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Abstract: The effects of the Cu content on the microstructural, mechanical and tribological properties
of the TiAlSiN–Cu coatings were investigated in an effort to improve the wear resistance with a good
fracture toughness for cutting tool applications. A functionally graded TiAlSiN–Cu coating with
various copper (Cu) contents was fabricated by a filtered cathodic arc ion plating technique using four
different (Ti, TiAl2, Ti4Si, and Ti4Cu) targets in an argon-nitrogen atmosphere. The results showed
that the TiAlSiN–Cu coatings are a nanocomposite consisting of (Ti,Al)N nano-crystallites (~5 to
7 nm) embedded in an amorphous matrix, which is a mixture of TiOx, AlOx, SiOx, SiNx, and CuOx

phase. The addition of Cu atoms into the TiAlSiN coatings led to the formation of an amorphous
copper oxide (CuOx) phase in the coatings. The maximum nanohardness (H) of ~46 GPa, H/E ratio of
~0.102, and adhesion bonding strength between coating and substrate of ~60 N (LC2) were obtained
at a Cu content ranging from 1.02 to 2.92 at.% in the TiAlSiN–Cu coatings. The coating with the
lowest friction coefficient and best wear resistance was also obtained at a Cu content of 2.92 at.%. The
formation of the amorphous CuOx phase during coating growth or sliding test played a key role
as a smooth solid-lubricant layer, and reduced the average friction coefficient (~0.46) and wear rate
(~10 × 10−6 mm3/N·m).

Keywords: TiAlSiN–Cu; copper addition; CuOx; functionally graded coatings; superhard nanocom-
posite; wear resistance

1. Introduction

In the last few decades, various ternary coatings based on Ti–X–N and Cr–X–N systems
have been widely explored with various deposition techniques and used in cutting tools as
wear resistance protection due to their high hardness, high chemical stability, and excellent
oxidation resistance [1,2]. However, the ternary Ti–X–N and Cr–X–N coatings prepared by
a conventional process with low plasma ion energies or ion bombardments often showed
a columnar structure and have a high friction coefficient [3]. In the various hard coating
processes, the cathodic arc ion plating technique has attractive properties for preparing hard
coatings, such as good adhesion and high deposition rates, and is characterized by a high
ionization coupling with high plasma ion energies and a high current density compared
with other conventional processes [4].

Recently, nanocomposite coatings are normally formed from ternary or higher order
systems and comprise at least two immiscible phases: two nanocrystalline phases or, more
commonly, an amorphous phase surrounding the nanocrystallites of a secondary phase.
The most interesting and extensively investigated nanocomposite coatings are ternary,
quaternary or even more complex systems, with nanocrystalline (nc-) grains of hard transi-
tion metal-nitrides, carbides, borides, oxides, or silicides surrounded by amorphous (a-)
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matrices [2]. In addition, there have been extensive efforts to extend the ternary coating
systems to quaternary ones in order to combine the favorable properties of each ternary
system. In our previous studies, various quaternary coating systems, e.g., TiAlSiN [5],
TiBCN [6], CrAlSiN [7], CrSiCN [8], CrAlMoN [9], and AlCrVN [10], etc., have been sys-
tematically investigated in terms of a multi-functional nanocomposite coating consisting of
nano-sized metal nitride (referred to as nc-MeN) hard phases (e.g., TiN, TiC, TiB2, CrN, etc)
and an amorphous(a-) matrix (e.g., a-Si3N4, a-BN, a-C, etc). The incorporation of alloying
elements affects the grain size, morphology, texture, chemical and phase compositions of
the nanocomposite coatings [11,12]. Alloying elements also change the volume fractions
of the nanocrystalline and amorphous; all these factors strongly influence the obtained
mechanical and tribological properties of the coatings [7,12]. It was confirmed that most of
the above quaternary coatings showed a superior hardness (>40 GPa, i.e., superhardness),
excellent oxidation resistance (>900 ◦C), and good tribological properties [5,7]. Despite
the combination of excellent properties, it was also found that they have a limitation or
disadvantage regarding coating toughness [13,14]. High internal residual stress in the
coatings often makes coated tools to lower tool lifetime during which they are applied to
cutting machining [15].

