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Abstract: In the current study, since nanofluids have a high thermal resistance, and because non-
Newtonian (Ree-Eyring) fluid movement on a stretching sheet by means of suspended nanoparticles
AA7072-AA7075 is used, the proposed mathematical model takes into account the influence of
magnetic dipoles and the Koo-Kleinstreuer model. The Cattaneo-Christov model is used to calculate
heat transfer in a two-dimensional flow of Ree-Eyring nanofluid across a stretching sheet, and
viscous dissipation is taken into account. The base liquid water with suspended nanoparticles
AA7072-AA7075 is considered in this study. The PDEs are converted into ODEs by exhausting
similarity transformations. The numerical solution of the altered equations is then performed utilising
the HAM. To examine the performance of velocity, temperature profiles, concentration profiles, skin
friction, the Nusselt number, and the Sherwood number, a graphical analysis is carried out for
various parameters. The new model’s key conclusions are that the AA7075 alloy outperforms the
AA7072 alloy in terms of thermal performance as the volume fraction and ferro-magnetic interaction
constraint rise. Additionally, the rate of heat transmission and the skin friction coefficient improve as
the volume fraction rises.

Keywords: Ree-Eyring nanofluid; magnetic dipole; viscous dissipation; Cattaneo-Christov model;
Koo-Kleinstreuer model; chemical reaction

1. Introduction

The progressive thermal patterns of nanoparticles have an extensive range of ex-
ploitations in the engineering, industrial, technical, and biomedical fields. Many thermal
engineering and industrial processes employ nanofluids to increase their thermal efficiency.
In recent decades, dynamic scientists have shown interest in nanoparticles with a small
size (1–100 nm). Nanofluids are nanoparticle suspensions in base fluids. It is noted that
these particles do not change the reaction process, but they do improve the fundamental
thermal processes of base liquids at the peak level. Nanoparticles are used in sophisticated
thermal extrusion systems, engineering heating devices, biomedical applications, cancer
treatments, the chemotherapy process, energy resources, heat exchangers, manufacturing
processes, thermal management equipment, and many other applications. Usually, these
nanoparticles undergo aggregation so that a fluid can flow through a porous medium
as a completely interconnected network (ideal porous pipe), formed by the constricted
channel between each pore. Choi [1] proposed a ground-breaking study on the thermal
characteristics of nanofluids, prompting other researchers to pay attention to the subject.
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Here, we briefly highlight certain contributions due to innovative research on the subject.
Kishan and Deepa [2] studied the immersion of nanoparticles in micropolar liquid and
the stagnation point flow in a porous region. In a nanofluid material flow constrained by
a vertical surface, Alim et al. [3] used the Joule heating process. Sheikholeslami et al. [4]
conducted research on CuO nanoparticles contained in a heated chamber with a sensodial
wall. The heat process in nanomaterial within a micro-channel with a sinusoidal double
layer was studied by He et al. [5]. Mahdavi et al. [6] used nanoparticles to identify cooling
applications in a hot jet surface. Abdelsalam et al. [7] addressed the thermal repercussions
of hybrid nanofluids in blood flow when electro-osmotic forces are present. Nadeem
et al. [8] used dual solution simulations to visualise the slip characteristics of nanofluid
flow. Khan et al. [9] concentrated on the thermal characteristics of hybrid nanofluids in
unsteady flow. Abbas et al. [10] investigated the influence of time-dependent viscosity on
nanofluid flow over the Riga surface. Awais et al. [11] used the KKL model to investigate
heat transfer in a suspension of nanomaterials containing (CuO and Al2O3).

Nanomaterials are important because of their high thermal and mechanical properties.
The characteristics of the nanoliquids formed by each nanomaterial are considerably altered
by these materials. Among nanomaterials, there is a substance known as aluminium alloy,
in which aluminium plays a major role. Heat treatable and non-heat treatable alloys are the
two main types of aluminium alloys. Aluminium alloys are widely utilised in the construc-
tion, testing, and production of spacecraft, aircraft parts, and other structures. Researchers
have investigated numerous flow models consisting of aluminium alloys and discovered
remarkable thermal transport behaviour due to the improved heat transport features of
AA7072 and AA7075 aluminium alloys. Sandeep and Animasaun [12] reported an exami-
nation of heat transfer in nanoliquids consisting of AA7072 and AA7075 aluminium alloys
while considering the impact of varying Lorentz forces. They discovered that nanoliquid
made of AA7075 alloy is superior in terms of heat transmission to nanoliquid made of
AA7072. Kandasamy at al. [13] considered the electric field strength for the analysis of heat
transport in magnetised AA7075 alloys. Tlili et al. [14] investigated three-dimensional heat
transfer characteristics in the hybrid colloidal model AA7072-AA7075/Methanol under
various velocity conditions. They used a numerical approach to the model and described
the results in terms of flow regimes.

