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Abstract: Shellac (SL) is a natural resin employed for wood finishing, while clove (Eugenia caryophyl-
lata) and thyme (Satureja hortensis) essential oils (C-EO, T-EO) are organic natural products of vegetal
origin with antifungal, antimicrobial and antioxidant properties. The present paper aims at exploring
the potential of modifying alcoholic shellac solutions with essential oils (C-EO, T-EO), focussing
on the recurrent effects of this modification on the traditional wood finishing technique, the colour
and the UV light resistance of the wood coated surfaces. The compatibility of C-EO and T-EO with
ethyl alcohol and the alcoholic reference SL solution was evaluated, and modified SL solutions with
a content of 5% and 10% C-EO and T-EO were prepared. Wood samples of European maple (Acer
pseudoplatanus) and European walnut (Juglans regia) were finished with reference and modified SL
solutions. An accelerated UV ageing test was run, and the samples were evaluated after 24, 48
and 72 h of exposure. Colour measurements in the CIELab system and FTIR–ATR investigation
were employed for monitoring colour and surface chemistry changes. Coating with SL resulted in
visible colour changes for both wood species (∆E values of 31.06 for maple and 13.00 for walnut) and
increased UV resistance, reducing colour changes after 72 h UV exposure (by 83% for maple and by
59% for walnut) as compared to the uncoated controls. Modification of SL solutions with C-EO and
T-EO only slightly influenced the colour of finished surfaces (∆E = 1.88–5.41 for maple, ∆E = 1.36–3.41
for walnut) and their UV resistance. The colour changes (∆E) of coated surfaces after 72 h exposure
varied in the range 1.63–4.53 for maple and 2.39–3.58 for walnut, being generally slightly higher (by
1.7–2.9 units for maple and 0–1 unit for walnut) for the modified SL solutions. FTIR investigation
highlighted only minor chemical changes of the shellac coating films after 72 h of UV exposure. A
photo-induced oxidative process of eugenol seemed possible in the case of SL modified with C-EO.

Keywords: shellac; essential oils; UV ageing; colour; FTIR; wood; maple; walnut

1. Introduction

As a natural biopolymer, shellac (SL) qualifies today as both a traditional material with
a long history and a modern multifunctional material with great potential for development
of greener technologies [1]. Shellac is a natural film-forming resin obtained by purification
procedures of the hardened secretion of the parasite lac insects from the Kerriidae family
(Kerria lacca) that mostly grow on various species of trees and bushes from South-Eastern
Asian countries, especially India. Since the 17th century, shellac has become an important
wood coating material in Europe, often employed to obtain exquisite, high-gloss finishes
for furniture (French polish) and musical instruments (e.g., violins) [1,2]. The same material
and technique are applied today for authentically restoring historic furniture/artefacts [3],
as well as for the finishing of the upper-class concerto string musical instruments.

The chemical composition of shellac is complex and depends on the source of material
(insects, host trees) and the purification procedures applied to remove colouring materials
and waxes from the raw stick lac. Purified shellac resin is considered a complex mixture
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of esters (soft resin) and polyesters (hard resin) of various poly-hydroxy carboxylic acids,
the main ones being: aleuritic acid (a tri-hydroxy aliphatic linear monocarboxylic acid),
jalaric acid and shelloic acid (polycyclic terpenoide acids) [1,2]. Shellac is a hard and brittle
resinous solid, coloured from light yellow to dark red. It is a thermoplastic, polar resin and
highly soluble in organic polar solvents, especially alcohols. Aqueous solutions may be
obtained in alkaline medium (e.g., NaOH 10%, as recently reported [4]).

Alcoholic solutions prepared from shellac flakes (the commercial form of SL), known
as “polishes”, are employed for wood finishing. Film formation occurs very quickly as
a result of a typical physical process of solvent evaporation, so that shellac finishes have
limited resistance to water, and solvents and are reversible against alcohols, though this
property decreases with ageing due to possible cross-linking reactions [5,6]. Investigations
by FTIR and XPS of thin shellac films irradiated with UV light concluded that SL may be
used as protective coating under solar radiation conditions for organic electronics [7].

The shellac coating films have very good adhesion to the wood substrate and excellent
aesthetic features, including gloss and characteristic colour. Gloss and colour of the coated
surfaces may be affected by ageing under the action of UV light [8–11]. In a study on
the protective effect of different coatings, it was demonstrated that SL provides a better
protection of wood surfaces against photo-degradation than beeswax in terms of colour
changes. However, after long-term exposure, the protective effect of these coatings turned
out to be very low, only slightly reducing the chemical changes of wood components [12].
Shellac and beeswax films cannot block UV radiation to reach the underlying wood sur-
face, and consequent chemical modifications were found relevant for both uncoated and
coated wood.

As a nontoxic, eco-friendly and biodegradable material, shellac is also often employed
as edible coating film for postharvest protection for fruits (e.g., [13]); food products and
pharmaceutical applications, including drug delivery systems [14]; and in many other
applications and modern technologies, as recently reviewed [1].

Recent research reports on the employment of shellac as a shell (e.g., [15,16]) or
core [17,18] of microcapsules or nanoparticles for various applications, including water-
borne, self-repairing coatings with improved mechanical properties and increased ageing
resistance [18–21]. Shellac coating films reduce water uptake in wood [22], while wood
impregnation with shellac solutions results in its dimensional stabilisation [23]. All these
data demonstrate the versatility and potential of shellac, which may be further increased
by various modifications, such as cross-linking with polyamines or polyazyridines [2], or
the employment of additives, such as nanoparticles of SiO2, ZnO and ZrO2, to improve UV
ageing resistance and hardness [9,11]. Moreover, consecutive applications on maple wood
surfaces of a nanostructured ZnO layer and shellac resulted in increased resistance to UV
radiation and mould growth [10].