More recently, in order to enhance the coating toughness, some soft metals, e.g., V, Ag,
Cu, Mo, etc., have been added as a free or second phase into the grains or grain-boundaries
and formed an adaptive nanocomposite structure such as nc-MeN/metal or amorphous
phase [16–18]. Thus, these approaches and developments not only enhanced the fracture
toughness of the coatings by adding a small amount of soft metals, but also provided a
lubricating effect by the out-diffusion of soft metals at elevated temperatures [17,18]. These
lubrication properties with the soft metals are due to their low shear strength and high
plasticity. Soft metals such as Cu have been added in Mo–N coatings to form nanocomposite
microstructures to achieve better tribological performance [19–21]. The incorporation of Cu
into TiAlN coatings has also been studied [22]. According to the report, TiAlN–Cu coatings
with about 1.3 at.% Cu can exhibit excellent mechanical properties and can demonstrate an
excellent cutting performance. Yi et al. also found [23] that the addition of Cu(~1.3 at.%)
into the AlTiN coatings resulted in a decrease in its grain size and hardness, and their
turning experiments showed that the additive Cu effectively decreased the turning force,
thereby extending tool lifetimes at various cutting speeds. However, few studies have been
reported on the effect of Cu addition into the quinary coating systems [24,25], especially
for the deposition of nanocomposites with superhard coatings.

Furthermore, in order to counteract brittleness and improve fracture toughness with
high adhesion of the coatings, a functionally graded coating’s (FGC’s) architecture has
been explored. For example, a substrate/Ti–TiN–TiCN–TiC–DLC (outside layer) graded
coating for cutting tools was reported by Voevodin et al. [26]. The FGC’s approach can be
combined with multi-layered nanocomposite architecture to further enhance the coating
fracture toughness and coating performance during cutting applications [27,28].

Therefore, in this work, quinary TiAlSiN–Cu coatings with the FGC’s architecture
were fabricated by the cathodic arc ion plating process with various Cu contents. The
effects of the Cu content on the microstructural, mechanical and tribological properties of
the TiAlSiN–Cu coatings were investigated in an effort to improve the wear resistance with
good fracture toughness for cutting tool applications.

2. Experimental Procedure
2.1. Coating Deposition

TiAlSiN–Cu coatings were deposited onto silicon wafers for microstructural evalua-
tions and WC–Co substrates for mechanical and wear tests by a filtered cathodic arc ion
plating system with argon-nitrogen reactive gases. As shown in Figure 1, four different
targets (TiAl2, Ti4Si, and Ti4Cu alloying targets and pure Ti target) were designed to pre-
pare the TiAlSiN–Cu coatings with various compositions, similar to our previous study
for the design of CrAlTiN–Si nanocomposite coatings [29]. A typical deposition condition
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is summarized in Figure 1b with a cross-sectional SEM image of the TiAlSiN–Cu coat-
ing (Figure 1a). Prior to deposition, all substrates were ultrasonically cleaned in acetone,
ethanol, and de-ionized water for 10, 15 and 10 min, respectively. Substrates were further
cleaned in the deposition chamber by ion bombardment using a bias voltage of −350 V
under an argon atmosphere of 8.8 Pa (65 mTorr) for 30 min. Next, functionally graded
coatings (FGC’s) and substrate/Ti/TiN/TiAlN/TiAlSiN/TiAlSiN–Cu multi-layers were
fabricated, as shown in Figure 1a. Ti/TiN layers were deposited, as an adhesion layer of
about 0.3 µm in thickness, to have a good bond strength between the adhesion layer and
the WC–Co substrate. The supporting TiAlN/TiAlSiN layers for good fracture toughness
of the coatings were then deposited at about 1.25 µm in thickness. The main TiAlSiN–Cu
layer, finally, was deposited with a thickness of approximately 2.0 µm as a functional
coating layer with characteristics of high hardness and excellent wear resistance. Detailed
deposition conditions for each layer were listed in the table, as shown in Figure 1b.
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Figure 1. (a) Cross-sectional SEM micrograph for the functionally graded TiAlSiN–Cu coatings with
multi-layers architecture and (b) typical depositions condition with various target powers by cathodic
arc ion plating system with argon-nitrogen reactive gases.