Since MHD is commonly used in numerous fields, such as the polymer and petroleum
industries, a significant amount of thought has been given to the approach of magnetic
fields in liquid flow in recent decades. As we know that the pace of cooling is even more
essential than in the standard processes, numerous fabrication processes have been used
to regulate the rate of cooling for magneto-hydrodynamic liquids. Unifying metals in
electric heaters, metal casting, and gem creating are some of the other functions of magneto-
hydrodynamics. It also assists in the cooling of the atomic reactor’s internal dividers.
Magneto-hydrodynamic flows were first sculpted and highly valued in biodesign because
they are used in a variety of symptomatic kinds of sickness. In this approach, studying
magneto-hydrodynamic flow has a significant impact on several scientific fields. The
convective circumstances for MHD Jeffrey flow on an elaborated sheet were examined by
Ahmad et al. [15]. Khan et al. [16] studied MHD Falknar-Skan flow through a permeable
material with a convective boundary condition. Malik et al. [17] explored MHD hyperbolic
flow through an expanded cylinder via numerical methodology, the Kellor-Box method. By
assuming magnetic field-dependent viscosity effects, Sheikholeslami et al. [18] described
MHD nanofluid flow. The finite element method was used to address this problem.

Flow due to a stretchy surface has risen in prominence among researchers in recent
years, owing to its widespread application in industry. Hot rolling, paper production,
glass blowing, polymer extrusion, metal extrusion, and crystal growth are only a few of
these uses. Crane [19] started flow research with an enlarged sheet. The fluid stream in
an enlarged channel was examined by Brady and Acrivos [20]. Researchers discovered
that there is a solution for a two-dimensional flow for any given Reynolds number. The
movement of fluid past a stretchable cylinder was studied by Wang [21]. By changing the
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heat flux, Elbashbeshy [22] investigated heat transfer across a stretchy surface. By using
a viscous fluid created by a stretchable surface, Nadeem et al. [23] examined a stagnation-
point stream. Different fluid flow over stretched surfaces was inspected by Awan et al. [24].
The production of entropy for MHD Maxwell fluid across a stretchable and penetrable
surface was investigated by Jawad et al. [25].

Because of its vast industrial use in nuclear reactor cooling, chemical engineering,
geothermal reservoirs, and thermal oil recovery, the chemical reaction effect has gained
a tremendous response. Generally, the relationship between mass transfer and chemical
reaction is very important, and it can be studied in terms of reactant species deployment
and creation at various speeds during nanofluid mass transfer. Bestman et al. [26] con-
ducted ground-breaking work in defining these influences. Mustafa et al. [27] examined
a hydromagnetic flow past a radial surface caused by chemical reaction and Arrhenius
activation energy. They found that the concentration of a species rises as the activation
energy of a chemical process rises. Mohyud-Din et al. [28] looked at how chemical reactions
affected convergent/divergent channels. Aleem et al. [29] instigated alternative forms of
water based nanofluids, such as titanium-oxide, aluminium-oxide, and copper-oxide, that
arose in a porous media after a chemical reaction and Newtonian heating.

The majority of industrial applications necessitate non-Newtonian nanofluids with
non-linearly related shear rates and shear stresses. The shear rate is heavily influenced by
the timeframe of the shear stress. Thus, coefficients such as viscosity do not fully describe
shear stress in such nanofluids. As a result, numerous mathematicians have debated the
class of non-Newtonian models, one of which is the Ree-Eyring nanofluid model. Inks,
molten polymers, adhesives, paints, organic materials, and other non-Newtonian fluids are
some examples. These are used in food industries, drilling rigs, cooling systems, adhesive
industries, and so on. Hayat et al. [30] conducted an entropy examination in the flow of
Ree-Eyring nanofluid in this respect. Tanveer and Malik [31] investigated the thermal
effectiveness of Ree-Eyring nanofluid peristaltic flow. Khan et al. [32] investigated the effect
of Lorentz force on the velocity of a Ree-Eyring nanofluid flow past a paraboloid surface.
Al-Mdallal et al. [33] investigated the thermal properties of Cu-Water nanofluid under the
sway of radiation. Purna et al. [34] used the Darcy-Frochheimer law to examine the flow of
Ree-Eyring nanofluid on a porous plate inclined at an angle, as well as the impact of the
chemical reaction. Some recent studies about nanofluids and heat transfer properties are
mentioned in Refs. [35–38].

The main goal of this article is to study the existence of a magnetic dipole and the Koo-
Kleinstreuer model using different alloys over a stretching sheet. The Cattaneo-Christov
model is used to calculate heat transfer in a two-dimensional flow of Ree-Eyring nanofluid
across a stretching sheet. The mathematical formulation is created in the following section,
utilising fluid flow assumptions. By applying appropriate similarity transformations, the
physical flow phenomenon is represented and then translated into a non-dimensional form.
The HAM is used to arrive at a solution. Through graphical demonstrations, the influences
of a few key parameters on the temperature, velocity fields, and concentration profile
are highlighted.

