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Abstract: This manuscript contains the modeling and analysis of an unsteady Carreau fluid with
a magnetohydrodynamical effect over a stretching sheet. The governing momentum and energy
equations admit a self-similarity solution. The system of ordinary differential equations has been
solved analytically by the homotopy analysis method (HAM) and numerically by BVP4C (Matlab
routine). An analysis of results shows that obtained analytical and numerical solutions are in excellent
agreement with existing results in the literature. Furthermore, the effect of various fluid parameters
on the velocity and temperature profiles are studied graphically. It is observed that velocity increases
in the stretching sheet for power law index n and the Weissenberg number We, whereas it decreases
for magnetic parameter M2. Tabular analysis on skin friction and heat transfer rate is also presented
against pertinent fluid parameters.

Keywords: boundary layer; stagnation point flow; suction/injection; stretching/shrinking sheet

1. Introduction

The study of boundary-layer flow over a stretching or shrinking surface with heat
transfer has received a lot of attention from several scientists due to its enormous poten-
tial for application in engineering and industry. The existence of the boundary layer is
subject to relative motion of the fluid and solid surface where fluid is in contact. Specific
examples include the extrusion of plastic sheets and polymers in the melt spinning process,
the production of glass fibers and plastic films, wire drawing, hot rolling, and paper pro-
duction etc. Sakiadis [1] examined the behavior of boundary layer flow over a constant
solid surface that moves at constant speed. Crane [2] studied the flow of the boundary
layer past a stretching sheet where distance from the slit is proportional to the velocity.
The effect of suction and blowing with heat and mass transfer in a boundary layer over a
stretching surface is investigated by Gupta et al. [3]. Rasheed et al. [4] analyzed a Jeffery
nanofluid passing over a vertically stretched cylinder under magnetohydrodynamic effect.
In order to check stability and convergence of the fluid model, the homotopy analysis
method was employed. Kalpana and Saleem [5] investigated dusty fluid flows under
magnetohydrodynamic effects in an irregular porous channel. They employed the finite
difference algorithm to solve the flow problem. Stability analysis with dual solutions for
a Casson fluid flow over a stretching surface is done by Hamid et al. [6]. Inayat et al. [7]
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studied magnetohydrodynamic squeezing flows in a porous medium by using homotopy
analysis method for solution purposes. Kumar et al. [8] analyzed the flow of a magnetic
dipole Maxwell fluid on a stretching surface with thermophoretic particle distribution. A
numerical study on a hybrid nanofluid with Newtonian heating on a curved sheet with a
stretching effect is characterized by Mudhukesh et al. [9]. Wang [10] examined 2D stagna-
tion point flow with heat transfer over a shrinking/stretching sheet. Qayyum et al. [11]
presented slip analysis for Casson fluid flow under a magnetohydrodynamic effect. They
utilized a homotopy perturbation scheme to solve a fourth-order differential equation
of the flow problem. Raza [12] investigated the flow of Casson fluid with velocity and
thermal slip over a stretching sheet near the stagnation point. Patel et al. [13] discussed
the transfer of heat into a non-Newtonian 2D stagnation point flow. Ramesh et al. [14]
examined the time-dependent squeezing flow of a Cassson micropolar nanofluid with
suction/injunction and slip effects on velocity, temperature, and concentration. The un-
steady flow of a hybrid nanofluid is analyzed by Waini et al. [15] with heat transfer over
a sheet with varied thickness. Khan et al. [16] numerically solved the Carreau fluid flow
past a stretching sheet of variable thickness with MHD effect. Akber et al. [17] presented a
stretching sheet with the boundary layer stagnation point flow of a Carreau fluid. In the
presence of homogeneous and heterogeneous reactions, Raju et al. [18] studied the effects
of nonlinear thermal radiation and a nonuniform heat source or sink in unsteady 3D flows
of Carreau and Casson fluids past stretching surfaces. Shabnam et al. [19] numerically
investigated the squeezing flow between two concentric circles with magnetic field and heat
source. Ali et al. [20] presented mathematical modeling for the flow of an incompressible
Carreau fluid in an asymmetric channel with variations in the sinusoidal wall. Transport
phenomenon on Carreau fluid is studied by Nazir et al. [21] by using the Catteno–Christov
heat flux with diffusion coefficients dependent on temperature. Nadeem et al. [22] studied
unsteady Carreau fluid flow in eccentric cylinders.

