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Abstract: The poor electronic conductivity and large volume expansion effect of MoS2 limit its
application in potassium-ion batteries (PIBs). In addition to exploring effective modification methods,
it is also necessary to build a new self-standing electrode system to improve its energy density. In this
work, based on the potassium storage advantages and disadvantages of MoS2 and carbon nanofibers,
we have successfully prepared a self-standing soft carbon-coated MoS2 nanofiber film electrode
without any additives or metal collectors. As for the application in PIBs, it exhibits excellent rate
performances (about 93 mA h g−1 at the current density of 10 A g−1), and superior long-term cycling
stability performances (a high-capacity retention of ~75% after 1800 cycles at the current density of
1 A g−1). The enhanced potassium storage performance can be attributed to the unique self-standing
nanofiber film architectures.
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1. Introduction

With the widespread use of electronic products, and the growing popularity of new
energy vehicles, the demand for lithium-ion batteries (LIBs) has been unprecedented.
However, the global lithium resources are scarce and unevenly distributed. Moreover,
the current immature battery recycling mechanism inevitably affects its cost and supply
and demand [1]. To solve this problem, developing batteries with abundant resources
and at a low cost is both urgent and effective. Among them, the potassium-ion batteries
(PIBs), which have a similar energy storage mechanism to the LIBs, have received special
attention [2–4]. Potassium is much more abundant on the earth than lithium. As compared
with sodium-ion batteries (SIBs), PIBs have some unique energy storage advantages. The
standard electrode potential of potassium is −2.93 V (vs. SHE), which is close to lithium
(−3.04 V vs. SHE) and higher than sodium (−2.71 V vs. SHE), meaning PIBs have a higher
potential energy density than SIBs [5]. In addition, potassium can form stable intercalation
compounds with graphite, while sodium is difficult to insert into graphite. [6,7]

As far as the anode electrode of PIBs is concerned, its research is still in the initial
stage [8]. The excellent potassium storage anodes have characteristics similar to those of
LIBs and SIBs. However, as the size of a K-ion (0.138 nm) is larger than that of a Na-ion
(0.102 nm) and a Li-ion (0.076 nm), the larger potassium ion radius will result in slow
ion diffusion kinetics [7,9]. According to the different potassium storage mechanisms, the
anodes can be classified into three categories: alloy-type, conversion-type, and intercalation-
type [10–13]. Among them, the conversion-type MoS2 shows great structural advantages in
potassium storage applications [14–16]. MoS2 combines 2D monolayers formed by bonded
Mo and S atoms, with a weak van der Waals force. Anisotropic structure provides MoS2
with a large number of reaction sites and 2D channels to boost ion insertion/extraction
and rapid electron transfer [17]. However, its poor electronic conductivity and large
volume expansion effect still limit its application in PIBs. Exploring excellent modification
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strategies is still a hot topic [18–20]. Additionally, in order to prepare an anode with
excellent potassium storage performances, in addition to selecting a high-performance
anode system, it is also necessary to build a new electrode system that is self-standing
and free of adhesives, conductive additives, and metal collectors [21]. For the anode
electrode, if taking the weight of the binder, the conductive agent, and the metal collector
into account, its actual specific capacity will be very low [22], which will seriously restrict
the energy density of the whole battery. In view of the significant advantages of MoS2 in
potassium storage, it is a challenging research topic to explore the construction method of
high-performance self-standing electrodes.

In this work, we are committed to designing a self-standing MoS2-based anode with-
out any additives or metal collectors for the applications in PIBs. This work will explore
self-standing framework and effective carbon modification strategies by combining electro-
spinning and hydrothermal methods.

2. Materials and Methods

Synthesis of CNFs: Firstly, we can prepare the electrospinning solution by mixing the
0.6 g of PAN (polyacrylonitrile) and 8 mL of DMF (N, N-Dimethylformamide). Then, the
precursor carbon nanofibers (CNFs) can be obtained using the electrospinning method. The
final CNFs are obtained by heating it in air at 250 ◦C for 3 h, then at 700 ◦C for 5 h under an
argon atmosphere.

Synthesis of MoS2@CNFs and pure MoS2 NS: Typically, an aqueous solution (30 mL)
for the reaction was prepared by mixing 0.08 g of ammonium molybdate tetrahydrate, 0.09 g
of thiourea, and 0.15 g of PVP (polyvinyl pyrrolidone). Then, the appropriate amount of
the as-prepared CNFs film was added into the above aqueous solution. The hydrothermal
reaction conditions were set at 200 ◦C for 24 h. Then, the generated sample was washed
and dried, and finally annealed at 700 ◦C for 5 h under an argon atmosphere. The pure
MoS2 nanospheres (NS) can be prepared in the absence of CNFs.