Clove (Eugenia caryophyllata) and thyme (Satureja hortensis) essential oils (C-EO, T-EO),
as many other essential oils (EOs), are organic natural products of vegetal origin, with a
complex chemical composition (up to around 30 components, with 1 to 3 of them in higher
concentration), including a high content of phenolic compounds (e.g., 67–89% eugenol in C-
EO; 47–87% carvacrol in T-EO) [24,25], alongside various terpenes (e.g., β-carryophylene in
C-EO and T-EO; α-pinene and α- and γ-terpinene in T-EO) and terpenoids (e.g., caryophyl-
lenyl alcohol in C-EO; α-linalool in T-EO). This complex chemical composition confers EOs
complex biological activities including antifungal, antimicrobial and antioxidant proper-
ties [24,26–28]. These properties are valuable features in various application fields including
pharmacology and medicine, the food industry [24,29] and wood protection and cultural
heritage conservation [30–32].

The antioxidant activity of EOs results from their good radical-scavenging activity,
related especially to their content in phenols [28,33,34].

Nanoencapsulation of EOs to increase their efficiency and reduce their volatility is
a correlated important research topic [35,36], while shellac is one of the natural resins
employed in the shell structure [15,16]. Cinnamon essential oil as alternative fungicide [37]
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or carvacrol and thymol [38] were incorporated in shellac coating for an improved cit-
rus fruit bioprotection during storage and marketing. Biodegradable active packaging
films of various polymers (e.g., poly-butylene adipate-co-terephthalate PBAT, polylactide
PLA, gelatine/agar) modified with clove and thyme essential oils demonstrated good UV
protection (UV blocking) and antioxidant activity, while transparency to visible light was
maintained [39,40].

Previous research of the authors highlighted the antifungal properties of C-EO and
T-EO against wood decay fungi and their potential for preventive and curative antifungal
treatments in the process of wood/furniture conservation [41–44] when employed as
alcoholic solutions of 5% and 10%.

The research presented in this paper aims to explore the potential of modifying the
alcoholic shellac solutions employed for wood coating with essential oils (C-EO, T-EO),
in terms of compatibility issues and recurrent effects on the traditional wood finishing
technique and properties of the coated surfaces. The paper focuses on the influence of these
modifications on the colour and UV light resistance of the finished wood surfaces, analysed
by FTIR and colour measurements in the CIELab system

2. Materials and Methods
2.1. Materials

Standard shellac flakes (Masserini) and colophony resin (Masserini) were purchased
from Complex Art: Creative Hobby Timis, oara–Romania [45], products codes GMLSCKG5
and 2055036265006. Clove essential oil (Eugenia caryophyllata) and Thyme essential oil
(Satureja hortensis) as pure oils (100%) were purchased from Steaua Divină–Romania [46],
products codes SKU: PN100061 and SKU: PN10039. Ethyl alcohol (absolute, proanal-
ysis, C = 99.3%) from Chemical Company Romania (Ias, i, Romania) [47] was employed
as solvent.

Two hardwood species: European maple (Acer pseudoplatanus) and European wal-
nut (Juglans regia), were employed. These species were chosen as being representative
for both historic and modern furniture and because of their different natural colours:
white–yellowish (maple) and reddish brown (walnut), rendering a beautiful contrast, often
capitalised in the design of furniture.

Experimental test samples with dimensions of (120 × 80 × 5) as (length × width × thickness)
in mm, with smoothly planned radial/semiradial faces, were processed from the same
batch of wood material (MC 10–12%). The surfaces were further sanded with abrasive
paper H120 and H150 and cleaned from dust by air blowing. All samples were conditioned
at 20 ± 2 ◦C and 55 ± 5% RH before and after finishing and prior to any investigation. A
number of 48 samples were prepared from each wood species.

2.2. Experimental Methods
2.2.1. Preparation of Shellac Polishes

A reference SL solution (polish), coded SL_Ref, was prepared from the solid shellac
flakes (50 g) and an addition of 10% rosin (5 g) by dissolution in ethyl alcohol (500 mL,
density 0.79 g/mL) under stirring on a warm water bath (40–50 ◦C). The solution was
filtered through a fine plastic mesh and stored in the lab at 20 ◦C until utilisation. The
calculated solids content of SL_Ref solution was 13.2%.

With the view of modifying the reference SL solution with EOs, the miscibility and
compatibility of the two essential oils (C-EO and T-EO) with the ethyl alcohol was previ-
ously tested. Mixtures of EO/ethyl alcohol at the ratio 1:10 (v:v) were prepared for this
purpose. Physical compatibility was evaluated by direct observation (homogeneity and
clarity of the mixture), while chemical compatibility was associated with the nonreactivity
of the EOs components with the ethyl alcohol and was assessed by FTIR (see Section 2.3.2).

Modified SL polishes by 5% and 10% EOs were further prepared and coded, as pre-
sented in Table 1. These proportions of modification were chosen based on previous
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research on the antifungal properties of the two EOs and their potential for wood conserva-
tion, found as appropriate at volumetric concentrations of 5–10% in ethyl alcohol [41–43].

Table 1. Reference and modified shellac polishes.

No Type of SL Polish

Composition
(Volumetric Proportions) Research Code

(Coating Variant)SL_Ref
(13.2% *)

C-EO
100%

T-EO
100%

1 Reference SL 100 - - SL_Ref
2

Modified SL-C-EO
95 5 - SL_C-EO_5

3 90 10 - SL_C-EO_10
4

Modified SL-T-EO
95 - 5 SL_T-EO_5

5 90 - 10 SL_T-EO_10

* Note: 13.2% represents the calculated solids content of the reference shellac solution (SL_Ref) composed of 50 g
shellac flakes, 5 g rosin and 500 mL ethyl alcohol 99.3% (density 0.79 g/mL). The modified SL solutions were
prepared by mixing SL_Ref with C-EO or T-EO at the volumetric ratios presented in the table.

2.2.2. Finishing of Wood Samples

The test samples were finished manually following the traditional technique. A base
coat was applied by brushing three successive layers of about 110 g/m2 at intervals of 2–4 h
(drying time) without intermediary sanding. An extension of the drying time for the third
layer of the basecoat, from 4h to overnight, was necessary in the case of SL modified by
10% C-EO. Afterwards, the samples were sanded with 360 grit size abrasive paper, and
finishing was continued by employing a polishing “rubber” to apply the shellac solution in
thin coats until a satisfactory degree of pores filling/covering of the wood structure and
glossy surfaces were obtained. The final coating film thickness was about 40–50 µm. A
series of 8 test samples were prepared for each type of SL solution, resulting in 5 finishing
variants and 40 coated samples/wood species.