Stretching and shrinking sheets are of much importance in many fields of science,
engineering, and physics. For this reason, it encourages many researchers to model
and simulate problems based on varying fluid flows past stretching/shrinking surfaces.
Kashi’ie et al. [23] studied hybrid nanofluid flow in three dimensions over a variably
thickened sheet with convective and slip boundary conditions. Gopal et al. [24] analyzed
micropolar fluid flow over a porous shrinking sheet by using the variational finite element
method. The flow of a hybrid nanofluid over a permeable shrinking sheet is analyzed
by Abu Bakar et al. [25] with the impact of radiation and slip. Rohni et al. [26] investi-
gated the unsteady flow of a water-based nanofluid over a shrinking surface with wall
mass suction. Warke et al. [27] numerically analyzed magneto-micropolar liquid flow
on a heated and porous stretching sheet. Elbashbeshy et al. [28] obtained a similarity
solution of unsteady laminar boundary layer stretching surface flow. The second-grade
nanofluid flow past a stretching sheet with impact of the magnetic field is scrutinized
by Hayat et al. [29]. By using the finite element approach, Khan et al. [30] characterized
micropolar-based nanofluids near a stagnation point flowing past a vertically stretching
sheet. Waini et al. [31] considered dusty flow of a hybrid nanofluid on a stretching sheet
under the effect of a magnetic field. Hassnian et al. [32] have studied the unsteady mixed
convection boundary layer flow near the stagnation point on a heated vertical plate. In the
presence of thermal radiation in an unsteady boundary layer flow, Nandy et al. [33] ana-
lyzed the forced convection of nanofluid into a permeable shrinking sheet. Zainal et al. [34]
did stability analysis on MHD flow of a hybrid nanofluid on a sheet with variable thickness.
Heat and mass transport on Carreau nanomaterial near a stagnation point is examined by
Chu et al. [35] by using the RK Fehlberg technique. Ahmed et al. [36] explored the flow of a
Maxwell nanofluid near the stagnation point on a rotating disk with a heat source/sink.
Nik Long et al. [37] investigated an unsteady stagnation point flow and heat transfer over
a stretch sheet. Jakeer and Reddy [38] studied entropy generation for a nanofluid near
the electro-magnetohydrodynamic stagnation point. Khan et al. [39] analyzed a hybrid
nanofluid passing over a non-isothermal stretching surface under the effect of a magnetic
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field normal to the surface. Mousavi et al. [40] simulated Casson hybrid nanofluid flow
over a stretching shrinking sheet through dual solution model.

The main aim of this manuscript is to model and analyze the unsteady, incompressible
boundary layer flow of an MHD Carreau fluid near a stagnation point. In light of the
literature review stated above, it is observed that the unsteady Carreau fluid model with
boundary layer flow under magnetohydrodynamic effect and suction/injuction is not
studied comparatively for stretching/shrinking sheet cases. Moreover, to elaborate the
novelty of the current study and the research gap it fills, recent studies on Carreau fluid
flow are compared with this manuscript in Table 1. This flow is modeled with magneto-
hydrodynamic effect and heat flux. The system of PDEs are transformed into ODEs by
using suitable similarity transformations. The obtained system is solved analytically by
HAM and numerically by BVP4C. The effect of various fluid parameters on the velocity
and temperature profile is analyzed graphically in the case of the stretching and shrinking
sheet, comparatively. In addition, the skin friction coefficient and heat transfer rate at
sheet surface is tabulated and analyzed. This study is further classified into the following
sections: Section 2 presents formulation of flow problem. In Section 3, the homotopy
analysis method is used to solve the problem. In Section 4, a discussion and analysis of
results is presented, and finally conclusions are drawn in Section 5.

