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Abstract: Tin sulfide (SnS) thin films were deposited by the chemical bath deposition technique. The
used procedure allows us to obtain orthorhombic SnS in 3.5 h and achieve thicknesses of 390 nm.
We study the influence of deposition times, percentage of Sn precursor, and post-annealing on the
structural and optical properties. The X-ray diffraction measurements of SnS films prepared at a
deposition time of 3 h showed orthorhombic structure with characteristic peaks of SnS2. However,
increasing the deposition time and the Sn precursor, the orthorhombic SnS phase in these samples
becomes predominant. Thin-film morphologies and thicknesses were identified by scanning electron
microscopy (SEM). An increase in bandgap from 1.41 eV to 1.56 eV was observed by increasing Sn
precursor. The optical properties remain constant after air annealing of 285 ◦C. Low-temperature
photoluminescence spectra show emission bands at 2.5 eV attributed to the presence of SO2. Other
deep level transitions were observed at about 0.9 eV, probably due to oxygen.

Keywords: SnS thin film; chemical bath deposition; crystal structure; optical properties

1. Introduction

Tin sulfide (SnS) is considered a promising absorber layer for Cd-free thin-film so-
lar cells due to its excellent optoelectronic properties. Moreover, SnS is a binary com-
pound semiconductor composed of non-toxic and earth-abundant materials. Its bandgap
(1.3–1.4 eV) is near to the optimum range of 1.3–1.5 eV, and its absorption coefficient is
appreciably high in the visible region (>104 cm−1) [1,2]. Although its theoretical energy con-
version efficiency (η) is nearly 32%, at par with crystalline silicon solar cells [3], at present,
the conversion efficiency record of SnS based solar cells is only 4.63% [4]. Therefore, a better
understanding of the structural, chemical, and physical characteristics of SnS is required to
achieve higher efficiencies.

The SnS compound usually possesses an orthorhombic crystal structure at room tem-
perature and pressure with a = 0.432, b = 1.12, and c = 0.398 nm (JCPDS card No: 39-0354)
lattice parameters. The different elemental compositions of tin and sulfur can form sev-
eral binary compounds such as SnS, SnS2, Sn2S3, and other phases [5]. The simultaneous
presence of these phases in tin sulfide films can affect their electrical and optical character-
istics. For example, when a p-type phase (SnS) and an n-type phase (SnS2, Sn2S3,or both
simultaneously) co-exist could result in an inversion of the conductivity type [6].

SnS thin films have been fabricated by different methods such as thermal evapora-
tion [7], radio frequency (RF) sputtering [8], electron beam evaporation [9], chemical vapor
deposition [10], successive ionic layer deposition [11], atomic layer deposition (ALD) [4],
electrochemical deposition [12,13], and chemical spray pyrolysis [14,15]. To date, the best
reported efficiency has been by the slow and expensive atomic layer deposition (ALD)

Coatings 2022, 12, 283. https://doi.org/10.3390/coatings12020283 https://www.mdpi.com/journal/coatings

https://doi.org/10.3390/coatings12020283
https://doi.org/10.3390/coatings12020283
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/coatings
https://www.mdpi.com
https://orcid.org/0000-0001-7284-0373
https://doi.org/10.3390/coatings12020283
https://www.mdpi.com/journal/coatings
https://www.mdpi.com/article/10.3390/coatings12020283?type=check_update&version=1


Coatings 2022, 12, 283 2 of 9

process. Chemical bath deposition (CBD) has been reported to be a promising alternative
method [16–22] because of its simplicity, low cost, and the possibility of obtaining large-area
films. In CBD, the formation of the film takes place when the ionic product exceeds the
solubility product. However, optimization of growth conditions, such as deposition time
and solution concentration, is essential to avoid unnecessary precipitation, loss of materials
during the deposition process, and the appearance of unwanted secondary phases of tin
sulfide [23].