2.2. Coating Characterisations

The thickness and surface morphology of the coatings were measured using a stylus
profilometer (α-STEP, Tencor-10, KLA, Milpitas, CA, USA) and field emission scanning
electron microscope (FE-SEM, JSM–7000F, JEOL, Tokyo, Japan), respectively. The chemical
compositions were characterized by an electron probe micro-analyzer (EPMA, JXL-8100,
JEOL, Tokyo, Japan). X-ray photoelectron spectroscopy (XPS, ESCALAB 250, Thermo
Fisher Scientific, Waltham, MA, USA) analysis was performed with a monochromatic
Al-Kα X-ray source to characterize the chemical bonding status of the TiAlSiN–Cu coatings.
The atomic force microscope (AFM, Nanoscope IIIa module, Digital Instruments, Santa
Barbara, CA, USA) consisting of a sharp tip (20 nm diameter) attached to a stiff cantilever
was used to measure the surface roughness of the coatings. A high resolution transmission
electron microscope (HRTEM, JEM-2200FS, JEOL, Tokyo, Japan) operated at 200 kV was
used to examine the cross-sectional microstructure of the coatings. Cross-section TEM
samples were prepared from the TiAlSiN–Cu coatings deposited on WC-Co samples using
a focused ion beam (FIB, MI4050, Hitachi, Tokyo, Japan) with a Ga+ liquid metal needle ion
source and acceleration voltage of 30 kV setting in 5 kV steps. Relevant dark-field TEM
(DF-TEM) images, selected-area electron diffraction (SAED) patterns, and high-resolution
TEM (HRTEM) images were obtained to analyze the structural information. An inverse
fast Fourier transform (IFFT) image was also obtained using a Gartan software program
(Digital Micrograph TM, Gartan Inc., Warrendale, PA, USA).

The hardness and Young’s modulus of the coatings were measured using a nanoinden-
ter (Nanoindentation, NHT2, Anton Paar, Graz, Austria) equipped with a Berkovich dia-
mond indenter (elastic modulus E = 1140 GPa, Poisson ratio ν = 0.07 and tip radius = 100 nm)
was used to obtain the values of nanohardness (H) and Young’s modulus (E) of the TiAlSiN–
Cu coatings. The Berkovich tip was calibrated with a fused quartz reference sample. The
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maximum indentation depths were controlled to be less than 10% of the film thickness
to avoid the substrate effect. The effective Young’s modulus (E* = E/(1 − ν2), where ν

is a Poisson ratio of 0.25 for TiN-based coatings) of the coatings were calculated from
the obtained Young’s modulus (E) data. The adhesion strength between the coating and
substrate was measured using an adhesion tester (Scratch tester, JLST022, J&L Tech Co.,
Ansan, Korea). The adhesive failure was classified into four modes in the scratch tests under
progressive load (0 to 120 N). The first critical load (LC1) was referred to as the semicircular
cracks inside the scratch track, whereas the second critical load (LC2) was referred to as the
adhesive chipping at track edges. The critical loads LC3 and LC4 were referred to as the
initial failure of coatings and total failure of coatings with exposed substrates, respectively.
A conventional ball-on-disc friction and wear instrument was used to characterize the
dry friction and wear performance of the TiAlSiN–Cu coatings. The sliding wear and
tribological tests were conducted against Inconel balls (3.0 mm in diameter) with a sliding
speed of 100 rpm, a load of 3 N in ambient room air (~25 ◦C, relative humidity: 40~50%),
and for sliding distances up to 200 m. The surface morphology of the wear track was
investigated by a field emission scanning electron microscope (FE-SEM, JSM–7000F, JEOL,
Tokyo, Japan). To measure the wear volume, the three-dimensional profiles of the wear
tracks were obtained using a white light interferometer (3D profiler, Contour GT-X3, Bruker,
Billerica, MA, USA). The wear rates of the coatings were calculated as the wear volume per
normal load and sliding distance (mm3/N·m).