Table 1. Present study in comparison to studies in the literature.

Unsteady Boundary Stagnation Suc./ Stretch./ HAM
Layer Point Inj. Shrink. vs. BVP4C

Hayat et al. [41] No No No No No No
Hussain et al. [42] No No No No Yes No
Abbas et al. [43] No Yes Yes No Yes No
Raza et al. [44] No No No No Yes No

Present Yes Yes Yes Yes Yes Yes

2. Problem Formulation

In this study, a Carreau fluid stagnation point flow is considered. The flow is unsteady,
incompressible, and two-dimensional on a sheet with stretching/shrinking effect at surface
y = 0. Moreover, the velocity profile is influenced by magnetohydrodynamic effect in per-
pendicular direction to sheet surface along with the impact of heat flux in the temperature
profile. Flow geometry of the problem is depicted in Figure 1. The governing equations of
described flow geometry are modeled as follows [45]:

Figure 1. Flow geometry.
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∇.V = 0 (1)

∂u
∂t
− ν

∂2u
∂y2 + u

∂u
∂x
− σJ2

ρ
(U∞ − u) + v

∂u
∂y
−U∞

∂U∞

∂x
− 3

2
νΓ2(n− 1)

∂2u
∂y2

(
∂u
∂y

)2
− ∂U∞

∂t
= 0, (2)

u
∂T
∂x

+
∂T
∂t

+ v
∂T
∂y
− α

∂2T
∂y2 = 0. (3)

The boundary conditions are

u(0) = Uw(x, t),
∂T(0)

∂y
= − qw

κ
, v(0) = Vw, (4)

T(∞) −→ T∞ , u(∞) −→ U∞. (5)

In Equations (1)–(5), u is velocity in the x-direction, and v is in the y-direction. Here,
ρ is the density of fluid, g is the gravitational acceleration, σ is the electric conductivity,
ν is the kinematic viscosity, α is the thermal diffusivity, T∞ is the ambient temperature, n
is the power law index, J is the magnetic field, Γ is the time constant, T∞ is the ambient
temperature, Vw is the suction/injuction parameter, and κ is the thermal conductivity.
Moreover, the ambient velocity U∞, the stretching/shrinking sheet velocity Uw, and surface
heat flux qw are defined as

qw(x, t) = cx(1− λt)−1, Uw(x, t) = bx(1− λt)−1, U∞(x, t) = ax(1− λt)−1. (6)

In order to simplify system of PDEs in Equations (1)–(5) to system of non-dimensional
ODEs, we introduce similarity transformations as

ψ =
(aν)

1
2

(1− λt)
1
2

x f (ξ), ξ =
y√

1− αt

√
a
ν

, θ(ξ) =
k(T − T∞)

qw

√
U∞

νx
, (7)

where u and v are defined as u = ∂ψ
∂y and v = − ∂ψ

∂x , respectively. By using this u and v in
Equation (6), we obtain following transformations:

u =
y

(1− αt)
f ′(ξ), v = − (aν)

1
2

(1− λt)
1
2

f (ξ). (8)

By using Equations (6) and (7) in Equations (1)–(5), a nondimensional system is
obtained,

f ′′′ +
3
2

We2(n− 1) f ′′′( f ′′)2 − A
ξ f ′′

2
+ f f ′′ + 1− A f ′ + A− f ′2 −M2 f ′ + M2 = 0, (9)

1
Pr

θ′′ − Aθ

2
+ f θ′ − ξ

Aθ′

2
− f ′θ = 0, (10)

with dimensionless conditions at boundary as

θ′(0) = −1, f ′(0) = B, f (0) = S, (11)

f ′(∞) = 1, θ(∞) = 0. (12)