2.2.3. Accelerated UV Ageing Procedure

A Feutron 400 FKS environmental climatic chamber (Feutron Klima Simulation—
GmbH- Langenwetzendorf, Germany) equipped with a UVA Spot 400T lamp (Dr. Hoenle
UV Technology— Gilching, Germany), fitted with a glass H2 filter, was employed to expose
the wood samples to light in the range of 295 to 600 nm, which is a combination of UV-B
(292–315 nm), UV-A (315–400 nm) and visible light (400–600 nm), simulating natural light
filtered by window glass. More details on this light source were previously published [48].
As emission in the UV range (mainly UV-A) is maximum for this lamp and this type
of radiation with higher energy than visible light is mostly responsible for wood and
coatings’ photo-degradation [49], UV light was considered as the main ageing factor in this
test, and the term “UV ageing” was employed for the procedure. However, it should be
acknowledged that visible light with wavelength up to 515 nm may contribute to surface
and subsurface wood colour changes, while visible violet radiation up to 430 nm may
have a contribution to lignin degradation [50]. The samples were placed vertically on
a rack at a distance of 60cm from the UV source. The actual UV irradiation procedure
(similar to previously reported research [51]) included an initial conditioning of 0.5 h (20 ◦C,
55% RH, no light), followed by 3 cycles of 24 h UV exposure separated by a conditioning
phase of 24 h (20 ◦C, 55% RH, no light) inserted to allow for the removal of samples for
measurements. Each cycle of 24 h UV exposure consisted in four steps of 6 h UV irradiation
at 40 ◦C alternated with dark periods of 0.5 h. Cycles of 24 h UV exposure are in accordance
with ISO 16474-3:2013, exposure method B: daylight behind window glass. This procedure
was repeated three times so that data refer to samples exposed for 24, 48 and 72 h to UV,
coded 24 UV, 48 UV and 72 UV, respectively. Two replicates from each finishing variant
and wood species, alongside corresponding uncoated controls, were tested simultaneously.



Coatings 2022, 12, 1591 5 of 19

2.3. Characterisation Methods
2.3.1. Colour Measurements

Colour measurements in the CIELab system were performed with an AvaSpec-USB2
spectrometer (Avantes B.V., Apeldoorn, Netherlands), employing D65 standard illuminant
under 2◦standard observer and an integrating AVA sphere. Data were processed with
AVASOFT—version 7.7/Colour application.

The colour coordinates: lightness L* (varying from 0 for black to 100 for white), redness
a* (varying from negative values for green to positive values for red on the green–red axis)
and yellowness b* (varying from negative values for blue to positive values for yellow on
the blue–yellow axis) of all wood samples were measured before and after coating with SL,
prior to and after different periods of ageing. Experiments were carried out in duplicates.
For each test sample, colour measurements were performed on 5 points (actually circular
areas of about 8mm in diameter), and an average was calculated. A fixing device was
employed to repeat measurements of each sample in the same points.

Colour differences were calculated based on the Equation (1):

∆E = [∆L*2 + ∆a*2 + ∆b*2]1/2, (1)

where ∆L*, ∆a* and ∆b* are the differences of initial and final values (before and after
finishing or ageing for different periods of time) of L*, a* and b* parameters, respectively.

Lower calculated colour differences correspond to lower differences of visual percep-
tion. Different ranges of ∆E values were associated with smallest/barely visible difference
by human eye (0.2 < ∆E < 2.0), small colour difference (2.0 < ∆E < 3.0), medium colour
difference (3.0 < ∆E < 6.0) and high colour differences (6.0 < ∆E < 12.0), while ∆E values
above 12 units account for visual perception as different colours [52].

2.3.2. FTIR Investigations

FTIR–ATR spectra in the range 4000–400 cm−1 at a resolution of 4 cm−1, and 24 scans/
spectrum were recorded employing an ALPHA Bruker spectrometer (Bruker Optics GmbH
& Co. KG, Ettlingen, Germany). The shellac solutions, the pure EOs and the mixtures
EOs/ethyl alcohol were analysed as droplets placed directly on the ATR device. Spectra
of wood surfaces were registered directly on three randomly chosen measuring areas for
one replicate from each category of wood samples (uncoated, coated and aged). All spectra
were further processed for baseline correction and smoothing, and average spectra were
computed employing OPUS software (version 7.2) for each type of sample. These were
further normalised (min–max normalisation) and analysed in order to highlight specific
chemical features of the materials employed and/or chemical changes brought about by
ageing. The assignment of characteristic absorption bands was based on references in
the literature.

For assessing the chemical compatibility of the C-EO and T-EO with the ethyl alcohol,
the experimental recorded spectra of the prepared mixtures of EO/Ethyl alcohol (1:10)
were compared with the corresponding theoretical calculated spectra for the nonreactive
mixture, employing the spectrum calculator function of the OPUS software (Equation (2)).
Similar experimental and calculated spectra mean no reactivity, hence compatibility.

Theoretical spectrum of mixture = 1 × Spectrum of EO + 10 × Spectrum of Ethyl alcohol) (2)

3. Results
3.1. Modification of Shellac Solutions with EOs

The miscibility of the EOs with ethyl alcohol, the solvent employed for SL dissolution,
was initially tested. The two essential oils C-EO and T-EO were miscible with ethyl alcohol
at the volumetric ratio of 1:10. A perfectly clear, slightly yellowish solution was obtained in
the case of C-EO (10_C-EO_EtOH), while the corresponding T-EO mixture (10_T-EO_EtOH)
was almost colourless but slightly opalescent, though without any trend of separation,
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suggesting that one or some of its components were less miscible with ethyl alcohol.
The experimental FTIR spectra of the alcohol-diluted EOs (10_C-EO_EtOH and 10_T-
EO_EtOH), which were recorded immediately after the preparation of the mixtures and
again after 12 days of storage in normal lab conditions, were similar to the OPUS-calculated
theoretical spectra of the respective mixtures, suggesting no chemical interactions between
the chemical components of the EOs and the ethyl alcohol (Figure 1). Furthermore, no
changes could be observed in the FTIR spectra of the prepared solutions after 12 days
of storage.
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Figure 1. FTIR–ATR spectra of C-EO (a) and T-EO (b) as pure products and diluted in ethyl alcohol
(1:10): experimental spectra, respectively coded 10_C-EO_EtOH_exp and 10_T-EO_EtOH_exp (blue
spectra) compared to the OPUS-calculated theoretical spectra, respectively code 10_C-EO_EtOH_calc
and 10_T-EO_EtOH_calc (green spectra).