This work uses a method first reported in 2021 [24] that allows us to grow orthorhombic
SnS thin films of 390 nm in 3.5 h. There are reported methods to obtain orthorhombic SnS
by CBD with deposition times of 8, 17, 24, 30, and up to 40 h [20,21,25–27] and just a few
with times below 6 h [28–30]. We study the effect of deposition time and percentage of Sn
precursor on structural and optical properties of SnS thin films. Our main goal is to study
the conditions in the growth process by CBD of tin monosulfide (SnS) thin film to obtain
the best quality of the film and avoid post-growth treatments.

This work is based on a method first reported in 2021 [24], which focuses on studying
the PH effect on the chemical deposited SnS films, using a deposition time of 3 h. It is
important to note that the reported methods to obtain orthorhombic SnS by CBD use
deposition times of 8, 17, 24, 30, and up to 40 h [20,21,25–27] and just a few use times
below 6 h [28–30]. In the work of Higareda et al. [24], they observed a sulfur excess in the
chemical solution when the amount of tin precursor was varied in percentages lower than
5%. Thus, to obtain SnS thin films with better crystallinity and stoichiometry, we focused on
investigating the effect of the tin precursor increase. Additionally, we varied the deposition
time in order to obtain thicker layers. The used procedure allowed us to grow single-phase
orthorhombic SnS thin films of 390 nm in 3.5 h. The structural, morphological, and optical
properties of SnS thin films were studied as a function of deposition time, percentage of Sn
precursor, and thermal treatments. The photoluminescence technique was used to identify
recombination mechanisms that could affect the performance of the SnS thin film as an
absorber layer in a solar cell.

2. Materials and Methods

SnS thin films were prepared using the chemical bath that contained 0.564 g of tin
chloride (SnCl2·H2O) as the tin precursor, 1.697 g of ammonium citrate (C6H17N3O7) as
complexing agent, and 0.617 g of sodium thiosulfate (Na2S2O3·5H2O) as sodium precursor.

Soda-lime glasses used as substrates were cleaned in subsequent ultrasonic baths
(liquid soap, deionized water, acetone, and methanol). Afterwards, they were rinsed with
deionized water and dried with nitrogen. Initially, the chemical bath showed a dark brown
appearance and changed to dark brown with increasing time. The deposition time and
tin precursor concentration used in the deposition process is shown in Table 1. The most
homogeneous and hole-free deposited faces of the substrates were selected using a light
source behind the sample and varying the viewing angle. The selected face was cleaned
with deionized water for further characterization.

Table 1. SnS thin-film samples conditions prepared by CBD and crystallite estimated size.

Samples
Growth Parameters Crystallographic Direction (111)

Time (h) SnCl2 Concentration (%) 2θ (◦) a (◦) D (nm)

S1 3.0 100 31.54 0.41 72
S2 3.5 100 31.52 0.36 82
S3 3.5 150 31.54 0.36 81

Post-growth thermal annealing was performed in all samples to verify the thermal
stability. The parameters for the annealing were defined as presented by Ristov et al. [31],
heating the samples to 285 ◦C for 30 min in an air atmosphere.

The crystal structure was characterized by grazing incidence X-ray diffraction (XRD,
SIEMENS, Munich, Germany). Spectra were obtained using a Siemens D5000 diffractometer
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with an incident angle of 1 degree; the measurement was performed in 2θ sweeping
from 10 to 80 degrees with a scan speed of 0.02◦/3 s using a Cu kα tube (λ = 1.5406 Å).
Observations of the surface morphology were carried out using a JEOL JSM-7600F scanning
electron microscope (SEM, JEOL, Tokio, Japan) with 2 kV of accelerating voltage. The
optical transmittance measurements were made using a JASCO 670 spectrophotometer
(JASCO, Portland, OR, USA). PL measurements were carried out at 20 K using a closed
cycle He cryostat (SHI-APD Cryogenics Inc., London, UK). The samples were measured in
the UV-VIS region using a 442 nm line of HeCd laser as the excitation source. In this case,
the PL signal was detected using HRD-100 Jobin–Yvon double monochromator (HORIBA,
Kyoto, Japan) and Ag–Cs–O Hamamatsu photomultiplier (HAMAMATSU, Hamamatsu,
Japan). The infrared sample emission was obtained using a 488 nm Argon ion laser line
and recorded by Acton monochromator (Laser physics, West Jordan, UT, USA) and InGaAs
detector (HORIBA, Kyoto, Japan).