3. Results and Discussion
3.1. Chemical Compositions and Microstructure

The compositions of TiAlSiN–Cu coatings by EPMA analysis according to the change
of target power were summarized in Table 1. With an increase in target current from
60 A to 100 A of Ti4Cu during deposition, Cu content in the TiAlSiN–Cu coatings was
gradually incorporated from 1.01 to 4.74 at.%. The Ti content also linearly increased from
24.67 to 34.16 at.%. However, the Al and Si contents exhibited an opposite tendency, which
decreased sharply from 15.24 to 6.01 at.% and from 5.04 to 2.12 at.%, respectively. The
N and O contents remained almost constant, which varied in the small range of around
49 at.% and 4.8 at.%, respectively. The oxygen source seems to be delivered from the target
or chamber as an impurity [6].

Table 1. Compositions of the TiAlSiN–Cu coatings fabricated by different target powers.

Sample ID
Target Current (A) Coating Composition (at.%) by EPMA Thickness

(µm)TiAl2 Ti4Si Ti4Cu Ti Al Si N Cu 1 O

TiAlSiN–Cu(4.74 at.%) 50 70 100 34.16 6.01 2.12 48.08 4.74 4.89 3.45
TiAlSiN–Cu(3.85 at.%) 50 70 90 31.12 8.09 2.91 49.01 3.85 5.02 3.51
TiAlSiN–Cu(2.92 at.%) 50 70 80 29.42 10.01 3.05 49.74 2.92 4.86 3.56
TiAlSiN–Cu(1.89 at.%) 50 70 70 26.62 13.56 4.09 48.91 1.89 4.94 3.62
TiAlSiN–Cu(1.01 at.%) 50 70 60 24.67 15.24 5.04 49.23 1.01 4.81 3.58