2. Mathematical Model and Formulation

We consider a Ree-Eyring nanofluid flow in a two-dimensional laminar boundary
layer with the influence of magnetic dipoles. Furthermore, the Cattaneo-Christov heat
flow model is used to analyse heat transmission. The magnetic dipole is located under the
sheet, whereas the electrically non-conductive and incompressible Ree-Eyring nanofluid
is located above the sheet in the half-space y > 0. Figure 1 depicts the flow geometry. By
assuming two conflicting and comparable forces along the x-axis, the sheet is stretched
at a proportional rate to the distance between it and the fixed origin x = 0. The dipole
centre is located on the y-axis below the x-axis. It has a powerful magnetic field directed in
the positive x-direction, which increases the magnetic field’s intensity enough to feed the
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Ree-Eyring nanofluid. The stretched sheet is kept at a temperature Tw underneath Curie’s
temperature Tc, although the far-flung liquid elements are thought to be at T = Tc.

Figure 1. Physical description flow geometry.

Using the Koo-Kleinstreuer model, the efficacious kn f of nanofluids can be displayed
as [11]

kn f = kstatic + kBrownian

where

kstatic =
k f

(
ks + 2k f

)
+ 2φ

(
ks − k f

)
k f

(
ks + 2k f

)
− φ

(
ks − k f

) ·kBrownian = 5× 104γ∅
(
ρCp

)
f

√
kβT

2ρprp
Γ(T, φ),

where kβ = 1.38× 10−23m2kgs−2k−1 is the Boltzmann physical constant and rp is the
nanoparticle radius.

Particularly,
γ = 0.0137(100φ)−0.8229, where φ < 1%;
γ = 0.0011(100φ)−0.7272, where φ > 1%;
0.01 < φ < 0.04 300K < T < 325K.
Taking into account µn f reliance on particle volume fraction,

µn f = µstatic + µBrownian

where
and µstatic = µ f (1− φ)−2.5 and µBrownian =

kBrownian
k f

µ f

Pr f

The governed equation is formulated as follows [32,36,37]:

∂u
∂x

+
∂v
∂y

= 0 (1)

u
∂u
∂x

+ v
∂u
∂y

=
1

ρn f

(
1

β1ε
+ µn f

)(
2

∂2u
∂x2 +

∂2v
∂x∂y

+
∂2u
∂y2

)
+

µ0M
ρn f

∂H
∂x

(2)
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u ∂T
∂x + v ∂T

∂y + λ2ΩE =
kn f

(ρCp)n f

(
∂2T
∂y2 + ∂2T

∂x2

)
+ 1

(ρCp)n f

(
1

β1ε + µn f

)(
∂u
∂y

)2

− µ0T
(ρCp)n f

∂M
∂T

(
u ∂H

∂x + v ∂H
∂y

) (3)

u
∂C
∂x

+ v
∂C
∂y

= Dn f

(
∂2T
∂y2 +

∂2T
∂x2

)
− kr(C− Cc) (4)

In the above equation, the term ΩE is defined as

ΩE = u
∂u
∂x

∂T
∂x

+ v
∂v
∂y

∂T
∂y

+ u2 ∂2T
∂x2 + v2 ∂2T

∂y2 + 2uv
∂2T
∂x∂y

+ u
∂v
∂x

∂T
∂y

+ v
∂u
∂y

∂T
∂y

(5)

The associated boundary limitations are as follows:

u = cx, v = 0, T = Tw, C = Cw at y = 0
u→ 0, T → Tc, C → Cc at y→ ∞

}
(6)

The magnetic field affects the presumed liquid flow due to the magnetic dipole, and
its magnetic scalar potential is given by

φ1 =
x

(y + a)2 + x2

γ

2π
(7)

Hy = −∂φ1

∂y
=

2(y + a)x

((y + a)2 + x2)
2

γ

2π
, Hy = −∂φ1

∂x
= − (y + a)2 − x2

((y + a)2 + x2)
2

γ

2π
(8)

where

H =

[(
∂φ1

∂y

)2
+

(
∂φ1

∂x

)2
]1/2

(9)

We attain that

∂H
∂y

=

[
4x2

(y + a)5 −
2

(y + a)3

]
γ

2π
,

∂H
∂x

=

[
− 2x

(y + a)4

]
γ

2π
(10)

Supposing that the applied field H is strong enough to saturate the supposed fluid and
that the linear equation approximates the variance of magnetisation M with temperature T,

M = K(Tc − T) (11)

The following are some of the similarities:

(η, ξ) =
√

c
v f
(y, x), ψ(η, ξ) =

(
µ f
ρ f

)
ξ f (η)

T = Tc − (Tc − Tw)θ(η, ξ) = Tc − (Tc − Tw)
[
θ1(η) + ξ2θ2(η)

] (12)

The stream function ψ is given below:

u =
∂ψ

∂y
= cx f ′(η), v = −∂ψ

∂x
= −√cv f f (η) (13)

The continuity equation is easily satisfied, while the momentum, thermal equations,
and mass transfer are transferred to the relating set of ODEs:(