3. Results and Discussion
3.1. Structural Studies

Figure 1 shows the XRD pattern of the samples, which agrees with the typically
reported structure of the orthorhombic SnS phase (reference COD #96-152-7226). Here, we
could not notice any peak related to the trigonal SnS2 secondary phase (reference COD
# 96-703-8081), except in sample S1, where a low-intensity peak in the (001) direction
is observed [10,32]. In the figure, it can be seen that as the deposition time and the
concentration of the Sn precursor increased, the peaks corresponding to the orthorhombic
SnS phase were further accentuated. These effects, produced by the change of the growth
conditions, could be indicating an improvement in the crystalline quality of the sample.

We determined the crystallites size (D) in the principal crystallographic direction (111)
using Scherrer’s formula:

D =
K·λ

a·cos θ
(1)

where K is the form factor, λ is the wavelength of the X-ray source, θ is the angle of the
Bragg reflection, and a is the full width at half medium (FWHM) of the diffraction peak in
radians. In our case, the form factor used was K = 0.9 and λ = 1.5418 Å corresponding to
the Kα line of copper. The results obtained can be seen in Table 1. We can observe that as
the chemical bath time increased, the crystallite size also increased. While increasing the
concentration of the Sn precursor, the crystallite size remained practically constant. This
indicates that increasing the Sn precursor concentration during growth improves the quality
of the crystalline structure, and the SnS orthorhombic phase formation is promoted. The
diffractograms of sample S3 before and after the thermal annealing is shown in Figure 1.
It can be noted that after the annealing, the XRD pattern remains almost unchanged,
indicating that the main phase of SnS was not affected. This result agrees with the reported
results in previous studies [24].

3.2. Morphological Studies

The thin films’ morphology was analyzed using scanning electron microscopy. The
SEM image of sample S3, before and after the thermal annealing, is shown in Figure 2a,b.
We can see elongated structures formed by smaller grains with an average size between
100 nm and 120 nm, respectively. This morphology has been previously reported for SnS
thin films [33,34]. The figure shows a certain degree of coalescence between the grains and
a compact bulk.

It should be noted that the annealing of the samples slightly increased the coalescence
of the grains but did not affect the rest of the morphological characteristics of the samples.
The thicknesses obtained from cross-sectional SEM images were 373 nm and 390 nm for
S2 and S3 (see Figure 2c,d). For sample S1, the thickness value could not be obtained due
to the low thickness of the sample, which was identified visually.
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Figure 2. SEM micrograph for sample S3 (a) with and (b) without port-annealing and cross-section
of samples (c) S2 and (d) S3.

3.3. Optical Studies

To obtain the bandgap values, the optical transmittance for the as-deposited and
annealed SnS films, samples S2 and S3, was recorded in the 400–1100 nm wavelength.
Figure 3a shows the optical transmittance for sample S3 and the shift in the absorption
edge after the annealing. Figure 3b,c shows the Tauc plot for sample S3 to determine the
optical bandgap, using the expression:

(αhv)2 = A
(
hv− Eg

)
(2)

where ∝ is the absorption coefficient, Eg is the bandgap energy, hν is the photon energy,
and A is a constant. A linear region in the Tauc plot indicates direct gap material, with
an estimated energy gap of 1.56 eV and 1.53 eV for sample S3 before and after annealing,
respectively. The same procedure was applied to sample S2.
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Table 2 summarizes the bandgap energies obtained for samples S2 and S3. In the case
of sample S1, a conclusive result in the transmittance measurement could not be obtained
due to the low sample thickness. Because of the lack of bandgap and thickness data for
sample S1, we continue the subsequent optical studies only with S2 and S3.