1 Oxygen source was delivered from the target or chamber as an impurity.

Figure 2 shows the cross-sectional TEM images, corresponding SAED pattern, and IFFT
image of the TiAlSiN–Cu(2.92 at.%) coating. In Figure 2a,b, the coating presented a dense
structure along the growth direction in the dark-field TEM image, and the corresponding
SAED pattern showed a poly-crystalline structure with (111), (200), (220), (311) and (222)
crystal planes. All of the crystal planes were confirmed to have a crystalline (Ti,Al)N
solid-solution phase. No diffraction ring or spot for Cu phase can be observed. Therefore,
it can be suggested that the incorporated Cu atoms existed as an amorphous phase in the
TiAlSiN–Cu coatings. A similar result has been found in the Mo–Cu–V–N coating with
relatively high Cu content (~9 at.%) [30]. On the other hand, Shi et al. found the existence
of a crystalline Cu phase with Cu (111) and Cu (200) planes in the Ti–Al–Si–Cu–N film [24].
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In Figure 2c,d, a high-resolution TEM image and its inverse fast Fourier transform (IFFT)
image exhibited a nanocomposite structure consisting of a large amount of nano-crystallites
(nc-) and a thin layer of amorphous (a-) phases. The lattice spacing of the ordered fringes is
0.242 nm, which is smaller than that (dTiN(111) = 0.244) of the standard TiN. Ti–Al–N that
have been known as a solid-solution, in which Al atoms were substituted for Ti lattice sites
up to 60 at.% [31]. The IFFT image further revealed that the TiAlSiN–Cu(2.92 at.%) coating
has a nanocomposite structure, in which the crystallites exhibited regular and spherical
shapes with a size ranging from 5 to 7 nm in an amorphous matrix.
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To confirm the amorphous phases with detailed bonding status for each element in
the coatings, an XPS analysis was applied to the TiAlSiN–Cu(2.92 at.%) coating, and the
results are shown in Figure 3. The sample was referenced to the C 1s peak at a binding
energy of 284.5 eV [32]. As shown in Figure 3a for Ti 2p, four peaks were observed. The
main peaks at 457.4 and 464.5 eV with a large percentage of area corresponded to the TiN
compound. There was also a small contribution from the titanium oxide (TiOx) phase at
455.2 and 462.1 eV. For the Al 2p region (Figure 3b), two peaks were observed. The main
peak at 74.2 eV with a high area fraction corresponded to the AlN compound. The minor
component at about 75.8 eV corresponds to aluminum oxide (AlOx). For the Si 2p region
(Figure 3c), the silicon binding energy spectrum was also divided into two peaks. The major
peak Si 2p component at about 101.6 eV corresponded to silicon nitride (i.e., SiNx), and a
very weak peak around 103.7 eV corresponding to silicon oxide (SiOx) was observed. Since
no crystalline Si3N4 phase can be identified in the SAED pattern (Figure 2b), it is evident
that the Si3N4 phase in the coatings is in an amorphous state. This result is also in good
agreement with other early studies [5,8]. The TiN, AlN and SiNx compounds were observed
for the N 1s spectrum (Figure 3d). The existence of AlOx, TiOx and SiOx compounds, in the
Figure 3e, was also detected. The peak of TiOx (or CuO) would be overlapped by two peaks
of TiOx and CuOx because the binding energies are too close for the O 1s spectrum. Finally,
for the Cu 2p region (Figure 3f), two peaks located at 952.3 and 932.8 eV were detected. The
major peak Cu 2p component at 932.8 eV corresponded to pure Cu, and a relatively smaller
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peak at 952.3 eV corresponding to non-stoichiometric CuOx was characterized. On the
other hand, Shi et al. reported [33] that the incorporated copper atoms exist individually as
small sized Cu particles instead of combining with other atoms to form any other chemical
bonding (e.g., Cu-N, Cu-O, etc) within the Ti0.43Al0.48Si0.06Cu0.03N coatings. Combined
with the TEM results (Figure 2), it can be concluded that the incorporated Cu atoms were
presented as a phase of amorphous copper oxide (CuOx) or very small nanosized Cu,
smaller than 1 nm, in the grain-boundary region.
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Figure 3. XPS spectrum of (a) Ti 2p, (b) Al 2p, (c) Si 2p, (d) N 1s, (e) O 1s, and (f) Cu 2p or 2p1/2 for
the TiAlSiN–Cu(2.92 at.%) coating.

Atomic force microscopy (AFM) was carried out to observe the surface and to de-
termine the surface roughness of the TiAlSiN–Cu coatings with various Cu contents, as
shown in Figure 4. As the Cu content increased, the surface roughness of the TiAlSiN–Cu
coatings gradually decreased from 80.2 to 54.4 nm. This result can be coupled with the
TEM analysis shown in Figure 2, in that segregated amorphous phases in the TiAlSiN–Cu
coatings resulted in a grain size refinement of (Ti,Al)N crystallites during coating growth.
Therefore, the nano-sized crystallites with regular and spherical shapes affected the surface
morphology of the TiAlSiN–Cu coatings. In addition, according to a previous report by Lin
et al. [8], when high ion energy and ion flux bombardment are used in the coating growth,
the grain size and the surface roughness of the films can be reduced. The morphology
of the TiAlSiN–Cu(1.01 at.%) coating indicates relatively large and stubby grooves with
separated grains. This would be related to a relatively large average grain size and porous
structure with a surface roughness of about 80.2 nm. On the other hand, the coatings with
contents above 2.92 at.% Cu have short and sharp grooves with smaller grains, which can
be related to grain size refinement due to more amorphous volume fraction in the coatings,
thereby showing a more dense microstructure (Figure 4c,d).
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coating deposited on a silicon wafer substrate.