Synthesis of MoS2@CNFs@C: Typically, the appropriate amount of the as-prepared
MoS2@CNFs film was immersed in the glucose (20 mg) aqueous solution (30 mL), and then
hydrothermally reacted at 180 ◦C for 12 h. Then, the generated sample was washed and
dried. The final MoS2@CNFs@C can be obtained by heating it at 700 ◦C for 5 h under an
argon atmosphere. Note that polyacrylonitrile and the other reagents were purchased from
commercial sources of Aldrich and Aladdin, respectively, which are directly used without
any further purification.

Characterization methods: The phase structure of samples was checked using X-ray
diffraction (XRD, Rigaku, Japan). The surface morphologies of the as-prepared samples
were studied using a scanning electron microscopy (SEM, SU8010, Hitachi, Japan).

Electrochemical tests: Except for the pure MoS2 NS, the other samples were directly
utilized as the working electrode in the absence of additives and metal current collectors.
The pure MoS2 NS electrode was prepared through a traditional coating process. A mixed
slurry (8:1:1 by weight) of active material, carbon black, and polyvinylidene fluoride was
coated on a Cu foil, and then dried at 100 ◦C under vacuum condition. The potassium
metal disk was utilized as to counter and reference electrodes. The glass fiber membrane
and the 0.8 M KPF6 solution in a 1:1 (by volume) mixture of EC and DEC were used as the
separator and the electrolytes, respectively. A two-electrode coin cell was fabricated in a
glove box under an argon atmosphere with 0.1 ppm moisture and oxygen content. The
galvanostatic charge-discharge (GCD) data were investigated by battery testing instruments
in the current density range of 0.1–10 A g−1.

3. Results and Discussion

Figure 1 schematically shows the typical preparation procedures of the MoS2@CNFs@C
sample. Firstly, the CNFs can be obtained by optimizing the electrospinning conditions. As
we know, owing to the wide layer spacing and large degree of disorder, hard carbon is con-
ducive to the intercalation of potassium ions [23–25]. The carbon nanofibers derived from
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electrospinning can be used as the framework for preparing self-standing electrode. By
using the hydrothermal technique and PVP, MoS2 nanospheres (NS) can uniformly anchor
to the surface of CNFs. Finally, with the aid of hydrothermal and annealing treatments, the
surface of MoS2@CNFs will be coated with soft carbon layers derived from the glucose.
Such a structural design will not only effectively improve the electronic conductivity of the
material but will also obtain a potassium storage electrode without any additives or metal
collectors, which can be used directly to assemble a two-electrode coin-cell.
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Figure 1. Schematic illustration of the fabrication of MoS2@CNFs@C film electrode.

As shown in Figure 2, the phase structures of the samples are checked by XRD. It can
be seen that the pure MoS2 NS sample shows the characteristic (100) and (110) diffraction
peaks. The MoS2@CNFs exhibits the characteristic XRD peaks of MoS2 without any impure
phase, indicating the successful combination of MoS2 and CNFs. After carbon coating, as
compared with MoS2@CNFs, no obvious differences in the XRD patterns are observed for
MoS2@CNFs@C, suggesting the effective carbon modification strategy.
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Figure 2. The XRD patterns of pure MoS2 NS, MoS2@CNFs, and MoS2@CNFs@C. The inset is the
simulated crystal structures of MoS2.
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Figure 3 shows the SEM images of samples. For CNFs, it can be seen that a network
structure is formed by lots of nanofibers (shown in Figure 3a). After hydrothermal and
annealing treatment, the MoS2 NS are uniformly loaded onto the surface of CNFs (shown
in Figure 3b). After carbon modification, MoS2@CNFs@C can maintain the morphology
structure similar to MoS2@CNFs (shown in Figure 3c). In addition, Figure 3d shows the
typical nanosheet stacking structure of a pure MoS2 NS, which presents a nanosphere
morphology. Such an assembly structure can be expected to exhibit enhanced potassium
storage performances.

Coatings 2022, 12, x FOR PEER REVIEW 4 of 7 
 

 

Figure 3 shows the SEM images of samples. For CNFs, it can be seen that a network 

structure is formed by lots of nanofibers (shown in Figure 3a). After hydrothermal and 

annealing treatment, the MoS2 NS are uniformly loaded onto the surface of CNFs (shown 

in Figure 3b). After carbon modification, MoS2@CNFs@C can maintain the morphology 

structure similar to MoS2@CNFs (shown in Figure 3c). In addition, Figure 3d shows the 

typical nanosheet stacking structure of a pure MoS2 NS, which presents a nanosphere 

morphology. Such an assembly structure can be expected to exhibit enhanced potassium 

storage performances. 

 

Figure 3. SEM images of (a) CNFs, (b) MoS2@CNFs, (c) MoS2@CNFs@C, and (d) pure MoS2 NS. 

