was used to form a ceramic
disc with a diameter of 51 mm and a thickness of 4 mm using the spark plasma sintering
(SPS) technique [33] under the SPS temperature of 950 ◦C and SPS duration of 5 min. After
mechanical grinding, the ceramic disk was finally annealed in air at 900 ◦C for 2 h.
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A home-made rf magnetron sputtering setup provided pumping down to a base
pressure of lower than 2 × 10−4 Pa and was equipped with a multiposition drum-type
heated substrate holder, which ensured the simultaneous formation of four films at different
temperatures (from room temperature to 300 ◦C) in one vacuum cycle [31]. To study the
effects of the oxygen, pure argon (c(O2) = 0.0%) and preliminarily prepared Ar/O2 working
gas mixes (with varying c(O2) from 0.3 to 2.0%) were used. For each c(O2), four thin-film
samples were deposited in a single vacuum cycle at four values of substrate temperatures
under the following deposition conditions: the sputtering pressure of 0.5 Pa at a flow rate of
20 sccm, the rf power of 100 W, the rotation rate of the drum substrate holder of 10 rpm (the
minimum distance from the target to the passing substrate was 100 mm), and a sputtering
duration of 200 min.

2.2. IZO Film Characterization

The sheet resistance of the IZO thin films was measured by using a four-point technique
(IUS-3, Moscow, Russia), while electrical transport properties were characterized from Hall
effect measurements at room temperature by using the van der Pauw geometry. The optical
transmittance of the IZO thin films coated on glass substrates was recorded by an optical
spectrophotometer (Shimadzu UV-3600, Tokio, Japan) in the wavelength range of 300–1250 nm.

The films’ thickness was evaluated from transmission spectra by using the PUMA
approach and code described by Birgin et al. [34] and confirmed by scanning electron
microscopy measurements (SEM, Leo-1450, Carl Zeiss, Oberkochen, Germany).

A scanning electron microscopy method was also used to observe both the cross-sectional
and surface morphology of the deposited films, while an XRD method in θ-2θ scan mode was
used to determine their structural characterization (Shimadzu XRD-7000, Tokio, Japan).

3. Results and Discussion

Figure 1 shows the deposition rate of the IZO thin films prepared under varying oxygen
concentrations c(O2). In this figure, each node of the curve corresponds to the average
value measured on the four films deposited at substrate temperatures ranging from room
temperature to 300 ◦C. The deposition rate increased until an c(O2) of 0.3% in the working
gas mix was reached, while it noticeably decreased with the further increasing of oxygen
concentration in the O2/Ar gas mix. The increase in the growth rate observed at a low
oxygen content may be due to the formation of a metal-rich condition in the IZO target during
its preparation by the SPS method [35]. The addition of a small amount of oxygen should
promote the oxidation of both surplus Zn and hemioxide In2O, which, if sputtered in an
inert atmosphere, can relatively easily resputter from the exposed surface due to high vapor
pressure. Full oxidation of sputtered species results in a higher deposition rate. In turn, the
decrease in the deposition rate with an increase in the oxygen content above 0.3% resulted in
both the formation of a thin oxidized layer on the surface of the IZO target under the oxygen
ambient in the chamber and the decrease of Ar ions bombarding the target surface [29].
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Figure 2 shows the changes in sheet resistance RS of the IZO films deposited at an O2
content up to 0.5% as a function of the substrate temperature during deposition. In Figure 2,
there are no data corresponding to the IZO films deposited at an O2 content of 1 and 2%,
due to the fact that these films had high values of sheet resistance (RS > 105 Ω/sq) that are
far from the acceptable TCO resistance requirement. Figure 2 shows that, for each c(O2), the
sheet resistance of the IZO films decreased quite a bit with the increasing of the substrate
temperature from RT to 100 ◦C, while a further increase in the substrate temperature leads
to an increase in resistance by several times. This result indicates that IZO, unlike more
traditional TCO materials (ITO, doped ZnO, etc.) [31,32], does not require high temperature
substrate heating, as has been noted previously by many groups [13,16,19].
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In order to gain more information about the aspects leading to this IZO behavior, direct
measurements of the electrical properties of the IZO thin films deposited at the various
substrate temperatures were performed using the Hall Effect technique. Figure 3 shows the
dependences of the resistivity ρ, the Hall mobility µ and the carrier concentration n as a
function of the oxygen concentration c(O2). It can be seen that, for the range of O2 content
studied, the minimum values of resistivity ρ were observed in the IZO films deposited at
the substrate temperature of 100 ◦C (Figure 3a), as in the case of the dependence of sheet
resistance on substrate temperatures (Figure 2). At the same time, as observed in Figure 3a,
for each substrate temperature, there is a tendency for ρ to rise with the increase in the
c(O2)—a minor change in the ρ at an c(O2) of less than 0.4% and a sharp increase above an
c(O2) of 0.4%.
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This effect occurs due to the competing trends of n and µ (Figure 3b,c). For example,
in the case of a substrate temperature of 100 ◦C, the n decreases with the increasing of the
c(O2), from 6.7 × 1020 down to 1 × 1020 cm−3, while the µ has a prominent maximum
of 39.2 cm2/V·s for c(O2) = 0.4%. The films deposited at 50, 200 and 300 ◦C follow the
same trend.