Based on the results from TEM, XPS and AFM analyses, it is concluded that the
TiAlSiN–Cu coatings have a nanocomposite microstructure consisting of (Ti,Al)N nano-
crystallites embedded in an amorphous matrix, which is a mixture of the TiOx, AlOx, SiOx,
SiNx, and CuOx phases.

3.2. Mechanical and Tribological Properties of the Coatings

Nanohardness, Young’s modulus, H/E* ratio, and H3/E*2 value of the TiAlSiN–Cu
coatings as a function of Cu content were plotted in Figure 5. As shown in Figure 5a,
the nanohardness of the TiAlSiN–Cu coatings decreased from ~47 GPa at 1.01 at.% to
~34 GPa at 4.74 at.% Cu content. The nanohardness was almost constant at about 45 GPa
ranging from 1.89 to 2.92 at.% Cu content and decreased again with a further increase in
Cu content to about 34 GPa at a Cu content of about 4.74 at.%. The TiAlSiN–Cu coatings
with Cu content from 1.01 at.% to 2.92 at.% exhibited a superhardness (>40 GPa) of about
45 GPa. The reason for maintaining the superhardness of the TiAlSiN–Cu coatings with a
small amount of Cu is most likely the result of grain boundary hardening, created by the
strong cohesive energy of inter-phase boundaries in terms of the Griffith criterion [34] and
Hall-Patch relation derived from grain size refinement [35]. It would also result from the
uniform distribution of the (Ti,Al)N nanocrystallites embedded in an amorphous matrix
(e.g SiNx, CuOx, etc), as characterized in the microstructure section (Figures 2, 3, and 4).
With the further increasing of Cu content, even though the grain size further decreased, the
nanohardness and Young’s modulus suddenly decreased. The decrease in the hardness and
Young’s modulus of the coatings appears to be affected by increasing amorphous volume
fraction in the TiAlSiN–Cu coatings.
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Figure 5. (a) Nanohardness (H) and effective Young’s modulus (E*) and (b) H/E* ratio and H3/E*2

value of the TiAlSiN–Cu coatings as a function of Cu content.

In addition, H/E* ratio (so-called ‘elastic strain to failure’) and H3/E*2 value (the
so-called ’resistance of materials against plastic deformation’) were calculated from the
obtained hardness (H) and effective Young’s modulus (E*). They are considered as good
indicators in the determination of the resistance of coatings to cracking and wear [8]. The
H/E* ratio, in particular, is often proposed as a key parameter to indirectly estimate the
wear resistance and fracture toughness of the hard and tribological coatings [13,36]. As
the Cu content increased, the H/E* value of TiAlSiN–Cu coatings also increased from
~0.090 to 0.102. The H/E* value was also almost constant at about 0.102, ranging from
1.89 to 2.92 at.% Cu content and decreased again with a further increase in Cu content to
about 0.095 at 4.74 at.% Cu content. The TiAlSiN–Cu coatings with Cu content from 1.89 to
2.92 at.% exhibited a maximum value of about 0.102. Musil et al. have reported correlations
between mechanical properties (H, E*, We and H/E ratio) on their Al–Cu–O nanocomposite
coatings [13]. The Al–Cu–O coatings with H/E* ≥ 0.1, which is a critical value to show an
enhanced resistance of coating to cracking, had a highly elastic recovery without any cracks
after the diamond indenter load test. However, the coatings with H/E ≤ 0.1 exhibited
relatively low elastic recovery with many cracks on the corner of the indenters. From the
results in Figure 5, it can be suggested that the TiAlSiN–Cu coatings with a Cu content of
1.89 to 2.92 at.% will show better wear resistance and fracture toughness.