As shown in Figure 4, this work studied the potassium storage performances of a 

pure MoS2 NS electrode. It can be seen that both the rate and cycling stability perfor-

mances are poor. As shown in Figure 4a, with increasing the discharge current density, 

the specific capacity of the electrode gradually decreases. When the current density in-

creases to 5 A g−1, the specific capacity is close to 0. It can basically return to the previous 

state as the current density returns to 0.2 A g−1. In addition, as shown in Figure 4b, during 

the first 100 cycles, the specific capacity decreases rapidly. The reason for the poor rate 

and cycle stability performances of a pure MoS2 NS electrode can be attributed to the poor 

electronic conductivity and the inevitable agglomeration phenomenon [26]. 

 

Figure 4. (a) The rate performance data of pure MoS2 NS in range of 0.1–5 A g−1. (b) The cycling 

stability data of pure MoS2 NS at 0.5 A g−1. 

Figure 3. SEM images of (a) CNFs, (b) MoS2@CNFs, (c) MoS2@CNFs@C, and (d) pure MoS2 NS.

As shown in Figure 4, this work studied the potassium storage performances of a pure
MoS2 NS electrode. It can be seen that both the rate and cycling stability performances are
poor. As shown in Figure 4a, with increasing the discharge current density, the specific
capacity of the electrode gradually decreases. When the current density increases to
5 A g−1, the specific capacity is close to 0. It can basically return to the previous state as the
current density returns to 0.2 A g−1. In addition, as shown in Figure 4b, during the first
100 cycles, the specific capacity decreases rapidly. The reason for the poor rate and cycle
stability performances of a pure MoS2 NS electrode can be attributed to the poor electronic
conductivity and the inevitable agglomeration phenomenon [26].
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Figure 4. (a) The rate performance data of pure MoS2 NS in range of 0.1–5 A g−1. (b) The cycling
stability data of pure MoS2 NS at 0.5 A g−1.
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Aiming at this problem, this work proposes structural and carbon modification strate-
gies. Figure 5a shows the rate performance of the MoS2@CNFs and MoS2@CNFs@C
electrodes in the range of 0.5–10 A g−1. As we can see, the MoS2@CNFs@C electrode
displays a better rate performance compared with the MoS2@CNFs electrode. Owing to the
existence of the carbon layer, when the discharge current density increases to more than
5 A g−1, the rate advantage of the MoS2@CNFs@C electrode begins to appear. Its specific
capacity is obviously higher than that of the MoS2@CNFs electrode under the same current
density. Specifically, the MoS2@CNFs@C electrode shows a specific capacity of about 208,
185, 156, 131, and 93 mA h g−1 at 0.5, 1, 2, 5, and 10 A g−1, respectively. In addition, the
advantages of free-standing and the carbon layer structure result in an increasingly excel-
lent cycling stability performance. As shown in Figure 5c, when increasing the number of
cycles, their specific capacities show a downward trend. It is obvious that the MoS2@CNFs
electrode without carbon modification decreases quickly. After 1000 cycles, the capacity
retention of the MoS2@CNFs and the MoS2@CNFs@C electrode is ~54% and ~79%, respec-
tively. The MoS2@CNFs@C electrode shows significantly better cycling stability with the
slowly decreasing GCD curves (shown in Figure 5d). Even after 1800 cycles, it still has a
high-capacity retention of about 75%.
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Figure 5. (a) Rate performance of MoS2@CNFs and MoS2@CNFs@C at different current densities,
(b) with the corresponding GCD curves of MoS2@CNFs@C. (c) Cycling stability performance of
MoS2@CNFs and MoS2@CNFs@C at 1 A g−1, (d) with the corresponding GCD curves of MoS2@CNFs
and MoS2@CNFs@C at the 500th and 1000th cycle.

The enhanced potassium storage performances can be attributed to the unique self-
standing carbon-coated MoS2@CNFs film architectures. Such a structure can effectively
prevent the agglomeration behavior of the MoS2 NS loaded on the CNFs, relax the volume
expansion, and increase the contact area between active material and an electrolyte. The
coated carbon layers can improve the electronic conductivity of the whole electrode. It
can also inhibit structural damage of electrode materials during the charging–discharging
process in PIBs. As a result, the self-standing MoS2@CNFs@C film electrode exhibits the
excellent potassium storage performances.
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4. Conclusions

In summary, based on the potassium storage structure advantages of MoS2, we inge-
niously designed and synthesized a novel self-standing electrode system of MoS2@CNFs@C,
without any additives or metal collectors. The carbon nanofibers derived from electrospin-
ning were used as the self-standing skeleton for the uniform loading place of MoS2 NS. The
soft carbon layer derived from glucose can effectively improve the electronic conductiv-
ity of the whole electrode, and acts as a protective layer for electrodes. Such a structure
exhibits an excellent rate performance (about 208, 185, 156, 131, and 93 mA h g−1 at the
current density of 0.5, 1, 2, 5, and 10 A g−1, respectively,) and cycle stability performance
(a high-capacity retention of ~75% after 1800 cycles at the current density of 1 A g−1) as
for the application in PIBs. It is believed that other types of energy-storage electrodes can
benefit from the similar structure and modification strategies.
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