As a result, homogenous and stable modified shellac solutions by 5% and 10% EOs
(composition presented in Table 1) could be prepared. Their FTIR spectra recorded immedi-
ately after preparation and after 12 days of storage (Figure 2) were similar, indicating that
no detectable chemical interactions occurred between the SL and the EO components.
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Figure 2. FTIR–ATR spectra of the shellac solutions modified with: (a) clove essential oil C-EO (5_C-
EO_SL; 10_C-EO_SL) and (b) thyme essential oil T-EO (5_T-EO_SL; 10_T–EO_SL), freshly prepared
(coded 0d) and after 12 days of storage (coded 12d).
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The FTIR spectra of the shellac cured films casted on microscope lamellas (Figure 3)
present only minor changes brought about by the modification of the SL solutions with the
two EOs. This is because most of the absorptions characteristic to the vibration modes of
different functional groups (e.g., hydroxyl, carbonyl, carboxyl), chemical bonds (e.g., C–H,
=C–H, O–H, C–O–C, C–O–, –C=C–) and other structural moieties (e.g., aliphatic methylene)
are common for both the shellac and the EOs components, natural products with a very
complex and also variable composition (spectra of the two essential oils employed in this
research are presented in Figure S1).

Coatings 2022, 12, x FOR PEER REVIEW 7 of 21 
 

 

  
(a) (b) 

Figure 2. FTIR–ATR spectra of the shellac solutions modified with: (a) clove essential oil C-EO 

(5_C-EO_SL; 10_C-EO_SL) and (b) thyme essential oil T-EO (5_T-EO_SL; 10_T–EO_SL), freshly 

prepared (coded 0d) and after 12 days of storage (coded 12d) 

The FTIR spectra of the shellac cured films casted on microscope lamellas (Figure 3) 

present only minor changes brought about by the modification of the SL solutions with 

the two EOs. This is because most of the absorptions characteristic to the vibration modes 

of different functional groups (e.g., hydroxyl, carbonyl, carboxyl), chemical bonds (e.g., 

C–H, =C–H, O–H, C–O–C, C–O–, –C=C–) and other structural moieties (e.g., aliphatic 

methylene) are common for both the shellac and the EOs components, natural products 

with a very complex and also variable composition (spectra of the two essential oils em-

ployed in this research are presented in Figure S1). 

 

Figure 3. Comparative FTIR spectra of reference and modified shellac films (casted on glass la-

mellas) in the fingerprint region (1800–600 cm−1). 

The main absorption bands in the spectra of SL and their assignment based on lit-

erature (centralised references in [53]) are as follows: 3300–3400 cm−1 (–OH stretching), 

double peak 2926–2858 cm−1 (asymmetric and symmetric C–H stretching in methylene 

groups), 1707 cm−1 (stretching of unconjugated C=O bonds in carboxylic acids, esters and 

free aldehydes or ketones), 1636 cm−1 as small shoulder (stretching of conjugated car-

bonyl, stretching of C=C double bonds), 1457 and 1373 cm−1 (asymmetric bending and 

deformation of C–H bond in methylene –CH2– and methyl –CH3 groups, symmetric de-

formations of C–CH3), 1242 cm−1 (O–H bending and C–O stretching of carboxyl and hy-

droxyl groups overlapping with C–O stretch of –COOR), 1152 cm−1 (C–O–C stretching, 

Figure 3. Comparative FTIR spectra of reference and modified shellac films (casted on glass lamellas)
in the fingerprint region (1800–600 cm−1).

The main absorption bands in the spectra of SL and their assignment based on lit-
erature (centralised references in [53]) are as follows: 3300–3400 cm−1 (–OH stretching),
double peak 2926–2858 cm−1 (asymmetric and symmetric C–H stretching in methylene
groups), 1707 cm−1 (stretching of unconjugated C=O bonds in carboxylic acids, esters
and free aldehydes or ketones), 1636 cm−1 as small shoulder (stretching of conjugated
carbonyl, stretching of C=C double bonds), 1457 and 1373 cm−1 (asymmetric bending
and deformation of C–H bond in methylene –CH2– and methyl –CH3 groups, symmetric
deformations of C–CH3), 1242 cm−1 (O–H bending and C–O stretching of carboxyl and
hydroxyl groups overlapping with C–O stretch of –COOR), 1152 cm−1 (C–O–C stretching,
C–O stretching in esters and alcohols), broadband from 1031 to 1007 cm−1 (C–O stretching
of alcohols, ether/acetal linkage), 936 cm−1 (rocking vibration of C–CH, C–H wagging
of di-substituted trans olefins) and 722 cm−1 (CH3 rocking; C–H wagging of cis-olefins).
However, in the fingerprint region, some differentiations were visible not only as relative
intensity of different absorption peaks but also as specific absorptions due to the EOs
components. The SL films modified with C-EO present a new peak (medium intensity)
at 1514 cm−1, which could be assigned to the skeletal vibration of the aromatic ring [54]
and also to the methyl substitution group [55] in eugenol and ethyl eugenol, the main
chemical components of C-EO. The SL films modified with T-EO present a new peak (small
intensity) at 805 cm−1, assignable to the out-of-plane wagging vibration of the C–H band in
the aromatic ring (805–811 cm−1, depending on the relative position of substitution), and
could be due to the presence of thymol in the composition of T-EO [55,56]. A trend of small
absorption in this region, though not a clearly differentiated peak, can also be observed
for the films modified with 10% C-EO, considering the substituted aromatic ring in the
structure of eugenol, with a corresponding vibration at 816 cm−1 [54].

