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Abstract: As a laser technology, the femtosecond laser is used in biomedical fields due to its excellent
performance—its ultrashort pulses, high instantaneous power, and high precision. As a surface
treatment process, the femtosecond laser can prepare different shapes on metal surfaces to enhance
the material’s properties, such as its wear resistance, wetting, biocompatibility, etc. Laser-induced
periodic surface structures (LIPSSs) are a common phenomenon that can be observed on almost any
material after irradiation by a linearly polarized laser. In this paper, the current research state of
LIPSSs in the field of biomedicine is reviewed. The influence of laser parameters (such as laser energy,
pulse number, polarization state, and pulse duration) on the generation of LIPSSs is discussed. In
this paper, the applications of LIPSSs by femtosecond laser modification for various purposes, such
as in functional surfaces, the control of surface wettability, the surface colonization of cells, and the
improvement of tribological properties of surfaces, are reviewed.

Keywords: laser-induced periodic surface structures; femtosecond laser processing; functional
surfaces; application

1. Introduction

In 1954, Charles Towns et al. [1] made the first maser, the precursor of the laser. It
opened the door to a series of astonishing inventions and discoveries. D. E. Spence et al. [2]
obtained the first laser with titanium-doped sapphire as the gain medium in 1991, which is
considered to be the first femtosecond laser of real significance. Femtosecond lasers are
used in various fields, such as information, environment, medicine, defense, and industry,
because of their short pulses, high energy, and high peak power [3–13].

The femtosecond laser (fs-laser) has good application prospects in the biomedical
field. There are various ways to improve the biocompatibility of medical implants, such
as changing the alloy composition [14], designing porous structures [15], and various
processes [16,17]. As a surface treatment process, the femtosecond laser can prepare
different shapes on metal surfaces to enhance the material’s properties, such as wear
resistance, wetting, and biocompatibility [18–20]. Surface modification technologies in-
clude mechanical methods (e.g., friction stirring [21,22], burnishing [23]), chemical meth-
ods (e.g., anodic oxidation [24], chemical vapor deposition [25]) and physical methods
(e.g., thermal spraying [26], physical vapor deposition [27]). Compared with traditional
surface modification technology, laser surface modification has outstanding advantages,
such as high precision, flexibility, versatility, etc.

In this paper, the application of femtosecond laser surface modification is reviewed
in various fields and for various purposes, including in patterns, the coloration of func-
tional surfaces, the control of surface wettability, the surface colonization of cells, and the
improvement of tribological properties of nanostructured metal surfaces, and we explore
the connection between femtosecond laser parameters and patterns to provide a reference
for future applications.
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2. Laser-Induced Periodic Stripe Structure (LIPSS) with Femtosecond Laser

A laser-induced periodic surface structure (LIPSS) is a surface relief composed of
periodic lines that can be observed on almost any material after irradiation of a linearly
polarized laser beam, especially when using ultrashort laser pulses of durations in the
range of picoseconds to femtoseconds [28–36].

A lot of work has been performed to study the formation mechanism of the femtosec-
ond laser on LIPSSs. A LIPSS can be classified according to the characteristic ratio of its
spatial periods (Λ) to the irradiation wavelength (λ) and the polarization direction of the
linear laser beam used to produce them [37–39]. Figure 1a provides a general classification
of LIPSSs observed on irradiation with femtosecond laser pulses. The period of low spatial
frequency LIPSSs (LSFL) is slightly equal to or less than the laser wavelength. They are per-
pendicular (LSFL-I) or parallel (LSFL-II) to the polarization direction of the laser. In contrast,
the period of high spatial frequency LIPSSs (HSFL) is smaller than half of the irradiation
wavelength and may be formed as deep surface gratings (HSFL-I, depth-to-period aspect
ratio A > 1) or as shallow surface gratings (HSFL-II, depth-to-period aspect ratio A < 1).
Figure 1b [37] provides an LSFL-I type structure on a Ti6Al4V surface after femtosecond
laser irradiation. The double arrows indicate the direction of the laser beam polarization.
The LSFL structure has a period of ΛLSFL~620 ± 80 nm and is perpendicular to the po-
larization direction of the laser beam. Figure 1c shows the HSFL-II structure formed on
the laser irradiation surface [40]. The HSFL structures have periods of less than 100 nm
(ΛHSFL~80 ± 20 nm) and are parallel to the direction of the laser beam polarization.
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Figure 1. (a) General classification of fs-laser-induced periodic surface structures. SEM micrographs [37]
of near wavelength LSFL-I (b) and sub-wavelength HSFL-II (c) on Ti6Al4V surfaces after irradiation
with fs-laser in the air (pulse duration τ = 30 fs, center wavelength λ = 790 nm, pulse repetition
frequency 1 kHz). The double arrows in (b) mark the direction of laser beam polarization.