ε2We + ε1 +
kBrownian
k f Pr f ε2

)
f ′′′ − ε2

2βθ1

(η + α)4 + f f ′′ − f ′2 = 0 (14)

ε3
kn f

k f

1
Pr
(
θ
′′
1 + 2θ2

)
+ f θ′1 + ε3

1
Pr

2λβ

(η + α)4 f (θ1 − ε)− δe

(
f 2θ

′′
1 + f f ′θ′1

)
= 0 (15)
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ε3
kn f
k f

1
Pr θ

′′
2 + f θ2

λ
Pr

(
ε2We + ε1 +

kBrownian
k f Pr f ε2

)
f ′2 − ε3

λβ(θ1−δ)
Pr

[
4 f

(η+α)5 +
2 f ′

(η+α)4

]
+ε3

1
Pr

2λβ

(η+α)3 f θ2 − δe

(
f 2θ

′′
2 − 3 f f ′θ′2 − 2 f f ′′ θ2 + 4 f ′2θ2

) = 0 (16)

(1− φ)2.5 1
Sc
(
χ
′′
1 + 2χ2

)
+ f χ′1 − σχ1 = 0 (17)

(1− φ)2.5 1
Sc

χ
′′
2 + f χ′2 − 2χ2 f ′ − σχ2 = 0 (18)

where

ε1 =
1

(1− φ)2.5
(

1− φ + φ
ρs
ρ f

) , ε2 =
1(

1− φ + φ
ρs
ρ f

) , ε3 =
1(

1− φ + φ
(ρCp)s
(ρCp) f

) (19)

Reduced conditions:

f (0) = 0, f ′(0) = 1, θ1(0) = 1, θ2(0) = 0, χ1(0) = 1, χ2(0) = 0
f ′(∞)→ 0, θ1(∞)→ 0, θ2(∞)→ 0, χ1(∞)→ 0, χ2(∞)→ 0

}
(20)

where

α =
√

c
v f

a, β = µ0K
γρ f

2πµ f
2 (Tc − Tw), We = 1

β1εµ f
, δe = cλ2, δ = Tc

(Tc−Tw)

λ =
cµ f

2

k f ρ f (Tc−Tw)
, Pr =

µ f Cp
k f

, σ = kr
c , Sc =

v f
D f

, Re = cx2

v f

(21)

The definitions of the quantities of physical interests are as follows:

C fx =
−2
(

1
βε +µn f

)(
∂2u
∂x2

)
y=0

ρ(cx)2 , Nux =
−xkn f

(
∂T
∂y

)
y=0

(Tw−Tc)
,

Shx =
−x
(

∂C
∂y

)
y=0

(Cw−Cc)

(22)

The quantities of physical interest corresponding to Equations (12) and (13) transform
the following equations:

√
RexC fx = −2(1 + We)

(1− φ)2.5 f ′′ (0) (23)

(Rex)
−1/2Nux = −

kn f

k f

(
θ′1(0) + ξ2θ′2(0)

)
(24)

(Rex)
−1/2Shx = −(1− φ)2.5

(
χ′1(0) + ξ2χ′2(0)

)
(25)

3. Solution Method and Details

In order to solve Equations (14–18) under the boundary conditions (19, 20), we use the
Homotopy Analysis Method (HAM) with the following procedure. The solutions with the
auxiliary parameters h̄ adjust and control the convergence of the solutions.

The initial guesses are selected as follows:

f0(η) =
(
1− e−η

)
, θ1, 0(η) = e−η , θ2, 0(η) = ηe−η , χ1, 0(η) = e−η , χ2, 0(η) (26)

The linear operators are taken as L f , Lθ1 , Lθ2 , Lχ1 , Lχ2

L f ( f ) = f ′′′ − f ′, Lθ1(θ1) = θ
′′
1 − θ1, Lθ2(θ2) = θ

′′
2 − θ2

Lχ1(χ1) = χ
′′
1 − χ1, Lχ2(χ2) = χ

′′
2 − χ2

(27)
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which have the following properties:

L f (c1 + c2e−η + c3eη) = 0, Lθ1(c4eη + c5e−η) = 0
Lθ2(c6eη + c7e−η) = 0, Lχ1(c8e−η + c9eη) = 0, Lχ1(c10e−η + c11eη) = 0

(28)

where ci(i = 1− 11) are the constants in general solution:
The resultant non-linear operatives N f , Nθ1 , Nθ2 , Nχ1 , Nχ2 are given as

N f [ f (η; p), θ1(η; p)] =

(
ε2We +

kBrownian
k f Pr f ε2

)
∂3 f (η; p)

∂η3 − ε2
2β

(η + α)4 θ1(η; p)−
(

∂ f (η; p)
∂η

)2
+ f (η; p)

∂2 f (η; p)
∂η2 (29)

Nθ1 [ f (η; p), θ1(η; p), θ2(η; p)] = ε2
kn f
k f

1
Pr

(
∂2θ1(η;p)