3.2. Colour of Wood Surfaces

Colour analysis further presented in this paper is based on the colour measurements
in the CIELab system. However, in order to enable a correlation of those data with visual
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perception, scanned images of the uncoated and coated wood samples, before and after
ageing, are comparatively presented in Figure 4 for maple and Figure 5 for walnut.
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Figure 4. Images illustrating the aspect of maple (Acer pseudoplatanus) wood samples before and after
coating with the five different types of shellac solutions: control samples before ageing and aged
samples after 72 h UV exposure.
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Figure 5. Images illustrating the aspect of walnut (Juglans regia) wood samples before and after
coating with the five different types of shellac solutions: control samples before ageing and aged
samples after 72 h UV exposure.

The results of the colour measurements in the CIELab system for the two wood species
before and after finishing with the five types of shellac solutions are summarised in Table 2
as average values and standard deviations of the lightness L* and chromatic coordinates a*
(redness) and b* (yellowness).
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Table 2. Colour parameters for uncoated and coated wood samples (controls before ageing)—average
values and standard deviations (italics in brackets).

Colour
Parameter

Type of Surface/Coating

Uncoated SL_Ref SL_C-EO_5 SL_C-EO_10 SL_T-EO_5 SL_T-EO_10

Maple (Acer pseudoplatanus)
L* 85.14 (1.37) 70.31 (2.51) a 73.26 (1.96) b 72.39 (2.96) b 74.11 (1.52) b 71.39 (2.73) a

a* 3.65 (0.47) 11.06 (1.38) a 8.34 (1.26) b 8.69 (1.59) b 8.32 (0.97) b 9.53 (1.50) b

b* 14.89 (0.96) 41.12 (1.14) a 38.98 (2.99) b 39.29 (2.51) b 38.43 (1.64) b 40.97 (2.32) a

∆E - 31.03 4.54 3.65 5.41 1.88

Walnut (Juglans regia)
L* 56.81 (2.68) 45.35 (2.55) a 45.25 (2.40) a 43.59 (2.08) b 44.15 (2.15) a 43.59 (3.21) b

a* 6.33 (0.97) 10.81 (1.72) a 9.55 (1.57) b 9.84 (1.06) a 9.35 (0.97) b 9.03 (1.29) b

b* 13.29 (1.69) 17.50 (3.47) a 16.97 (3.01) a 16.60 (2.98) a 15.84 (3.08) a 15.18 (4.04) a

∆E - 13.00 1.36 2.20 2.52 3.41

Notes: (1) L*, a*, b* values are averages of 20 samples (100 measuring points) for the uncoated control samples
and 4 samples (20 measuring points)/variant for the coated samples, respectively. Standard deviations are given
in brackets. (2) Different letters (a,b) as exponents of the L*, a*, b* values of the coated samples with the different
types of modified SL solutions highlight values found as statistically significantly different from the corresponding
values for the reference SL solution (SL_Ref), when analysed as pairs by ANOVA single factor test, at a level of
confidence of 95% (α = 0.05). (3) ∆E given values refer to surfaces coated with reference shellac solution (SL_Ref)
vs. uncoated wood and, respectively, to wood coated with modified SL solutions vs. wood coated with SL_Ref.

Maple (Figure 4) is a diffuse-porous, light-coloured hardwood species with distinct
annual rings but no marked difference between early and late wood. Numerous rays,
grouped in shiny ”mirrors”, are visible with the naked eye on the radial surfaces. The aver-
age values of the measured colour parameters were 85.14 for lightness (L*), 3.65 for redness
(a*) and 14.89 for yellowness (b*). The quite uniform colour and little variability among
the samples resulted in relatively small standard deviations (0.47–1.37) for 20 samples
(100 measuring points).

Walnut (Figure 5) is also a diffuse porous but dark-coloured wood species. On the
radial section, the colour is brown with dark–brown or black stripes. Accordingly, the
values of the measured colour parameters were different, namely: lower for lightness
(L* = 56.81) and increased for redness (a* = 6.33), while only little changed for yellowness
(b* = 13.29) compared to maple. The characteristic nonuniform colour of each sample
and variability among the 20 replicates resulted in higher standard deviations (0.97–2.68),
especially for lightness.

A significant colour change occurred following finishing with the reference shellac
solution for both wood species, but this was higher in the case of maple (∆E = 31.03) in
comparison with walnut (∆E = 13.00). This is expectable considering the reddish-brown
colour of shellac and the different initial colours of the two wood species. A decrease in
lightness (-14.83 units for maple and −11.45 units for walnut) and increases of redness
(+7.40 and +4.47 units, respectively) and yellowness (+26.23 and +4.21 units, respectively)
were registered. The modifications of all the colour parameters (L*, a*, b*) by coating with
shellac (SL_Ref) were found statistically significant (p < 0.05).

Modification of the shellac solution (reddish-brown) by 5% and 10% C-EO (yellow
to yellowish-brown) and T-EO (pale-yellow) resulted in small alterations of the colour of
solutions and wood finished surfaces when compared to those coated with SL_Ref (Table 2).
These were slightly lighter in colour (by +1 up to +3 units), while the chromatic coordinates
a* and b* were reduced by 0.5 up to 3 units, depending on the type and amount of EO.
Statistical analysis of data showed significantly different colour parameters for the maple
surfaces finished with modified SL solutions as compared to the reference polish, except
for the finish with SL_T-EO_10. In the case of walnut, small statistically significant changes
were found only in the redness (except for SL_C-EO_10) and lightness of wood samples
coated with the SL solutions modified by 10% C-EO or T-EO.
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The calculated colour differences between the modified finishes and the reference
varied from 1.88 to 5.41 units for maple and 1.36–3.41 for walnut, which accounts for
barely visible to small or medium differences in visual perception [52]. Moreover, it has
to be pointed out that the colour of wood surfaces finished with shellac might also be
influenced to some extent by the thickness of the coloured coating film, especially for
the light-coloured wood species. In the manual traditional polishing technique, a strict
control of the applied amount and thickness of the film is not really possible, the continuous
process being controlled based mostly on qualitative aesthetical features.

3.3. Colour Changes Induced by UV Ageing

Exposure of the uncoated and coated wood samples to UV light resulted in colour
changes regardless of the type of surface/finish or wood species. These changes evolved
as the duration of UV exposure increased from 24 h (first evaluation) to 72 h (end of test
and final evaluation). The experimental results, as average values of the L*, a*, b* colour
parameters and their standard deviations for all types of samples, before ageing (0 UV) and
after UV exposure (24 UV, 48 UV, 72 UV), alongside the calculated colour differences ∆E
for each period of ageing relative to the initial state (0 UV), are summarised in Table 3.