The current theories on the formation of LIPSSs can be divided into two classes, i.e.:
(i) Electromagnetic theories describing the deposition of optical energy into a solid. By
introducing the η of efficacy factors, the researchers analyzed the interaction of electro-
magnetic radiation with microscopic rough surfaces through theoretical and experimental
combinations [41]. (ii) Matter reorganization theory, which is based on the redistribution of
the surface matter (Figure 2 [38,42]). The researchers believe that HSFL is formed through
the self-organization of irradiated materials and is related to the surface instability caused
by atomic diffusion and surface erosion effects [43–46]. The difference between both classes
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can be summarized as follows: electromagnetic scattering and absorption effects sow the
spatial signature of the structure during laser irradiation, and the reorganization of matter
takes longer. Figure 2a shows that static thermal melting or ablation from a sample occurs
on shorter time scales. The laser beam is marked in green. Figure 2b shows a dynamic
response via self-organization from a laser-produced instability.
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Figure 2. Ref. [42] Fundamental processes occur during LIPSS formation according to (a) electromag-
netic models and (b) matter reorganization models. The laser irradiation is marked in green.

3. Laser Parameters That Control LIPSS

Studies have shown that laser peak fluence, the number of laser pulses, laser polarization state,
pulse duration, and the processing environment are all key parameters affecting LIPSS [47–52].

3.1. Laser Fluence

The laser fluence has a large impact on the morphology of LIPSSs; different types
of LIPSS are obtained by varying the laser fluence on the same material [49–51,53,54].
J. Bonse [55] obtained both LSFL and HSFL on the surface of titanium by varying the laser
fluence, and the laser fluence affects the periodicity of LIPSSs. Georg Schnell et al. [50]
report the formation of nano- and micro-structures on Ti6Al4V evoked by different scanning
strategies and fluences with an fs-laser. Figure 3 shows the SEM microstructure images of
the femtosecond laser pulses of different energy fluences. As shown in Figure 3a [50], the
surface morphology is LIPSS when the laser fluence is 0.14 J/cm2, the surface topography
is micron spacing grooves when the laser fluence is 0.86 J/cm2, and the surface morphology
is cones and micro craters at a laser fluence of 4.76 J/cm2. Shi-zhen Xu et al. [56] explore the
influence of laser scan fluence on the formation of micro/nanostructures on the surfaces
of fused silica. At a fixed laser scan speed (1.7 mm/s), the HFSL was observed at a low
fluence region (1.8–2.5 J/cm2). A transition from HSFL to LSFL occurred when a critical
energy fluence threshold (2.5 J/cm2) was exceeded (Figure 3b). The phenomenon can help
to form process design guidelines to tailor large-scale surfaces with self-organized features,
and can be used in future studies. For most materials, the periodicity of LIPSSs increases as
the laser fluence increases. Better surface topography can be obtained at a low laser fluence
approximate to the material ablation threshold. To achieve high efficiency for industrial
applications, the ablation rate is increased by increasing the laser fluence. However, the
processing quality is significantly reduced due to the thermal damage caused by the highly
effective penetration depth. To avoid adverse effects on the sample, a suitable fluence is an
advantageous condition to realize cold processing.
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3.2. Number of Pulses