∂η2 + 2θ2(η; p)
)
+

f (η; p) ∂θ1(η;p)
∂η + ε2

1
Pr

2λ

(η+α)4 ( f (η; p)θ1(η; p)− ε f (η; p))−

δe

(
( f (η; p))2 ∂2θ1(η;p)

∂η2 + f (η; p) ∂ f (η;p)
∂η

∂θ1(η;p)
∂η

) (30)

Nθ2 [ f (η; p), θ1(η; p), θ2(η; p)] = ε2
kn f
k f

1
Pr

∂2θ2(η;p)
∂η2 +

λ
Pr

(
ε2We + ε1

kBrownian
k f Pr f ε2

)
f (η; p)

(
∂ f (η;p)

∂η

)2
θ1(η; p) + ε2

2λ
Pr

1
(η+α)3 f (η; p)θ2(η; p)

−ε2
λβ
Pr

[
4

(η+α)5 f (η; p) + 2
(η+α)4

∂ f (η;p)
∂η

]

δe

 ( f (η; p))2 ∂2θ2(η;p)
∂η2 − 3 f (η; p) ∂ f (η;p)

∂η
∂θ2(η;p)

∂η

− f (η; p) ∂2 f (η;p)
∂η2 θ2(η; p) + 4

(
∂ f (η;p)

∂η

)2
θ2(η; p)


(31)

Nχ1 [ f (η; p), χ1(η; p), χ2(η; p)] = (1− φ)2.5 1
Sc

(
∂2χ1(η;p)

∂η2 + 2χ2(η; p)
)
+

f (η; p) ∂χ1(η;p)
∂η − σχ1(η; p)

(32)

Nχ2 [ f (η; p), χ2(η; p)] = (1− φ)2.5 1
Sc

∂2χ1(η;p)
∂η2 + f (η; p) ∂χ2(η;p)

∂η

−2 ∂ f (η;p)
∂η χ2(η; p)− σχ2(η; p)

(33)

The basic idea of the HAM is described in [1–7]; the zeroth-order problems from
Equations (14)–(18) are

(1− p)L f [ f (η; p)− f0(η)] = ph̄ f N f [ f (η; p), θ1(η; p)] (34)

(1− p)Lθ1 [θ1(η; p)− θ1, 0(η)] = ph̄θ1 Nθ1 [ f (η; p), θ1(η; p), θ2(η; p)] (35)

(1− p)Lθ2 [θ2(η; p)− θ2, 0(η)] = ph̄θ2 Nθ2 [ f (η; p), θ1(η; p), θ2(η; p)] (36)

(1− p)Lχ1 [χ1(η; p)− χ1, 0(η)] = ph̄χ1 Nχ1 [ f (η; p), χ1(η; p), χ2(η; p)] (37)

(1− p)Lχ1 [χ2(η; p)− χ2, 0(η)] = ph̄χ2 Nχ2 [ f (η; p), χ2(η; p)] (38)

The equivalent boundary conditions are

f (η; p)|η=0 = 0, ∂ f (η;p)
∂η

∣∣∣
η=0

= 1, ∂ f (η;p)
∂η

∣∣∣
η→∞

= 0

θ1(η; p)|η=0 = 1, θ1(η; p)|η→∞ = 0
θ2(η; p)|η=0 = 0, θ2(η; p)|η→∞ = 0
χ1(η; p)|η=0 = 1, χ1(η; p)|η→∞ = 0
χ2(η; p)|η=0 = 0, χ2(η; p)|η→∞ = 0

(39)
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where p ∈ [0, 1] is the imbedding parameter; h̄ f , h̄θ1 , h̄θ2 , h̄χ1 , h̄χ2 are used to control the
convergence of the solution. When p = 0 and p = 1, we have

f (η; 1) = f (η), θ1(η; 1) = θ1(η), θ2(η; 1) = θ2(η), χ1(η; 1) = χ1(η), χ2(η; 1) = χ2(η) (40)

Expanding f (η; p), θ1(η; p), θ2(η; p), χ1(η; p), χ2(η; p) in Taylor’s series about p = 0

f (η; p) = f0(η) +
∞
∑

m=1
fm(η)pm

θ1(η; p) = θ1, 0(η) +
∞
∑

m=1
θ1,m(η)pm

θ2(η; p) = θ2, 0(η) +
∞
∑

m=1
θ2,m(η)pm

χ1(η; p) = χ1, 0(η) +
∞
∑

m=1
χ1,m(η)pm

χ2(η; p) = χ2, 0(η) +
∞
∑

m=1
χ2,m(η)pm

(41)

where

fm(η) =
1

m!
∂ f (η;p)

∂η

∣∣∣
p=0

, θ1, m(η) =
1

m!
∂θ1(η;p)

∂η

∣∣∣
p=0

θ2, m(η) =
1

m!
∂θ2(η;p)

∂η

∣∣∣
p=0

, χ1, m(η) =
1

m!
∂χ1(η;p)

∂η

∣∣∣
p=0

, χ2, m(η) =
1

m!
∂χ2(η;p)