Furthermore, in order to counteract brittleness and improve fracture toughness with a
high adhesion strength between the coatings and substrates, a functionally graded coating’s
(FGC’s) architecture (Ti/TiN/TiAlN/TiAlSiN/TiAlSiN–Cu multi-layers) was applied to
all TiAlSiN–Cu coatings in this work. Figure 6 shows critical loads and their optical
micrographs of the scratch tracks for the TiAlSiN–Cu coatings on WC–Co substrates with
various Cu contents. The adhesion strength between hard coatings and substrates plays
an important role in the coating performance in industrial applications. Stallard et al.
reported [37] that the adhesive failure strength can be classified into four modes (LC1 to
LC4) in the scratch tests under a progressive load. In general, the adhesive failure mode
LC2 is often used for determining adhesion strength. In Figure 6, when the Cu content
increased from 1.01 to 2.92 at.%, the adhesion strength (LC2) of the TiAlSiN–Cu coatings
increased slightly from 49 to 60 N, and then decreased again to around 40 N when Cu
content increased to 5.0 at.%. The improvement of adhesion strength with the variation of
Cu content would mainly be attributed to intrinsic stress release due to the soft metallic Cu
and amorphous CuOx phase in the grain boundary during coating growth with adhesion
and supporting layers. It was also reported that the improvement in adhesion strength of
the hard coatings can be attributed to the combined effects of H/E ratio and appropriate
compressive residual stress [38]. Similar results were also found in other’s studies [22,30].
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Figure 6. (a) Critical loads and (b) their optical micrographs of the scratch tracks for the TiAlSiN–Cu
coatings on WC–Co substrates with various Cu contents.

Figure 7 provides the friction coefficient of the TiAlSiN–Cu coatings with various
Cu contents against an Inconel ball. The friction coefficient of the TiAlSiN–Cu coatings
gradually decreased by increasing the Cu content, and showed a minimum value of
approximately 0.46 at a Cu content of 2.92 at.%, and then rebounded with the further
increase in the Cu content above 4.74 at.%. The improvement of friction coefficient in the
TiAlSiN–Cu coatings with 2.92 at.% Cu is most likely caused by a very smooth surface
morphology, as shown in AFM images (Figure 4c), due to the grain size refinement with
nanocrystals of 5–7 nm in size embedded in the amorphous matrix. Another possible
reason is related to the formation of smooth solid-lubricant layers formed by tribo-chemical
reactions during the sliding tests. For example, soft metallic copper compounds such as
pure Cu particles and amorphous CuOx in the coatings react with ambient H2O and oxygen
to produce CuOx or Cu(OH)x tribo-layers. These tribo-oxides, as a good potential solid
lubricant, have been used to effectively reduce friction and wear at extreme conditions [39].
Copper oxide (CuO, Tm: 1326 °C) is reported to be a softened oxide [40] and to be more
easily sheared than the metals and ceramic nitrides [41]. Yao et al. found [42] that the
incorporation of the CuO compound, which was formed on worn surfaces by a tribo-
chemical reaction at 800°C, can reduce the friction coefficient to about 0.16. Figure 7b
shows the optical micrograph of wear track of the TiAlSiN–Cu coatings with various Cu
contents. The surface morphologies of the wear tracks for the TiAlSiN–Cu coatings with
Cu content from 1.89 to 2.92 at.% were smooth, and the width of the wear tracks were
narrow. From a practical view, these morphologies probably will result in a good wear
resistance of the coatings. On the other hand, the surface morphology for the TiAlSiN–
Cu(4.74 at.%) coating was relatively rough and the width of the wear tracks was wide. This
result indicates that the relatively soft TiAlSiN–Cu coatings with low H/E* value have an
abrasive wear behavior.