As highlighted by the data in Table 3, the uncoated control samples of both wood
species underwent the highest colour changes when compared to the coated ones. Under
the action of UV light, uncoated wood became darker (decrease in lightness L* by almost
5 units for maple and about 4 units for walnut), while chromatic changes consisted mostly
of yellowing (increase in b* coordinate of up to 8 units for maple and almost 5 units for
walnut) and only small changes of redness (increase in a* coordinate of about 1.7 units for
both wood species).

These colour modifications are a direct indication of surface chemistry changes as-
sociated with wood photo-degradation [49,57,58]. Yellowing has been primarily related
to the degradation of lignin leading to the formation of quinones, quinone methides and
stilbenes [57,59], while redness of wood and its change as a result of photo-degradation has
been associated primarily with the content of extractives [60]. Wood photo-degradation is
initiated by the absorption of UV light by lignin, followed by the formation of free phenoxyl
radicals and further chemical processes leading to lignin degradation and formation of
new chromophores [49,57,58], which explains the highest modification of b* chromatic
coordinate. Wood extractives can act as UV absorbers, scavenge free radicals and undergo
photo-oxidation reactions, retarding the photo-degradation of lignin/wood [61–63]. A
higher content of extractives in walnut wood compared to maple wood may explain both
the darker colour of walnut and the reduced colour changes compared to maple following
light UV exposure, at least for the duration of the test carried out in this research.

The lower values of colour difference (∆E values in Table 3) registered for the maple
and walnut samples finished with shellac as compared to the uncoated controls indicated
some protective effect of the shellac film, as previously reported in the literature (e.g., [12]).
In the case of maple, coating with unmodified shellac reduced the global colour change after
24 h and 72 h of UV exposure by 63.4% and 83.2%, respectively, while the corresponding
values for walnut were 58.8% and 59.0%. A closer look at the data in Table 3 highlights that
mostly the chromatic coordinate b*(yellowness) was stabilised by coating with shellac and
that this protective effect was more effective in the case of maple than walnut.

Light-induced colour changes are complex and dynamic, so they can be better analysed
by the variation (change) of all the colour parameters (∆L*, ∆a*, ∆b*) alongside the resultant
global colour difference (∆E) during the whole process of UV exposure, as plotted in
Figures 6 and 7, comparatively, for the maple and walnut samples coated with all the
five variants of shellac solutions. Generally, specific patterns could be observed for the
variation of the colour parameters, though the actual values were influenced by both wood
species and the type of shellac solution. Darkening of samples, expressed by decrease in
lightness (negative ∆L* values), continued during the entire period of testing. This was
more advanced and clearly occurring more rapidly in the first 24 h of exposure for the



Coatings 2022, 12, 1591 11 of 19

samples coated with the shellac solutions modified with EOs. A continuous increase in
redness (positive ∆a* values) was registered, and this was more advanced for the maple
samples coated with modified shellac solutions. Changes of yellowness followed a wavy
evolution with a trend of decrease after the first 24 h of exposure, then a sharp increase in
the next 24 (more advanced for the walnut samples), followed by a new trend of decrease,
so that a maximum increase in yellowness was registered after 48h UV exposure for both
wood species and all the five shellac solutions.

Table 3. Summary of the experimental colour data for all the wood samples before and after UV
ageing for 24, 48 and 72 h—average values and standard deviation (italics, in brackets).

Type of
Surface/Finish

Colour
Parameter

Maple (Acer pseudoplatanus) Walnut (Juglans regia)

0 UV 24 UV 48 UV 72 UV 0 UV 24 UV 48 UV 72 UV

Uncoated
(Control C)

L* 85.86
(1.44)

84.70
(0.85)

82.92
(0.93)

81.14
(0.81)

58.95
(0.90)

56.92
(1.02)

55.90
(0.92)

55.02
(2.00)

a* 3.36
(0.53)

3.45
(0.41)

4.52
(0.37)

5.07
(0.90)

6.81
(0.26)

7.98
(0.56)

8.30
(0.84)

8.45
(0.89)

b*
14.44 17.53 20.79 22.50 12.22 13.35 16.66 16.94
(0.11) (0.54) (0.54) (0.52) (0.64) (0.94) (0.74) (0.95)

∆E - 3.30 7.09 9.49 - 2.60 5.59 6.36

SL_Ref

L* 68.18 67.52 67.10 66.96 44.09 43.11 42.68 42.75
(1.01) (0.96) (0.91) (0.91) (1.80) (1.24) (0.96) (1.45)

a* 12.20 12.17 12.83 13.23 10.09 10.14 10.41 11.14
(0.52) (0.58) (0.54) (0.56) (1.47) (1.34) (1.43) (1.46)

b* 41.37 40.36 41.98 41.06 14.71 14.10 17.80 16.69
(1.08) (0.57) (1.04) (1.61) (1.84) (2.09) (1.97) (1.85)

∆E - 1.21 1.39 1.63 - 1.15 3.41 2.61

SL_C-EO_5

L* 72.57 69.87 69.58 69.09 45.48 43.87 43.22 42.68
(1.48) (2.26) (1.21) (1.27) (1.99) (1.56) (1.61) (2.07)

a* 9.15 10.13 11.24 11.77 9.70 10.03 10.22 11.04
(0.81) (0.70) (0.63) (0.47) (1.24) (1.34) (1.20) (1.43)

b* 39.76 38.34 41.14 40.34 15.32 14.26 18.84 17.04
(1.85) (1.64) (1.58) (1.27) (2.32) (2.16) (1.93) (1.88)

∆E - 3.20 3.90 4.39 - 1.95 4.22 3.55

SL_C-EO_10

L* 71.08 68.68 68.54 68.38 44.33 43.33 42.13 42.08
(3.66) (4.09) (3.76) (3.88) (1.97) (1.63) (1.41) (1.84)

a* 9.52 10.53 11.27 11.45 10.16 10.56 10.93 11.68
(1.91) (1.81) (1.70) (1.96) (0.96) (1.08) (1.11) (1.55)

b* 37.66 36.81 39.18 38.70 15.81 16.00 18.54 18.15
(2.05) (1.96) (1.60) (1.93) (3.15) (2.29) (1.99) (2.65)