In Equations (8)–(10), M2, We2, S, A, B, and Pr are the magnetic parameter, Weis-
senberg number, suction/injuction parameter, unsteadiness parameter, stretching/shrinking
parameter, and Prandtl number, respectively. We have
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M2 =
σJ2

0 (1− λt)
ρb

, We2 =
Γ2a3x2

ν(1− λt)3 , A =
λ

a
, S = −Vw(1− λt)

1
2

(aν)
1
2

, Pr =
ν

α
, B =

b
a

. (13)

Quantities of Physical Interest

Skin friction C f and Nusselt number Nux are quantities of physical interest, as defined
below,

C f =
τ̌w

ρU2
∞/2

, Nux =
xq̌w

κ(T − T∞)
, (14)

where τ̌w is the stress tensor and q̌w is the heat flux at wall, defined as

τ̌w = µ

(
∂u
∂y

)
y=0

, q̌w = −κ(

(
∂T
∂y

)
y=0

. (15)

By using Equation (14) in Equation (13) and by using similarity transforms on resulting
equations, the nondimensional skin friction and Nusselt number is obtained,

C f = 2Re−
1
2

x f ′′(0), Nux =
Re

1
2
x

θ(0)
, (16)

where Re(x) is the local Reynold number given as Re(x) = U∞x
ν .

3. Homotopy Analysis Solution of the Problem

In this section, the implication of homotopy analysis method on the flow problem is
elaborated. Obtained system of ODEs in Equations (8) and (9) with boundary conditions in
Equations (10) and (11) are solved by using HAM. We first select the linear operator and
initial guess as

f0(ξ) = ξ + (1− B)e−ξ + (S− 1 + B), θ0(ξ) = e−ξ , (17)

L̃ f = f ′′′(ξ) + f ′′(ξ), L̃θ = θ′′(ξ) + θ′(ξ). (18)

The following properties of the above auxiliary linear operators are

L̃ f (c1ξ + c2e−ξ + c3) = 0,

L̃θ(c4e−ξ + c5) = 0,
(19)

where ci(i = 1(1)5) are arbitrary constants. By using initial guess and auxiliary linear
operator, the zeroth-order deformation equation becomes

(1− q)L̃ f f̆ (q; ξ)− qh f Ñ f [ f̆ (q; ξ)]− (1− q)L̃ f f0(ξ) = 0, (20)

(1− q)L̃θ θ̆(q; ξ)− qhθ Ñθ [θ̆(q; ξ), f̆ (q; ξ)]− (1− q)L̃θθ0(ξ) = 0. (21)

The nonlinear operators are given in following equation:

Ñ f [ f̆ (q; ξ)] =
∂3 f̆ (q; ξ)

∂ξ3 + A + 1− A

[
∂ f̆ (q; ξ)

∂ξ
+

ξ

2
∂2 f̆ (q; ξ)

∂ξ2

]
+

∂2 f̆ (q; ξ)

∂ξ2 f̆ (q; ξ)−
(

∂ f̆ (q; ξ)

∂ξ

)2

+
3(n− 1)

2
We2

(
∂ f̆ (q; ξ)

∂ξ

)2
∂3 f̆ (q; ξ)

∂ξ3 + M2

[
1−

(
∂ f̆ (q; ξ)

∂ξ

)]
, (22)

Ñθ [θ̆(q; ξ), f̆ (q; ξ)] =
∂2θ̆(q; ξ)

∂ξ2 + Pr f̆ (q; ξ)
∂θ̆(q; ξ)

∂ξ
− A

(
θ̆(q; ξ)

2
+

ξ

2
∂θ̆(q; ξ)

∂ξ

)
− Pr

∂ f̆ (q; ξ)

∂ξ
θ̆(q; ξ), (23)
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where h f and hθ are the auxiliary parameters, Ñ f , Ñθ and q are the nonlinear operators and
the embedding parameter, respectively. As q varies from 0 to 1, the initial guess transforms
to exact solution. We have

f0(ξ) = f̆ (0; ξ), f (ξ) = f̆ (1; ξ),

θ0(ξ) = θ̆(0; ξ), θ(ξ) = θ̆(1; ξ).
(24)

Functions f (ξ; q) and θ(ξ; q) are written after Taylor series expansion as

f (q; ξ) =
∞

∑
k=1

qk fk(ξ) + f0(ξ),

θ(q; ξ) =
∞

∑
k=1

qkθk(ξ) + θ0(ξ),
(25)

where

fk =
1
k!