Figure 8 represents the coating thickness, wear depth, and wear rate of the TiAlSiN–Cu
coatings after the wear sliding tests. The different wear depths of the TiAlSiN–Cu coatings
could be due to the different friction and wear behaviors, which could directly influence the
wear rate of the coatings, as shown in Figure 8b. The wear rate of the TiAlSiN–Cu coatings
was slightly decreased from 13 × 10−6 to 10 × 10−6 mm3/(N·m) with the increasing of the
Cu content from 1.01 to 2.92 at.%, which would be due to the initial increase of Cu content
in the coatings and the improvement of mechanical properties (H, H/E*, and H3/E*2).
Pappacena et al. reported [21] that the wear rate also can be correlated to the adhesion
energy and the residual stress with the initial copper content in their MoN/Cu composite
coatings. In addition, the improvement in wear resistance of the TiAlSiN–Cu(1.01 to 2.92
at.%) coatings could be attributed to the increase in the lubricious oxides of CuOx, AlOx,
and SiOx formed during tribo-oxidation, which usually leads to lower friction coefficients
and wear resistance [40]. On the other hand, at the Cu content of above 3.85 at.%, the wear
rate of the TiAlSiN–Cu coatings steeply increased to about 25 × 10−6 mm3/(N·m). This
large increase in wear rate is due to the abrasive wear behavior between the relatively
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soft coating with lower hardness (~34 GPa) and the Inconel ball, and is also due to the
diminishment of the mechanical properties of the hardness, H/E* ratio, and H3/E*2 [8].
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Figure 7. (a) Friction coefficient and (b) their SEM and 3D profiling image of the wear track for the
TiAlSiN–Cu coatings with various Cu contents against the Inconel ball. (Test conditions: Load, 3 N;
ball dia., 3 mm; track dia., 7 mm; linear sliding speed, 100 rpm; room temp.).
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Figure 8. (a) Coating thickness, wear depth, and (b) wear rate of the TiAlSiN–Cu coatings as a
function of Cu content after sliding tests.

Therefore, based on the results of nanohardness, Young’s modulus, H/E*, H3/E*2,
and adhesion strength of the coatings, the TiAlSiN–Cu coatings with Cu content up to
about 3 at.% could provide superior wear resistance with higher fracture toughness than
those of the TiAlSiN–Cu coatings with Cu contents above 4 at.%.

4. Conclusions

In this work, functionally graded TiAlSiN–Cu coatings with different Cu contents
were fabricated by a filtered cathodic arc ion plating system using Ti, TiAl2, Ti4Si, and
Ti4Cu alloying targets in an argon-nitrogen atmosphere. The microstructural, mechanical
and tribological properties were investigated with various characterizations. The following
conclusions were observed:

(1) It was revealed that the TiAlSiN–Cu coatings were a nanocomposite consisting of
nano-sized (Ti,Al)N crystallites (~5 to 7 nm in size) embedded in an amorphous matrix,
which is a mixture of the TiOx, AlOx, SiOx, SiNx, and CuOx phase. The addition of Cu
atoms into the TiAlSiN coatings led to the formation of an amorphous copper oxide
(CuOx) phase in the amorphous matrix.
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(2) The TiAlSiN–Cu coatings with Cu content up to about 3 at.% presented high hardness
(~46 GPa), high H/E* (~0.102) and H3/E*2 (~0.50 GPa) values regarding the coating’s
fracture toughness, and excellent adhesion strength (LC2, ~60 N).

(3) The addition of Cu atoms also improved the tribological property and wear resistance.
The friction coefficient of the TiAlSiN–Cu coatings gradually decreased by increasing
the Cu content and showed a minimum value of ~0.46 at a Cu content of 2.92 at.%.
The formation of a copper oxide (CuOx) phase during coating growth or a sliding test
played a key role as smooth solid-lubricant layers, and reduced the average friction
coefficient (~0.46) and wear rate (~10 × 10−6 mm3/N·m).

(4) Such a good combination of mechanical and tribological properties of the TiAlSiN–Cu
coatings with Cu content up to about 3 at.% would indicate the considerable potential
of the coatings for applications in mechanical components. However, further studies
are necessary to investigate the oxidation properties of these coatings.
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