The higher the number of laser pulses, the easier it is to obtain a more regular LIPSS.
Evangelos Skoulas et al. [57] studied the effect of pulse number on the formation of LIPSSs.
As the number of pulses increases, the surface roughness increases, and the period of LIPSS
decreases. At the same time, as the number of pulses or the laser fluence increases, the depth
of the pit and the height of the microstructure increase. Xu Ji et al. [58] prepared nanoholes
on the silicon surface by a femtosecond laser. Figure 4 provides the SEM images of the
depth of the surface pit and the height of the microstructure with the different numbers of
pulses. As shown in Figure 4a, a shallow modified zone is formed with pulses. As shown in
Figure 4b, when N is 4, the rectangular nanoholes were created on the silicon surface. As the
number of pulses increases, the energy is absorbed more efficiently along the direction of
laser polarization. This results in two rows of nanohole chains, forming LSFL, as shown in
Figure 4c. For the pulse number, N = 8, the nanoholes become larger and deeper, as shown
in Figure 4d. The deeper and larger nanoholes can be created on the surface by increasing
the pulse number and fluences. When the pulse number increases to 10, most of the HSFL
is broken, as shown in Figure 4e. Rao Li et al. [59] obtained the femtosecond laser-induced
damage threshold (LIDT) by measuring the damage morphology under different energies
and pulse numbers of the femtosecond laser. For the multi-pulse radiation, the LIDT of
the thin film decreases as the number of pulses increases due to the accumulation effect.
To obtain a high-quality periodic structure, it is necessary to accurately measure the laser
damage threshold of the material.
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(b) N = 4, (c) N = 6, (d) N = 8 and (e) N = 10, respectively. The arrow shows the direction of laser
polarization.

3.3. Polarization States

The structure characteristics of the material surface after femtosecond laser modification
are related to the polarization state of the laser beam [60,61]. The orientation and shape of
the laser-induced periodic structure are determined by the polarization of the incident light.
For example, circularly polarized beams can acquire triangular periodic structures [62–64],
and elliptically polarized beams can acquire spherical nanoparticles [65–67]. When a linearly
polarized laser beam is applied, the ripple direction is perpendicular or parallel to the polar-
ization direction of the incident laser beam. Zhang Hao et al. [48] used the finite-difference
time-domain method (FDTD) to study the surface morphology of LIPSSs under various polar-
ization states (linear, circular, radial and azimuthal). The surface morphology simulated using
circular polarization lasers is consistent with the triangular LIPSSs and spherical nanopar-
ticles reported in the literature [62,68]. Evangelos Skoulas et al. [57] obtained a nanoscale
controllable periodic structure on the nickel surface by laser direct writing with radial and
azimuthal polarization beams, which mimicked the placoid structures found in the skin of
sharks. Figure 5 shows the characteristic surface morphologies attained in SEM micrographs
obtained at a scanning speed v = 0.5 mm/s and a laser fluence F = 0.24 J/cm2, for linear
Gaussian (a,b), radial (c,d) and azimuthal (e,f) cylindrical vector beams, respectively. The
images (b,d,f) are higher magnifications of areas of the red dashed squares. As shown in
Figure 5a, linear laser direct writing obtains LIPSSs on the surface. Figure 5b shows how the
radial and azimuthal beams were irradiated to obtain a rhombus-like structure.