∂η

∣∣∣
p=0

(42)

The secondary constraints h̄ f , h̄θ1 , h̄θ2 , h̄χ1 , h̄χ2 are chosen in such a way that the
series (40) converges at p = 1; switching p = 1 in (40), we obtain

f (η) = f0(η) +
∞
∑

m=1
fm(η)

θ1(η) = θ1, 0(η) +
∞
∑

m=1
θ1,m(η)

θ2(η) = θ2, 0(η) +
∞
∑

m=1
θ2,m(η)

χ1(η) = χ1, 0(η) +
∞
∑

m=1
χ1,m(η)

χ2(η) = χ2, 0(η) +
∞
∑

m=1
χ2,m(η)

(43)

The mth-order problem satisfies the following:

L f [ fm(η)− χm fm−1(η)] = } f R f
m(η)

Lθ1 [θ1,m(η)− χmθ1,m−1(η)] = }θ1 Rθ1
m (η)

Lθ2 [θ2,m(η)− χmθ2,m−1(η)] = }θ2 Rθ2
m (η)

Lχ1 [χ1,m(η)− χmχ1,m−1(η)] = }χ1 Rχ1
m (η)

Lχ2 [χ2,m(η)− χmχ2,m−1(η)] = }χ2 Rχ2
m (η)

(44)

The corresponding boundary conditions are as follows:

fm(0) = f ′m(0) = θ′1, m(0) = θ′2, m(0) = χ1, m(0) = χ2, m(0) = 0

f ′m(∞) = θ1, m(∞) = θ2, m(∞) = χ1, m(∞) = χ2, m(∞) = 0
(45)

Here

R f
m(η) =

(
ε2We + kBrownian

k f Pr f ε2

)
f ′′′m−1 − ε2

2β

(η+α)4 θ1, m−1 − ∂3 f (η;p)
∂η3 −

ε2
2β

(η+α)4 θ1(η; p)−
m−1
∑

k=0
f ′m−1 f ′k +

m−1
∑

k=0
fm−1−k f ′′k

(46)
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Rθ1
m (η) = ε2

kn f
k f

1
Pr

(
θ
′′
1, m−1 + 2θ2, m−1

)
+ ε2

1
Pr

2λ

(η+α)4

(
m−1
∑

k=0
fm−1−kθ1, k − ε fm−1

)
+

m−1
∑

k=0
fm−1−kθ′1, k − δe

[
m−1
∑

k=0
fm−1−k

k
∑

i=0
fk−iθ

′
1,i +

m−1
∑

k=0
fm−1−k

k
∑

i=0
f ′k−iθ1, i

] (47)

Rθ2
m (η) = ε2

kn f
k f

1
Pr θ

′′
2,m−1 +

λ
Pr

(
ε2We + ε1

kBrownian
k f Pr f ε2

) m−1
∑

k=0
fm−1−k

k
∑

i=0
f ′k

i
∑

p=0
f ′i−pθ1,p

−ε2
λβ
Pr

[
4

(η+α)5 fm−1 +
2

(η+α)4 f ′m−1

]
+ ε2

2λβ
Pr

1
(η+α)3

m−1
∑

k=0
fm−1−kθ2,k

δe


m−1
∑

k=0
fm−1−k

k
∑

i=0
fk−iθ

′′
2,i − 3

m−1
∑

k=0
fm−1−k

k
∑

i=0
f ′k−iθ2,i−

m−1
∑

k=0
fm−1−k

k
∑

i=0
f ′′k−iθ2,i + 4

m−1
∑

k=0
f ′m−1−k

k
∑

i=0
f ′k−iθ2,i


(48)

Rχ1
m (η) = (1− φ)2.5 1

Sc

(
χ
′′
1, m−1 + 2χ2, m−1

)
+

m−1

∑
k=0

fm−1−kχ′1,k − σχ1, m−1 (49)

Rχ2
m (η) = (1− φ)2.5 1

Sc
χ
′′
2, m−1 +

m−1

∑
k=0

fm−1−kχ′2,k −
m−1

∑
k=0

f ′m−1−kχ2,k − σχ2, m−1 (50)

where

χm =

{
0, i f p ≤ 1
1, i f p > 1

(51)

Validation and Comparison

Table 1 shows the physical properties of nanofluid. A comparison of the validation
of the results for the velocity, temperature, and concentration fields using the Homotopy
Analysis Method and a numerical (ND-solve) method are shown in Tables 2–4 and in
Figures 2–4. From these tables and figures, it can be observed that the results of both
methods are in good agreement.

Table 1. The base fluids’ and nanoparticles’ material properties.

Fluids ρ
(
kg/m3) Cp (J/kg·K) k (W/m·K)

H2O 997.1 4179 0.613
AA7072 2810 960 173
AA7075 2720 893 222

Table 2. Comparison table for HAM solution and numerical method for velocity field and their results.