∆E - 2.74 3.45 3.48 - 1.10 3.59 3.58

SL_T-EO_5

L* 73.63 70.77 70.86 70.21 43.30 41.24 41.21 41.25
(1.46) (2.19) (1.33) (1.16) (1.71) (2.31) (1.83) (1.76)

a* 8.61 9.27 10.42 11.05 9.02 9.08 9.81 10.25
(1.08) (0.98) (0.94) (0.89) (1.01) (1.00) (1.06) (1.17)

b* 38.64 38.14 40.16 40.31 14.02 12.70 16.88 15.79
(0.89) (1.14) (0.86) (1.39) (1.98) (2.34) (2.63) (1.91)

∆E - 2.98 3.64 4.53 - 2.44 3.63 2.97

SL_T-EO_10

L* 72.16 70.05 70.63 70.17 42.13 41.15 40.65 40.35
(1.64) (2.14) (1.11) (1.36) (2.86) (2.01) (2.22) (2.58)

a* 8.83 9.38 10.37 11.04 8.67 8.81 9.22 9.60
(0.61) (0.84) (0.63) (0.83) (1.08) (0.99) (1.34) (1.39)

b* 39.19 38.15 41.00 40.63 12.88 12.71 15.13 14.18
(1.41) (2.35) (1.24) (1.57) (3.79) (2.08) (3.20) (2.77)

∆E - 2.41 2.83 3.30 - 1.00 2.75 2.39
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Figure 6. Evolution of colour changes of maple wood (Acer pseudoplatanus) surfaces finished with
reference (SL_Ref) and EO-modified shellac solutions (SL_C-EO_5, SL_C-EO_10, SL_T-EO_5, SL_T-
EO_10): (a) ∆E; (b) ∆L*; (c) ∆a*; (d) ∆b*.

A change in the dynamics of global colour changes, which are more rapid at the
beginning of the process and slow down later, results from the pattern of ∆E curves, in
accordance with the literature (e.g., [12]). This evolution change was registered after 24 h
UV exposure for maple (Figure 6) and 48 h UV exposure for walnut (Figure 7). This
difference between the two wood species under study might be related to a combined
protective effect of extractives of walnut and shellac coating in delaying/slowing down
UV degradation effects for the examined period. However, this protective effect might be
diminished in time as extractives are also sensitive to photo-degradation under the action
of light (UV-VIS) [58,61,62]. For both maple and walnut samples coated with reference
shellac, a significant lightening associated with extractives degradation was determined
after 7 years of indoor exposure to the natural light filtered by window glass (unpublished
research data of the authors).

Modification of shellac solutions with EOs generally increased the changes of the
individual colour parameters L*, a*, b* and global colour difference ∆E following UV
exposure, this unexpected negative effect being more obvious for maple than for walnut
while also influenced by the type of EO (C-EO>T-EO) and its concentration. Colour
changes (∆E) after 72 h exposure for maple wood surfaces coated with modified shellac
were 103–180% higher as compared to surfaces coated with the reference shellac. In the
case of walnut, a slight increase in surface colour changes, by 5–24%, was determined
only when shellac was modified with C-EO. Contrarily, modification of shellac by 10%
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T-EO resulted in a slight improvement of the light fastness of the finished surfaces, the
colour changes after 72 h UV exposure being by approximately 19% lower than that of
the reference. However, it is important to highlight that, despite these variations, all the
colour difference values after 72 h UV exposure were situated in the ranges 1.63–4.53 for
maple and 2.61–3.58 for walnut, which correspond to only small to medium differences in
visual perception.
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3.4. FTIR Investigation of UV Ageing Effects

The results of the FTIR investigation of the coated samples prior to and after different
periods of UV ageing are cumulated in Figure 8 for the two species under investigation
and three types of shellac solutions: the unmodified reference (SL_Ref) and the solutions
modified by 10% EOs (SL_E-EO_10, SL_T-EO_10).

Considering the ATR technique employed, these spectra reflect only chemical changes
of the coating film, not those occurring on the wood surface. Accordingly, the spectra for
the finished maple and walnut samples and their changes as result of ageing were quite
similar, though some differences were observed in terms of colour changes, as presented in
the previous sections.

No obvious changes could be directly observed in the FTIR spectra of surfaces finished
with the reference shellac solutions following UV ageing up to 72 h. The small shoulder at
around 1637 cm−1 (conjugated carbonyl) might have been little affected, but this cannot
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be confirmed without further processing the spectra by integration. This indicates a good
chemical stability of the unmodified shellac film when exposed up to 72 h to UV-VIS
radiation simulating window-filtered daylight, which supports previous research in this
field [53]. However, chemical changes such as some cross-linking by esterification could be
detected by FTIR of thin shellac films irradiated with higher energy UV-C light (254 nm,
1.1 mW/cm2) already after 240 min [7].
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In contrast to SL_Ref, some small but evident changes occurred during UV exposure
in the spectra of the samples coated with shellac modified with C-EO. The small shoulder
at 1637 cm−1 decreased and finally disappeared, while a trend of an increased absorption at
around 1600 cm−1 (aromatic ring) was observed. Furthermore, the absorption at 1151 cm−1

(C–O and C–O–C stretching) decreased during UV ageing. It is important to note that
all these changes, which were not observed for unmodified SL, occurred in parallel with
a decrease in the peak at 1514 cm−1 (aromatic skeletal vibration), found as distinctive
for the presence of C-EO in the modified coating film and assigned to eugenol and ethyl
eugenol, the main components of C-EO. Accordingly, it seems reasonable to believe that
UV radiation affected more the C-EO components present in the film, not the SL resin itself.

In the case of coatings modified with T-EO, some very minor changes were barely
visible in the rage 1640–1600 cm−1, while no evident change/decrease could be observed
for the distinctive peak of T-EO in the film (806 cm−1 assigned to thymol).