3.4. Pulse Duration

Pulse duration is a relevant parameter in laser processing, and different laser sys-
tems (e.g., nanosecond, picosecond, femtosecond) obtain different surface morphologies.
Sun Yuanyuan et al. [69] used a continuous laser, nanosecond laser, and femtosecond
laser to modify the surface of a ferromanganese alloy. The results show that the effect of
the continuous laser and nanosecond laser on the material is mainly melted generation.
Surface grooves in the micron range can be obtained using nanosecond lasers. Femtosec-
ond laser ablation generates LIPSSs on the surface of the material without altering the
crystal structure. LSFL can be obtained under laser irradiation with a nanosecond pulse
duration or longer, while HSFL with periods much smaller than λ is only suitable for
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the irradiation of ultrashort pulsed lasers in the range of picoseconds to femtoseconds.
Sungkwon Shin et al. [70] ablated the Invar sheets with a laser with different pulse dura-
tions, and the results show that the femtosecond laser treatment obtained high precision
micro-holes with no thermal damage (i.e., Figure 6). Figure 6a–c shows SEM images of
laser pulses irradiating Invar, corresponding to the pulse durations of 10 ns, 15 ps, and
300 fs, respectively. In the ns laser processing with a laser fluence of 5 J/cm2, a pulse
repetition rate of 50 Hz, and a wavelength of 248 nm, the surface is observed to produce
burrs. High-precision micro-holes with no thermal damage at the edges were obtained by
fs laser processing with F = 0.29 J/cm2, f = 200 kHz, and λ = 1035 nm.
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Figure 5. Ref. [57] The SEM images depicting line scans produced by linearly (a,b), radially (c,d), and
azimuthally polarized (e,f) beams, respectively, at v = 0.5 mm/s, and F = 0.24 J/cm2. The images
(b,d,f) are higher magnifications of an area inside the red dashed squares and reveal the biomimetic
shark skin-like morphology of the processed areas.
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Figure 6. Ref. [70] SEM images of micro-holes on Invar were processed at three pulse durations of
(a) 10 ns, (b) 15 ps, and (c) 300 fs, respectively. The ns laser parameters are F = 5 J/cm2, f = 50 Hz, and
λ = 248 nm. For the ps and fs laser, F = 0.29 J/cm2, f = 200 kHz, and λ = 1035 nm.

3.5. Ambient Medium

In addition to the above laser-related parameters, the ambient medium around the
sample also has a significant impact on the surface morphology of laser processing. Zhiduo
Xin et al. [71] reported the results of femtosecond laser texturing and femtosecond laser ni-
triding experiments on Ti6Al4V. After femtosecond laser texturing, as shown in Figure 7a,c,
cuboid structures of 125 × 125 × 130 mm3 were formed on the surface. After nitriding,
as shown in Figure 7b,d, a uniform crack-free TiN coating was prepared on the top of the
textured structures with a thickness of 40–60 mm. As shown in Figure 7e, the morphology
analysis shows that only slight height variations are introduced into the textured structures
by femtosecond laser nitriding. Vadim Yalishev et al. [72] reported the surface morphology
changes and wettability of titanium processed by femtosecond lasers in both the air and a
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vacuum. The results show that the laser texture obtained under vacuum conditions can
form a permanent superhydrophilic surface. Yang Yang et al. [73] studied the microstruc-
ture of the titanium action of femtosecond lasers in three different liquid environments.
Cavities and islands were observed on the sample surface. After femtosecond laser mod-
ification in the supersaturated Hydroxyapatite (HA, Ca10(PO4)6(OH)2) suspension, the
biocompatible element Ca-P is firmly deposited on the surface. Thus, the corresponding
functional surface can be obtained by changing the ambient medium, which also provides
a new way to understand the ablation mechanism of the femtosecond laser.
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Figure 7. Ref. [71] The surface morphology and cross-section microstructure of the samples
pro−cessed by Femtosecond laser texturing (FLT) and FLT+Femtosecond laser nitriding (FLN);
(a) SEM image of FLT, (b) SEM image of FLT+FLN, (c) 3D morphology of the cross-section of FLT,
(d) 3D morphology of the cross-section of FLT+FLN, (e) Profile curves corresponding to (c,d).