Thus, in the course of a comparative study of the electrical characteristics of the IZO films
as functions of the substrate temperature and the O2 concentration, the following was found:

• In order to achieve the minimal values of resistivity in the IZO films, it was necessary
to carry out sputtering at a substrate temperature not exceeding 100 ◦C;

• At this substrate temperature, the mobility could be increased from 25 to more than
37 cm2/V·s by adding up to 0.4% O2 to the working gas Ar. At the same time, de-
spite the concomitant slight decrease in the carrier concentration from 6.7 × 1020 to
2.7 × 1020 cm−3, the deposited films were characterized by resistivity values
ρ ≤ 6 × 10−4 Ω·cm (which corresponds to a sheet resistance RS less than 15 Ω/sq at
the films’ thickness of 400 nm), meeting conventional TCO requirements;

• When using substrate temperatures and oxygen concentrations above optimal values
(100 ◦C and 0.4%O2, respectively), a noticeable downgrade of electrical performance
in IZO is observed due to a decrease in both the concentration and mobility.

The normal-incidence transmission spectra of a glass substrate with the IZO thin films
were measured by the optical spectrophotometry in the 300–1250 nm wavelength range.
Figure 4a displays the optical transmittance of the IZO films deposited in the pure Ar
working gas with varying substrate temperatures.

The data showed distinct interference fringes indicating that the films were smooth with
little scatter. Figure 4a shows that the transparency of the IZO films deposited in pure Ar
was increased in the visible range (400−800 nm) with increased substrate temperatures. This
may be due to a decrease in the photon absorbance and scattering on defects caused by the
incorporation of surplus metals into the film. At the same time, the transmittance of the
films in the NIR region (800−1250 nm), as a function of substrate temperatures, repeats the
trend of the concentration n in the films with varying substrate temperatures. The minimum
transparency in this region was shown by the film deposited at 100 ◦C, which had the
maximum concentration n = 6.9 × 1020 cm−3 among the films deposited at an c(O2) of 0.0%.

Figure 4b illustrates the optical transmittance spectra of the IZO films deposited at the
substrate temperature of 100 ◦C with varying oxygen concentrations in the working gas.
The films deposited at an c(O2) of 0.3–0.4% present maximum transparency (the average
transmittance TVIS calculated in the visible range of 400−800 nm for these films was more
than 77%), while below and above the c(O2) the average transmittance TVIS slightly drops
(73.5 and 75.8%, respectively). The decrease in the TVIS with an increase in the c(O2) to 0.5%
is mainly due to a dip in the spectrum in the violet-blue region (380–470 nm). Regarding
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the NIR region, all three films deposited in the presence of O2 are characterized by a high
transparency in this range compared to the film deposited at an c(O2) = 0%. Note that a
clearer picture of the absorption edge red shift with an increasing c(O2) is observed in the
spectral vicinity of 350 nm for the IZO films deposited at 100 ◦C. That can be attributed to
the well-known Burstein–Moss shift due to the observed increase in the concentration n by
almost one order of magnitude with a decreasing c(O2) from 0.5 to 0.0%.
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The average transmittances TVIS and TNIR calculated for the visible (400−800 nm)
and NIR (800−1250 nm) regions, depending on the substrate temperature and c(O2), are
also summarized in Figure 5a,b, respectively. It can be seen from Figure 5a that, while the
average transmittance TVIS of the films deposited at an c(O2) of 0.0 and 0.5% show opposite
direction dependences with varying substrate temperatures, the dependences of the TVIS
on the substrate temperature for the IZO films deposited at the intermediate c(O2) values
(0.3% and 0.4%) are less pronounced. Note that the maximum average transmittance in
these films (TVIS = 77.5%) is achieved in the substrate temperature range of 100–200 ◦C.
Taking into account the slightly larger film thickness obtained by an c(O2) = 0.3%, we can
conclude that the IZO thin film deposited at 100 ◦C and an O2 content of 0.3% demonstrates
maximum transparency in the visible area. In turn, the IZO film obtained at 100 ◦C and
an c(O2) = 0.4%, in which the maximum mobility was observed, is characterized by the
maximum transmittance in the NIR region (TNIR = 76.4%) among all the films (Figure 5b).