η HAM Solution Numerical Solution Absolute Error

0.0 1.000000 1.000000 0.000000
0.5 0.672325 0.672090 0.000235
1.0 0.450868 0.450368 0.000501
1.5 0.300635 0.300102 0.000532
2.0 0.198485 0.198011 0.000474
2.5 0.128841 0.128458 0.000383
3.0 0.081224 0.080938 0.000286
3.5 0.048575 0.048379 0.000196
4.0 0.026132 0.026014 0.000118
4.5 0.010669 0.010617 0.000053
5.0 8.649750× 10−8 1.697710× 10−8 6.952040× 10−8
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Table 3. Comparison table for HAM solution and numerical method for temperature field and
their results.

η HAM Solution Numerical Solution Absolute Error

0.0 1.000000 1.000000 2.775560′′ × 10−15

0.5 1.422530 1.422300 0.000240
1.0 1.520240 1.519810 0.000432
1.5 1.422380 1.421830 0.000551
2.0 1.222520 1.221930 0.000592
2.5 0.982008 0.981442 0.000566
3.0 0.737851 0.737362 0.000489
3.5 0.510493 0.510113 0.000380
4.0 0.309869 0.309615 0.000254
4.5 0.139648 0.139524 0.000124
5.0 −2.16757′′ × 10−7 7.061450′′ × 10−8 2.873720′′ × 10−7

Table 4. Comparison table for HAM solution and numerical method for concentration field and
their results.

η HAM Solution Numerical Solution Absolute Error

0.0 1.000000 1.000000 0.000000
0.5 0.662316 0.662225 0.000090
1.0 0.449273 0.449152 0.000121
1.5 0.309253 0.309134 0.000119
2.0 0.213854 0.213750 0.000104
2.5 0.146837 0.146752 0.000085
3.0 0.098537 0.098472 0.000066
3.5 0.062965 0.062918 0.000047
4.0 0.036264 0.036234 0.000030
4.5 0.015864 0.015850 0.000014
5.0 1.648660′′ × 10−7 5.280260′′ × 10−8 1.120640′′ × 10−7

Figure 2. Comparison graph for velocity profile.
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Figure 3. Comparison graph for temperature profile.

Figure 4. Comparison graph for concentration profile.

4. Results and Discussion

This section uses plotted figures to discuss the physical aspects of flow, thermal field
changes, and concentration profile, and to explain physical interpretations triggered by the
dominant dimensionless factors. The HAM is used to solve shortened ODEs numerically.
Two diverse cases, namely, the AA7072 alloy and the AA7075 alloy, are well-thought-out in
this analysis. Graphs are used to explain the effects of various specifications on f ′(η), θ1(η),
and χ1(η), such as the Ree-Eyring fluid parameter, the ferromagnetic interaction parameter,
the Schmidt number, the Prandtl number, and the reaction rate parameter. Additionally,
skin friction and the Nusselt number are illustrated graphically.

Figure 5 shows the change in f ′(η) of both alloys AA7072 and AA7075 as β changes. In
this case, increasing β lowers the f ′(η) of both alloys. This means that a large mass flux can
reduce the velocity of the liquid on the surface. The occurrence of β and Curie temperature
in this circumstance is crucial to consider the ferromagnetic stimulus on the flow, which
upsurges liquid viscosity and diminishes the velocity gradient. Physically, when the
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magnetic influence is absent, the fluid velocity upsurges. The magnetic dipole effect,
on the other hand, causes the fluid velocity to decrease. Furthermore, when comparing
the AA7072 alloy to the AA7075 alloy, fluid velocity is quite slow. Figure 6 depicts the
oscillation in f ′(η) with various values of φ for both alloys. The increase in φ lowers the
f ′(η). The velocity f ′(η) of both alloys decreases as the volume fraction rises. Furthermore,
when compared to the AA7075 alloy, the velocity of the AA7072 alloy is strongly motivated
by the volume fraction and falls faster. Figure 7 depicts the behaviour of f ′(η) in relation to
the Weissenberg number We. The velocity of the liquid is observed to be reduced across
the entire domain as the Weissenberg number rises. Furthermore, when the Weissenberg
number increases, the velocity layer thickness decreases. Mathematically, the Weissenberg
number We is used in the investigation of viscoelastic flows. It is the ratio of viscous and
elastic forces. As a result, as the Weissenberg number rises, the viscous forces diminish, and
the velocity profile rises. Figure 8 indicates the effects of β on θ1(η) for both alloys. This
indicates that an increase in β values significantly improves the temperature profile θ1(η).
This is due to the fact that as the tension between the fluid particles boosts, too much heat
is produced, resulting in higher fluid temperatures. Furthermore, for both AA7072 and
AA7075 alloys, the inter-relevance thickness of the thermal layer is increased. Additionally,
in AA7075 and when treated with AA7072 alloy, the closeness of the thermal layer further
improves. Figure 9 shows that as Pr increases, so does the temperature of the fluid θ1(η).
According to the observations, the thickness of the boundary layer appears to decrease
as Pr increases. As a result, as the Prandtl number upsurges, so does the rate of thermal
conductivity. Pr is the ratio of thermal diffusivity and momentum diffusivity. As a result,
with a higher Pr, heat will dissipate from the sheet more quickly. Fluids with a higher Pr
have a lower thermal conduction value. As a result, the Pr attempts to improve the cooling
behaviour of the flows. The effect of λ on the θ1(η) profile is portrayed in Figure 10. It shows
that as the value of λ increases, the temperature field decays. Additionally, for booming
values of λ, the inter-relevance thickness is reduced for both alloys. Furthermore, heat
abatement is enhanced in AA7072 alloy when treated with AA7075 alloy. The fluctuation
in the thermal gradient for various values of δe for both alloys is shown in Figure 11. The
thermal distribution is enhanced when the values of the thermal relaxation parameters are
increased. The heat flow relaxation time causes this parameter to emerge physically. The
higher the δe value, the longer it takes for the liquid particles to exchange heat with nearby
particles, resulting in a decrease in temperature but an improvement in the temperature
gradient. Figure 12 describes the outcome of volume fraction φ on heat transport in both
alloys. The heat transmission of both alloys is improved as the volume fraction increases.
Furthermore, in AA7075 and when treated with AA7072 alloy, the closeness of the thermal
layer further improves. Figure 13 depicts the effect of σ on χ1(η) in both alloys. This figure
confirms that χ1(η) has a decreasing nature for various σ values, and an increase in the
reaction rate parameter σ diminishes the concentration of the liquids. In fact, as the reaction
rate parameter values increase, the concentration field and related boundary layer thickness
decreases. According to Figure 14, a higher Schmidt number corresponds to a lower solute
diffusivity, allowing for a shallower penetration of the solute effect. As a result, as Sc rises,
χ1(η) falls. Thus, with lower concentrations of Sc, the solute boundary layer is thicker, and
vice versa.