In summary, LIPSSs (ripples) can be obtained when the fluence of the laser is slightly
greater than the ablation threshold of the material. Increasing the laser energy will obtain
the surface morphology of grooves, pits, etc. In addition, the orientation and shape of
LIPSSs are affected by the polarization state of the laser. An increase in the number of
pulses will make the surface pits deeper. The laser processing environment is also one of the
important parameters that affects surface morphology. Although the relevant parameters
that affect the formation of LIPSSs have been reported, there is still a lack of a general
algorithm to control the regularity of LIPSSs. In the future, artificial intelligence (AI) and
algorithms will discover and control the regularity of LIPSSs.
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4. Application of LIPSS

Surface texturing by laser irradiation can change various materials’ properties and
create multifunctional surfaces [74–78]. Materials can be better applied by customizing
functional surfaces.

4.1. Structural Color

One of the most obvious applications of LIPSSs is optics. Since their period is in
the same range as the radiation wavelength of visible light, they can effectively act as a
diffraction grating, producing a “structural color”. B. Dusser et al. [79] studied how to
change the direction of the ripples to transmit information onto metal surfaces, creating a
portrait of Vincent van Gogh on stainless steel surfaces (Figure 8A). Wang Chao et al. [80]
prepared LIPSSs on a Ti6Al4V surface by laser irradiation, and observed differences in the
laser texture color under natural light, and the surface color changes with the changes in
the laser parameters (Figure 8B). Figure 8B(a) shows an optical image of the sample after
laser irradiation, which includes “nine-squares” and “JLU”. Figure 8B(b) lists the laser
parameters corresponding to each square. As shown in Figure 8B(c), when captured in
a dark environment, the difference in colors in the “nine squares” is evident. Moreover,
as shown in Figure 8B(d), when changing the shooting angle, the “JLU” could present
various colors. The results in Figure 8 show that the LIPSS has potential applications
for Ti6Al4V surface coloring. Different colors can be observed by changing the laser
parameters to regulate the period and direction of the LIPSS, as well as the incident light
and the viewing angle [81–85]. High-quality and regular LIPSSs are prepared in large areas
on metal surfaces, making it possible to apply them to optical sensors, anti-counterfeiting,
decoration, and laser marking, etc.

4.2. Wetting Behavior

The wetting behavior of LIPSSs has attracted the attention of many researchers. In
general, the wettability of liquids to solid surfaces depends on three major factors: (1) the
surface energy of the solids and liquids, (2) the viscosity of the liquids, and (3) the surface
morphology of the solids. Surface topography can significantly affect the contact angle of
droplets placed on the surface. Figure 9 shows that the surface morphology has a great
effect on surface roughness and contact angle. The variation in the contact angles (θM)
measured for 15 samples irradiated at different laser fluences is presented in Figure 9a.
As the laser fluence increases, the contact angle increases. Figure 9b shows different sur-
face morphologies and the increase in contact angle of the water droplets on different
surface structures. The water contact angle measurement shows that the femtosecond laser
treatment of Au turns its originally hydrophilic surface (θM~74◦) into a hydrophobic sur-
face (θM~108◦). The θM measurements indicate that as the surface nano/microstructures
increase, the θM significantly increases as well. Numerous studies [32,35,86–89] have
shown that bioinspired surfaces with superwettability can be prepared using ultrashort
pulse lasers. Alexandre Cunha et al. [90] generated hydrophilic surface textures on the
surface of Ti–6Al–4V alloys by femtosecond laser processing. They show that the sur-
face treatment of metal surfaces with femtosecond lasers is an effective technique for
improving surface wettability. A. Y. Vorobyev et al. [91] prepared superhydrophobic
and self-cleaning multifunctional surfaces using femtosecond laser pulses. Research by
Erin Liu et al. [92] demonstrates that femtosecond fiber lasers can form layered structures
on metal surfaces, demonstrating superhydrophobic, self-cleaning, and light-trapping
properties. Sohail A. Jalil et al. [93] investigated the surface structure of femtosecond laser-
induced gold (Au) and its effect on hydrophobicity. The result shows that the femtosecond
laser processing turns originally hydrophilic Au into a superhydrophobic surface. It can
be seen that surfaces with superwettability have a significant impact on other fields, such
as for sensors, thermal management, biomedicine, etc. The long-term stability of LIPSSs’
surface wetting properties (e.g., hydrophobicity or hydrophilicity) in applications will be a
popular topic in the future.
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Figure 8. (A) Ref. [79] A portrait of Vincent van Gogh on stainless steel surfaces. (B) Ref. [80]
(a) Optical images of the sample after laser irradiation, and (b) the corresponding laser parameters
(P, Laser power; f, Laser repetition frequency; r, Pulse overlap rate between two adjacent scanning
lines). (c) shows the optical images “nine-squares” captured in the dark environment, and (d) shows
the color change in “JLU” when changing the shooting angle.
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contact angle values measured on the initial surface roughness at low fluence. Corresponding surface
morphologies are depicted in the insets.