Thus, the transmittance for the glass substrate with the IZO thin films showed that the
adding of O2 in the working gas clearly leads to a red shift in the optical response for the
UV-violet region. However, for wavelengths greater than 400 nm, the transmittance values
increased, reaching values greater than 76% of transparency in the wide visible-NIR range
for the IZO films deposited at the optimal substrate temperature (100 ◦C) and the c(O2)
values up to 0.4%. A further increase in the c(O2), especially in combination with an increase
in the substrate temperature, leads to a substantial decrease in the average transmittance.

On the whole, based on the regularities observed in the study of the electrical and
optical properties of the IZO films, it can be concluded that this behavior is characteristic of
mostly amorphous In2O3-based thin films, in which the conductivity is governed mainly by
oxygen vacancies [36–38]. In this regard, the resistance of the IZO films could be controlled
and easily changed by nine orders of magnitude [39]. Furthermore, we also noted that,
in our experiment, the IZO films that deposited at an c(O2) ≥ 1% had high values of
resistivity, beyond the measurement limits of our measurement setup. In turn, it has been
demonstrated that the deposition of the IZO film under a controlled low oxygen content
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in a chamber allows the fine-tuning of both the electrical and optical properties of these
thin films by enhancing the mobility of the IZO film due to the decrease in concentration of
VO in the film [19,29]. Kamiya et al. suggested, on the basis of first-principles calculations,
that oxygen vacancies (VO) act as shallow donors and suppliers of conduction electrons in
amorphous In2O3-containing thin films, and that defect sites, meanwhile, can also act as
scattering centers, reducing charge-carrier conduction [40].
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Based on our measurement data on the electrical characteristics of the IZO films, we
plotted the dependence of µ with n (Figure 6). The ramp and subsequent decrease of µ
with n could be explained by the presence of different scattering mechanisms. According to
Leenheer et al., the maximum µ in the IZO films is reached when carrier transport is mainly
limited by phonon scattering, i.e., metal-like transport [41]. The change in trend observed
on the curves in Figure 6 may indicate that ionized impurity scattering becomes the main
limiting factor of µ at a high concentration of carriers supplied by Vo. The values of the
n, at which the scattering mechanism switches, are in agreement with [19,41]. Here, it is
worth noting that a change in the location of the maximum of the curves depending on the
substrate temperature may indicate the presence of some additional mechanisms of charge-
carrier scattering. In particular, due to the nonstoichiometric nature of the sputtered target,
the formation of metal pairs (e.g., In-In, In-Zn), and even subnanometer metal inclusions, is
possible inside the film at RT [42,43]. These defects can be additional scattering centers for
both conduction electrons and transmitted light. With increasing substrate temperatures,
the formation of metal inclusions is reduced and the mobility of the films improves. This
can explain the improvement in both the electrical and optical properties of the IZO films
observed in our experiment with an increase in the substrate temperature from RT to
100 ◦C.

Furthermore, since the IZO films deposited at an optimal substrate temperature of
100 ◦C under the oxygen ambient have a higher transparence than the IZO films deposited at
300 ◦C under the same ambient (which is not in agreement with others [28]), we carried out
additional comparative studies of the morphology and microstructure of the corresponding
IZO films.