(
∂k f (q; ξ)

∂ξk

)
q=0

,

θk =
1
k!

(
∂kθ(q; ξ)

∂ξk

)
q=0

.

(26)

Equation (22) converges for q = 1, so we write

f (ξ) =
∞

∑
k=1

fk(ξ) + f0(ξ),

θ(ξ) =
∞

∑
k=1

θk(ξ) + θ0(ξ).
(27)

After differentiating the zeroth-order deformation equation k times, we arrive at the
following deformation equation of the k-th order,

L̃ f [ fk(ξ)− χk fk−1(ξ)] = h f R̃ f ,k(ξ), (28)

L̃θ [θk(ξ)− χkθk−1(ξ)] = hθ R̃θ,k(ξ), (29)

where

R̃ f ,k(ξ) =
∂3 fk−1(ξ)

∂ξ3 +
k−1

∑
j=0

fk−1−j(ξ)
∂2 f j(ξ)

∂ξ2 − A
[

∂ fk−1(ξ)

∂ξ
+

ξ

2
∂2 fk−1(ξ)

∂ξ2

]
−M2 ∂ fk−1(ξ)

∂ξ

+
3(n− 1)

2
We2

k−1

∑
j=0

[
∂2 fk−1−j(ξ)

∂ξ2
∂2 fk(ξ)

∂ξ2

]
∂3 fk−1(ξ)

∂ξ3 −
k−1

∑
j=0

∂ fk−1−j(ξ)

∂ξ

∂ fk(ξ)

∂ξ
+ (M2 + A + 1)(1− χk),

R̃θ,k(ξ) =
∂2θk−1(ξ)

∂ξ2 + Pr
k−1

∑
j=0

fk−1−j(ξ)
∂θk(ξ)

∂ξ
− A

[
θk(ξ)

2
+

ξ

2
∂θk−1(ξ)

∂ξ

]
− Pr

k−1

∑
j=0

∂ fk−1−j(ξ)

∂ξ
θk(ξ),

χk =

{
1 k > 1,
0 k ≤ 1.

Equations (10) and (11), after using Equation (24), gives

fk(0) = f
′
k(0) = f

′
k(∞),

θ′k(0) = 0 = θk(∞).
(30)
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The general solution can be written as

fk(ξ) = f ∗k + c1ξ + c2e−ξ + c3,

θk(z) = θ∗k + c4e−ξ + c5,
(31)

where f ∗k , and θ∗k are the special solutions.