4. Discussions

To the best of our knowledge, this might be the first reported research exploring
the opportunities of modifying shellac solutions employed for wood finishing with clove
(Eugenia carryophyllata) and thyme (Satureja hortensis) essential oils, though their demon-
strated antimicrobial, antifungal and antioxidant properties might impart some improved
protective properties to the resulting coating films. In contrast, the idea of combining in
a synergistic way the film-forming properties of shellac or other biopolymers with the
antifungal, antioxidant or UV-blocking properties of these EOs has been widely explored
for other application fields, such as protective coatings for fruits, active packaging for food
and drug delivery systems [37–40], as detailed in Section 1.

The research reported in this paper focussed on the stability of modified shellac
solutions and the influence of this modification on the wood finishing technology, the
colour of the resulting coated surfaces and their UV ageing resistance, evaluated by colour
changes and FTIR. Colour changes have been recognised as the most sensitive parameter
indicating photo-degradation for both uncoated and coated wood. Photo-degradation of
both wood and coatings is initiated by absorption of UV light and occurs by a chained
radical mechanism. C-EO and T-EO were reported as free radical scavengers and UV
absorbers reducing transmission of UV light through transparent films, so an expectable
improved UV resistance/colour stability of the wood surfaces coated with modified shellac
films was assumed, especially in the case of C-EO, considering that it was reported as the
most effective antioxidant essential oil (from among the commonly employed ones) due to
its high content in eugenol [33,34].

However, the experimental results contrarily indicated slightly increased colour
changes for the wood surfaces coated with modified SL solutions, though all colour changes
are visually perceived as small to medium.

There are several aspects which should be considered in an attempt to understand
and possibly explain these results. First of all, the measured colour changes for coated
wood result from both colour changes of the wooden substrate and colour changes of
the coating film, their individual contribution being difficult to assess [49] unless a spe-
cial experimental design is employed (e.g., [12]). Secondly, the amount of incident light
reaching the underlying wood surface and its wavelength distribution would depend on
the capability of the coating film to absorb and transmit light, influenced mainly by the
chemical nature/structure of the film-forming resin and the presence of different addi-
tives/modifiers with a specific interaction with the incident light. For instance, different
organic UV absorbers, hindered amine light stabilisers (HALS) or nanometal oxides are
often employed as pretreatments or additives to increase the weathering/light resistance of
clear coatings on wood [64,65]. Thirdly, absorption of UV light by some modifiers might
result in their own photo-induced oxidation and recurrent colour change. Consequently,
in the colour changes of wood surfaces finished with modified SL coatings, a possible
contribution of all partners and their interaction should be considered.
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Sharma et al. [39] found that transmittance of UV radiation (280–380 nm) through
organic active biofilms modified by 10% C-EO was reduced by 80% as a consequence
of a high absorption of UV radiation by C-EO, in relation to its high content in eugenol.
In comparison, the composite films modified by 10% T-EO (Thymus vulgaris) were sub-
stantially less effective UV barriers, reducing by only 20% the transmittance of 280 nm
UV radiation, while transmittance increased continuously with increasing wavelength
of radiation in the range 280–380 nm. C-EO is not only a very good UV absorber but
is also a product highly sensitive to oxidation. Different mechanisms of eugenol oxida-
tion, including photo-induced and electro-chemical oxidation, were proposed, while the
possible resulting products include para- and orto-quinoid structures [66–68], known as
chromophores [69]. Pretreatment of spruce wood with C-EO resulted in an increased colour
change under the action of UV light in a natural and an artificial weathering test [70].
Accordingly, a hypothesis explaining, at least partially, the increased UV-induced colour
changes determined in this research for the wood samples coated with shellac modified
with C-EO as compared to the reference could be that its own photo-induced oxidation is a
result of UV absorption, not a more advanced photo-degradation of the wood substrate.
The FTIR investigation of the SL films modified with C-EO indicated a reduction of the
distinctive aromatic ring absorption of eugenol, which supports chemical changes of this
main compound. This might result in a better protection of the wood substrate for longer
exposure times, but more research and longer UV exposure times are needed.

5. Conclusions

This research explored the modification of shellac solutions for wood finishing with
clove (Eugenia carryophyllata) and thyme (Satureja hortensis) essential oils (C-EO, T-EO).
The two essential oils were found compatible with the alcoholic shellac solutions, and
stable modified polishes with a content of 5% and 10% C-EO and T-EO were prepared and
successfully employed for coating maple (Acer pseudoplatanus) and walnut (Juglans regia)
wood samples by the traditional manual polishing technique to obtain aesthetic glossy
surfaces. Colour measurements in the CIELab system revealed a slight influence of shellac
modification on the colour of finished surfaces when compared to unmodified shellac,
respectively, ∆E values of 1.88 to 5.41 units for maple and 1.36–3.41 for walnut, which
account for barely visible to small or medium differences in visual perception.

Coating with shellac significantly improved UV light resistance of wood surfaces,
as shown by the decrease in the global colour changes (∆E) after 72 h UV exposure by
83.2% for maple and 59% for walnut. The corresponding UV-induced colour changes
of wood surfaces coated with modified shellac solutions were generally slightly higher
when compared to unmodified shellac (by 1.7–2.9 units for maple; 0–1 unit for walnut). A
possible UV-induced photo-oxidation process of eugenol resulting in the formation of new
chromophores might explain higher colour changes of wood surfaces coated with shellac
modified with C-EO after 72 h exposure to artificial light, though longer exposure times
and complementary investigation methods would be necessary to verify this hypothesis
and reveal possible long-term protective effects. The differences in the behaviour of
the two wood species could be related to differences in their extractives content, which
can delay photo-degradation of the main wood components, as previously reported in
the literature.

Future research will look at the influence of shellac modification with C-EO and T-EO
on the long-term effects of indoor exposure of coated wood surfaces to natural light filtered
by glass and their fungal colonisation in high atmospheric humidity conditions. All data
are intended to assist preventive and active conservation of historic furniture, while also
rebranding ancient natural coating materials and techniques for novel applications.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/coatings12101591/s1, Figure S1: Comparative FTIR–ATR spectra of
clove (Eugenia carryophyllata) and thyme (Satureja hortensis) essential oils (C-EO, T-EO) employed in
the experimental research.
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