Figure 7 shows the SEM micrographs of the IZO thin films deposited at a substrate
temperature of 100 and 300 ◦C by using the various oxygen contents in the working
gas. It is shown that a very flat surface was obtained at a low substrate temperature
regardless of the c(O2). Such morphology is typical in the case of the kinetic regime of
the deposition of a multicomponent oxide film, the individual components of which have
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minimal solubilities in each other [13,36]. In this case, the absence of any significant
external heating of the growing film usually results in the formation of a closely packed
homogeneous amorphous/nanocrystalline structure.
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In contrast, the surface roughness of the IZO films deposited at 300 ◦C and an c(O2)
range up to 0.5% is greatly increased in comparison with that of the IZO films deposited
at the optimal 100 ◦C. The film deposited in pure argon had signs of columnarity. The
formation of a columnar structure is typical, for example, for polycrystalline ITO films
grown on a heated substrate [44]. When the c(O2) increased up to 0.5%, the surface became
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more rough and highly disordered grains appeared locally. Note that, when the c(O2)
became greater than 0.5%, the surface of the film became very smooth, like that of the films
deposited at a lower substrate temperature. The complex behavior of the morphology in
the IZO films deposited at 300 ◦C is related, apparently, to the oppositional nature of the
effect of oxygen on the growth of ZnO and In2O3, whose nanocrystals (nanoclusters) can
nucleate inside the film at a given temperature [35,45,46].

Thus, SEM studies have revealed the relationship between the deterioration in light
transmission observed for films deposited at temperatures above 100 ◦C (Figure 4) and the
development in their surface morphology. It is well-known that, during optical transmit-
tance measurement, the incident light can be more scattered over a rough surface than over
a uniform surface [47].

Figure 8 shows the x-ray diffraction spectra obtained from the IZO thin films deposited
at 100 and 300 ◦C and various c(O2). XRD studies confirmed the most common amorphous
nature of the films of the indium zinc oxide system, except the IZO film deposited in pure
Ar at 300 ◦C. All the samples prepared at a low substrate temperature show no clear or
broad diffraction peaks, which indicate that these films were fully disordered due to the
immiscibility of Zn in the In2O3 matrix. A somewhat different picture was observed in
the case of substrate temperatures of 300 ◦C. For the film deposited at 300 ◦C in pure
Ar, a clear peak indicates the presence of polycrystalline IZO. Its position is very close to
the position of the diffraction (222) line for In2O3 (PDF card #00-006-0416). At the same
time, with the addition of oxygen, ordering transformation occurs on the patterns of the
IZO films deposited at 300 ◦C. For the film deposited at an c(O2) = 0.4%, on the pattern
there is only a weak and broad peak centered at 2θ = 30◦, indicating that the film is an
amorphous structure with some short-range ordering. However, this broad peak does not
exclude the possibility of the presence of ultrafine crystallites of oxide phases (In-doped
ZnO, Zn-doped In2O3, and other compounds from the homologous series In2ZnkOk+3)
into the film, the size of which does not exceed a few nanometers [48,49]. In the end, more
complete amorphization is observed with an increasing c(O2) up to 1%.
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4. Conclusions

The functional characteristics of the IZO TCO thin films prepared by the rfmagnetron
sputtering of the SPS synthesized ceramic IZO target (90 wt.% In2O3 and 10 wt.% ZnO) were
well investigated in this study. We have shown the influence on the carrier-transport prop-
erties and optical transmittance of the oxygen partial pressure and substrate temperature
applied during the sputtering deposition of the IZO thin films.

It is shown that the electrical properties behaved as if dominant donors are mainly
generated by oxygen vacancies. Enhanced electrical property of the IZO films was achieved
by decreasing the substrate temperature up to 100 ◦C, which showed a 9 Ω/sq of sheet
resistance for the film with a thickness of about 380 nm obtained in pure Ar.

Despite the fact that, with an increase in the oxygen content, an increase in resistivity
was observed, it was found that the addition of oxygen during sputtering differently affects
the carrier concentration and its mobility. While the concentration decreased monotonically
over the entire range of the oxygen content, the mobility had a maximum (µ = 39.2 cm2/V·s)
at an oxygen content of 0.4%. It has been demonstrated that, in films deposited at the
optimal temperature, the addition of oxygen up to 0.4% also leads to an increase in trans-
parency in both the visible and near-infrared regions of the spectrum (TVIS ≥ 77% and
TNIR ≥ 76%). Additional studies of the morphology and microstructure of the deposited
films made it possible to identify the reasons for the observed deterioration of the optical
properties of the IZO films deposited at non-optimal conditions.

In conclusion, the strategy to grow IZO film, based on the optimization of oxygen va-
cancies into IZO by O2 introduced during sputtering, is a useful guideline for the tuning of
the functional properties of low-temperature IZO TCO films and their adaptation for some
practical applications, including a wide area of temperature-sensitive and flexible devices.
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