4. Analysis of Results

In this section, we analyze the flow behavior of the Carreau fluid under the effects of
MHD and heat flux on the stretching and shrinking sheet comparatively. Numerical and
analytical analysis is done on nonlinear ODEs (8) and (9) by using BVP4C and the homotopy
analysis method. Graphical results are obtained for velocity and temperature profile for
various fluid parameters. Figure 2 shows effects of various nondimensional parameters
on the velocity profile. The effect of the Weissenberg number, We on velocity f ′(ξ) is
illustrated in Figure 2a. We decreases velocity of the fluid when the sheet is shrinking. The
opposite behavior of We on the velocity profile is observed for the stretching sheet case.
An increase in We decreases fluid viscosity, resulting in increased fluid velocity for the
stretching sheet. Figure 2b presents the power law index, n against velocity f ′(ξ). With an
increase in n, velocity increases in the case of the stretching sheet, whereas it decreases for
the shrinking sheet case. The unsteadiness parameter A increases velocity distribution in
the shrinking case, as seen in Figure 2c. In Figure 2d, the effect of the suction/injuction
parameter S on velocity is shown. An increase in axial velocity of fluid is observed with
increasing rate of stretching. As S increases, more fluid flow is caused in the axial direction
due to suction/injuction. The effect of magnetic interaction parameter M on velocity is
depicted in Figure 2e. In the case of the shrinking sheet, velocity increases with an increase
in M, and it decreases when the sheet is stretching. Increased M results in Lorentz-like
drag force, which causes resistance in fluid flow when the sheet stretches. The behavior of
the temperature profile for the Prandtl number Pr and unsteadiness parameter A is shown
in Figure 2. When the Prandtl number, Pr is increased in Figure 3a, it is observed that fluid
temperature depreciates due to decreased thermal diffusivity. The unsteadiness parameter
A decreases temperature, θξ in Figure 3b. A is increased whereas Pr is kept constant.
Table 2 depicts numerical results for skin friction coefficient f ′′(0) and Nusselt number

1
θ(0) for increasing values of various parameters. Analysis reveals that increasing n for the
stretching sheet elevates skin friction and Nusselt number. A decrease in skin friction and
heat transfer rate against n is observed for the shrinking sheet case. The suction parameter
S is increased with the stretching/shrinking parameter, B = 0, 3. The skin friction and heat
transfer rate boosts as S is increased. Increasing values of magnetic interaction parameter,
M2 show varying results in the stretching and shrinking case. When the stretching sheet
is considered, skin friction and heat transfer rate decrease with increasing values of M2,
whereas the opposite behavior is observed in case of the shrinking sheet. The increasing
unsteadiness parameter A elevates skin friction and heat transfer in both cases of shrinking
and stretching. Moreover, for the stretching sheet, skin friction and heat transfer is increased
for higher values of the Weissenberg number We, whereas contrasting results are noted in
case shrinking sheet. The numerical results of−θ′(ξ), f (ξ), f ′(ξ) and f ′′(ξ) are tabulated in
Table 3. The results obtained from HAM are observed to be in good agreement with BVP4C
results depicting validity of obtained solution. Moreover, the validity of the solution is also
confirmed by comparison of results with Wang [10], M. Sauli et al. [46], and Nik Long [37]
for A = 0, 0.1 with varying values of B (see Tables 4 and 5).
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Table 2. Skin friction and Nusselt number at wall, ξ = 0.

B n S A M We 1
θ(0) f ′′(0)

2.0 5.0 4.0244430 −2.6826278
6.0 4.0283364 −2.5369399
7.0 4.0315875 −2.4219666

−2.0 5.0 3.0481391 3.8906419
6.0 3.0252388 3.6346990
7.0 3.0062235 3.4364046

0.0 5.0 5.0 3.6630343 2.5611289
5.5 3.9971591 2.6619630
6.0 4.3335662 2.7577551

−3.0 5.0 2.5696252 4.0561451
5.5 3.0065323 4.2665821
6.0 3.4264443 4.4570918

0.0 0.5 3.6674852 2.5762846
1.0 3.6723614 2.5916306
1.5 3.6776320 2.6068546

−3.0 0.5 2.5721711 4.1243391
1.0 2.5765875 4.1918215
1.5 2.5835476 4.2573624

2.0 0.01 5.0 4.0042851 −3.4638604
6.0 3.9992199 −3.6839415
7.0 3.9944856 −3.9006953

−2.0 5.0 3.1749996 5.7788121
6.0 3.1989911 6.2168226
7.0 3.22032152 6.6343644

2.0 0.5 4.0428543 −2.06140876
1.4 4.0782778 −1.1683032
1.8 4.0854061 −1.0139622

−2.0 0.5 2.9401264 2.8342074
1.4 2.6966604 1.44553072
1.8 2.6272086 1.2183288

Table 3. Numerical comparison of HAM with BVP4C.