4.3. Biomedical Applications

Another promising application area for LIPSS is biomedicine, which can inhibit the
formation of bacterial biofilm and affect cell growth. Laser texturing has been used in
the biomedical field as a method of altering surface morphology to potentially improve
osseointegration [94–97]. Research [98–101] has shown that different surface topographies
have a great influence on cell growth. Kai Borcherding et al. [102] described the adhesion
and shape of osteoblast-like cells (MG-63) after laser treatment of titanium alloys. Compared
to pure titanium, the cell viability was improved on the structured surface, indicating good
cytocompatibility. Alexandre Cunha et al. [94] prepared three types of surface textures by
femtosecond laser: LIPSSs, nanopillars, and microcolumns covered with LIPSSs. Compared
with the polished reference group, the cell area and adhesion area of human mesenchymal
stem cells on the surface of the laser-treated titanium alloy are reduced. Xiao Luo et al. [103]
applied femtosecond laser irradiation to produce three types of nano-ripples on the surface
of pure titanium, and to investigate their anti-bacterial behavior and their biocompatibility.
The three types of nano-ripples include LIPSSs (type 1 textures), nano-ripples interrupted
by grooves (type 2 textures), and columns with overlapping LIPSS (type 3 textures). The
control group is the mechanical polishing group. The results shows that three types of
nano-ripples can prevent bacterial colonization and biofilm formation. As demonstrated
in Figure 10a, the staining of F-actin and the nucleus shows the adhesion states of rat
mesenchymal stem cells on the substrate surfaces. The red fluorescence is from Rhodamine
cyclopeptide-stained F-actin. The blue fluorescence is from the DAPI-stained cell nucleus.
The arrow indicates the direction of cell diffusion. As can be seen from Figure 10b, the
spread of cells is oriented. Compared to the polished titanium, the spreading areas of
laser-fabricated samples are significantly larger, which means the adhesion sites offered
by the three types of nano-ripples are beneficial to cell attachment. Ning Liu et al. [54]
uses femtosecond laser surface modification to establish a nano-ripple structure on the
Fe-30Mn alloy surface. Compared to the polished sample, the nano-ripple structure surface
exhibited a significant improvement in the biodegradation rate. Cell growth depends on
the size of the surface topography of the material, so controlling the size of the surface
morphology may be a key factor in controlling cell function. By using femtosecond lasers
for surface modification, different surface properties can be prepared on the implant. Using
a femtosecond laser to fabricate nano-ripples and grooves on the surface of materials is a
promising way to improve the performance of the implant material.
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Figure 10. Ref. [103] Mesenchymal stem cells’ adhesion on the polished surfaces and three types of
nano-ripples after 72 h of incubations. (a) Fluorescence images of cytoskeletons; (b) SEM images of
MSCs’ adhesion states for the three types of nano-ripples. The both arrow indicates the direction of
cell diffusion.