Table 2. Optical bandgap of SnS thin films before and after air annealing.

Sample
Eg (eV)

As-Growth T-Annealed

S2 1.41 ± 0.01 1.42 ± 0.01
S3 1.56 ± 0.01 1.53 ± 0.01

The bandgap energy obtained for sample S2 (1.41 eV) agrees with the values reported
in the literature for orthorhombic SnS deposits [2]. However, for sample S3, the bandgap
energy is slightly higher. This can be explained considering that sample S3 is richer in
Sn, which favors the formation of SnO2 due to the greater availability of Sn. Therefore,
the optical bandgap of sample S3 increases (1.56 eV). Other authors have reported similar
behavior after air annealing of SnS thin films [35]. This result is supported by the PL
measurements presented in the Section 4 in Figure 4a. Table 2 also shows that heat treatment
in both samples S2 and S3 does not modify its bandgap energy. They are similar if we
consider the error values. This indicates that both samples are thermally stable, maintaining
their optical properties.
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Low-temperature PL spectroscopy was used to investigate the radiative recombination
processes of SnS films. Most of the PL studies of SnS films reported in the literature are
carried out in the visible range of the spectrum. However, there are very few reports on
photoluminescence in the infrared region. Figure 4a shows PL spectra of S2 and S3 before
and after annealing in the UV–Vis region with photon excitation at 442 nm. A broad and
asymmetric band was observed around 2.50 eV for both samples. We associated this band
with the SnO2 presence [31,36,37]. The peak corresponding to the Sn-rich sample, S3, has
a higher PL intensity than S2 due to the greater formation of the oxide compound, as
explained previously. After annealing, performed in an air atmosphere, the transformation
of SnS into SnO2 is promoted by following the reaction [34].

2SnS + O2 → SnO2 + SnS2 (3)

The formation of SnO2 can be explained by the oxidation of Sn(II) to Sn(IV).
We performed a PL study between 1000–1800 nm to observe deep-level states in

SnS samples. Figure 4b displays PL spectra in the infrared region for samples excited
at 488 nm. We can see a multi-peak emission between 0.90 eV and 0.99 eV. The bands’
intensity increased after annealing, suggesting that these emissions may be due to deep
oxygen-related levels. This behavior was observed by Sajeesh et al. [33], whose reported
deep-level transitions were attributed to the presence of oxygen. According to the results
presented, sample S3, compared to samples S1 and S2, would be a better candidate for
use in solar cells due to its better crystallinity of orthorhombic single phase without the
need for post-deposition heat treatment. In addition, as mentioned above, deposition times
from 6 h to 30 h have been reported in the literature. We use a method that allows us to
grow SnS with thickness values close to that used in the recorded cell in shorter times.
This has allowed us to work on bilayers for future applications in photovoltaic structures.
Further studies are currently underway to determine the nature of the emissions found in
the infrared range to optimize the film’s properties for use in photovoltaic structures.

4. Conclusions

SnS thin films with a thickness of 390 nm are deposited in 3.5 h at room temperature.
The XRD analysis reveals orthorhombic structures with a low presence of the SnS2 phase.
The study showed that as the deposition time and the concentration of the Sn precursor in
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the bath increased, the peaks corresponding to the orthorhombic SnS phase were further
accentuated, indicating an improvement in the crystalline quality of the sample. However,
greater availability of Sn leads to a more significant formation of SnO2 and a slightly higher
optical bandgap. SEM images show that deposited films are homogenous, formed by
smaller grains with an average size between 100 nm and 120 nm. PL characterization
confirmed the presence of SnO2 through a band located around 2.4 eV, whose intensity
increases with thermal treatment in air. PL emission bands were found in the infrared
region, probably due to deep levels related to oxygen.
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