ξ
f (ξ) f (ξ) f ′(ξ) f ′(ξ) f ′′(ξ) f ′′(ξ) −θ′(ξ) −θ′(ξ)

Analytical Numerical Analytical Numerical Analytical Numerical Analytical Numerical

0.004504 0.4022613 0.402261 0.5040192 0.504019 0.8892286 0.889211 0.9970712 0.997067
0.013513 0.4068379 0.406838 0.5119757 0.511976 0.877124 0.8771417 0.9911961 0.991185
0.022527 0.4114857 0.411486 0.5198240 0.519824 0.8651878 0.865170 0.9852988 0.985279
0.031531 0.4162038 0.416204 0.5275651 0.527565 0.8533656 0.853348 0.9793806 0.979353
0.040540 0.4209911 0.420991 0.5352004 0.535200 0.8416738 0.841656 0.9734423 0.973407
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Table 4. Comparison of f ′′(0) when A = 0 and A = 0.1.

B A Present Work Wang [10] M. Suali et al. [46] Nik Long et al. [37]

4.0 0.0 −7.0863775 - −7.086378 -
3.0 −4.2765414 - −4.276545 -
0.2 1.0511299 1.05113 1.051130 -
0.1 1.1465607 1.14656 1.146561 -
−0.2 1.3738858 - 1.373886 -
−0.5 1.4956699 1.49567 1.495672 -
−1.15 1.0822445 1.08223 1.082232 -

4.0 0.1 −7.1300170 - −7.130017 −7.130017
3.0 −4.3087131 - −4.308713 -
0.2 1.0723284 - 1.072329 1.072329
0.1 1.1711930 - 1.171193 1.171193
−0.2 1.4106490 - 1.410656 -
−0.5 1.5489907 - 1.549006 1.549006
−1.15 1.2549492 - 1.255264 -

Table 5. Comparison of 1
θ(0) when A = 0.

B Present Value M. Suali et al. [46] Wang [10]

3.0 1.8706705 1.870671 -
0.2 0.9133029 0.913303 0.91330
0.1 0.8634515 0.863452 0.86345
−0.2 0.6987483 0.698748 0.69875
−0.5 0.5014488 0.501448 0.50145
−1.15 −0.2979289 −0.2979953 −0.29799

5. Conclusions

This study presents solutions and analyses of stagnation point flow of a MHD Carreau
fluid with heat flux in the presence of heat transfer. The effects of stretching and shrinking
cases of the sheet are analyzed comparatively on velocity profile, temperature profile, skin
friction, and heat transfer rate. An increase in velocity profile is observed for increasing
values of n and We when the sheet stretches, whereas a decrease in velocity is observed
in cases where the sheet shrinks. However, the opposite behavior is observed in case of
increasing M2. Similarly, n and We increases skin friction and heat transfer rate in cases of
the stretching sheet, whereas the opposite behavior is noted with an increase in M2. The
current study provides meaningful results for industrial and engineering sectors in which
stretching and shrinking sheets are involved. Furthermore, this study can be extended in
the future to encompass more physical effects, such as thermophoresis, Brownian motion,
nonlinear thermal radiation, chemical reaction, slip, or convective effects at boundary.
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Nomenclature

µ viscosity ν kinematic viscosity
P pressure A unsteadiness parameter
qw surface heat flux τw Shear stress
Γ The time constant λ constant
ρ fluid density a, b constants
u, v components of velocity κ thermal conductivity
x, y spatial Cartesian coordinates α thermal diffusivity
Uw Stretching surface velocity M2 magnetic parameter
n Power law index U∞ stream velocity
ψ stream function C f skin friction coefficient
σ Electrical conductivity We2 Weissenberg number
Vw suction/injection velocity T∞ the free stream temperature
J magnetic field Re(x) local Reynolds number
η similarity variable Pr Prandtl number
B stretching/ shrinking parameter T Fluid temperature
Nux local Nusselt number S Suction parameter
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