4.4. Reduction in Friction and Wear

LIPSS can exhibit beneficial tribological properties by reducing frictional wear. Surface
topography and roughness have a significant impact on friction and wear [104]. Numerous
studies [105–108] have shown that laser processing to prepare specific surface textures is
an effective technique to improve surface friction performance. Jörn Bonse et al. [109] pre-
sented the latest advances in femtosecond laser surface texturing, observing the tribological
properties of steel and the titanium alloy surface morphology (ripples, grooves, and spikes).
Compared to the wear tracks on the surface of the polished sample, the wear tracks in
the femtosecond laser processing area are almost invisible. The reason for its significant
abrasion resistance is the LIPSS generated during the laser surface treatment. Figure 11
shows a sketch of the reciprocating sliding tribological test geometry (Figure 11a) along
with top-view optical micrographs of the generated wear tracks on the polished Ti6Al4V al-
loy surface (Figure 11b) and the Spike-covered surface (Figure 11c). Additionally, top-view
SEM micrographs revealing details from the wear tracks are presented (Figure 11d: initially
polished, Figure 11e: LSFL, Figure 11f: Grooves, Figure 11g: Spikes). It is evident that on
all laser-generated morphologies, the topmost regions have been partly worn, but the struc-
tures were not removed. The wear track and surface damage left on the polished surface is
much larger than that in the laser-processed regions. The research of C. Florian et al. [110]
demonstrated that femtosecond laser ablation forms a nanoscale morphology on the metal
surface, resulting in a significant reduction in its coefficient of friction. Femtosecond laser
treatments of metal surfaces inhibit adhesion tendencies by reducing the contact area, and
the improvement in the tribological properties is due to the combined effect of LIPSSs.

4.5. Other Applications

Several other technical applications of LIPSS have been explored. Laser processing ab-
lation obtains the desired surface features on the metal; such modified surfaces can be both
beneficial and durable in phase-change heat transfer applications. Surface modification by
ultra-short pulse lasers alters the heat transfer performances of the boiling system [111].
Since the LIPSSs can significantly increase the absorption rate of the surface, they will
simultaneously lead to an increase in thermal radiation. Another potential application of
LIPSS is related to catalytic activity in electrochemical processes [4], in which the active sur-
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face area of the electrode material is critical to the efficiency of the electrochemical reaction.
LIPSSs can be applied to energy-saving components and sensors [5]. Another application
of LIPSSs is in chemical analyses based on surface-enhanced Raman spectroscopy. In the
future, many will explore the established and new surface functions that be created through
LIPSSs, so that these materials can be better applied in mechanical engineering, healthcare,
aerospace, energy, and other fields.
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Figure 11. Ref. [110] Tribological performance of the samples after irradiation. (a) Sketch of the
tribology setup using a steel ball of 100 Cr6 on the surface of the Ti6Al4V alloy sample. The final
wear track achieved after 1000 sliding cycles is shown in (b) for the free surface and in (c) for a
Spike-covered area as optical micrographs. SEM micrographs of the wear track on the different areas
are shown in (d) for the initially polished surface, (e) LSFL, (f) Grooves, and (g) Spikes.

In summary, various patterns can be prepared by femtosecond lasers to improve the per-
formance of materials. Due to the versatility of the femtosecond laser process, the correlation
between surface morphology and alloy properties still has great research potential.

5. Summary and Outlook

The femtosecond laser is applied to biomedical materials as a surface modification
technology. The laser-induced periodic structure generated by fs-laser action can improve
the wear resistance, corrosion resistance, wetting, and biocompatibility of material surfaces.
Although there have been many relevant reports, the mechanism of action of laser ablation
materials to form special structures on the surface is still being explored. The correlation
between surface patterns and material properties still needs to be studied continuously. In
the future, numerical simulations will predictively simulate the laser processing parameters
of the desired surface topography with the help of machine learning algorithms. The
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relevant control parameters of functionalized surfaces are identified for better industrial
applications. Another trend will be continuing to explore the creation of LIPSSs and their
surface capabilities so that they can be better applied in mechanical engineering, healthcare,
aerospace, information, and other fields.
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