Figure 15 depicts the variants in surface drag force C fx versus We for various φ values
for both alloys. It has been discovered that significantly greater values of φ enhance the
surface drag force, whereas contrasting actions are observed for growing values of β; see
Figure 16. Figure 17 shows the outcome of δe on the rate of heat transfer versus We for
both alloys AA7072 and AA7075. In both AA7072 and AA7075 alloys, an increase in δe
degrades the Nusselt number. Figure 18 illustrates the importance of φ on Rex

−1/2Nux
versus We for both AA7072 and AA7075 alloys. For both alloys, boosting the φ values
improves the heat transmission rate. Figure 19 depicts the variation in Rex

−1/2Nux versus
We for various β values. It can be observed that significantly higher values of β enhance
the heat transmission rate. Figure 20 depicts the variation in Rex

−1/2Shx versus Sc for
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various φ values. It can also be observed that significantly higher values of φ enhance the
concentration rate. A comparison between previous and present works for the validation
of the results for skin friction is presented in Table 5.

Table 5. Comparison of − f ′′(0) with literature.

Published Papers −f”(0)

Zeeshan and Majeed [36] 0.6058427
B.C Prsannakumara [37] 0.6069352

Present results 0.603457

Figure 5. Influence of ferromagnetic interaction parameter β on velocity profile.

Figure 6. Influence of volume fraction φ on velocity profile.
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Figure 7. Influence of Weissenberg number We on velocity profile.

Figure 8. Influence of ferromagnetic interaction parameter β on temperature profile.

Figure 9. Influence of Prandtl number Pr on temperature profile.
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Figure 10. Influence of viscous dissipation parameter λ on temperature profile.

Figure 11. Influence of thermal relaxation parameter δe on temperature profile.

Figure 12. Influence of volume fraction φ on temperature profile.
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Figure 13. Influence of reaction rate parameter σ on concentration profile.

Figure 14. Influence of Schmidt number Sc on concentration profile.

Figure 15. Various values of φ versus We for skin friction.
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Figure 16. Various values of β versus We for skin friction.

Figure 17. Various values of δe versus We.

Figure 18. Various values of φ versus We for nusselt number.
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Figure 19. Various values of β versus We for nusselt number.

Figure 20. Various values of φ versus Sc.

5. Conclusions

Using the influence of magnetic dipoles and the Koo-Kleinstreuer model, the mo-
mentum, heat transfer, and mass transfer behavioru of Ree-Eyring nanoliquids through
a stretching surface are investigated in this research. Moreover, the heat transmission is
described by the Cattaneo-Christov heat flux model, and viscous dissipation is taken into
account. Finally, the constructed governing equations related to the momentum, thermal,
and mass distributions are converted to ODEs and solved with the HAM. The following
are the results of the present analysis:

1. An escalation in volume fraction, Weissenberg number, and the ferromagnetic in-
teraction parameter affects the velocity gradient. Furthermore, all these parameters
negatively influence the velocity gradient of alloy AA7075, which falls quicker than
the velocity gradient of alloy AA7072.

2. As the ferromagnetic interaction, viscous dissipation parameter, thermal relaxation
parameter, and volume fraction grow, the temperature gradient of both alloys in-
creases, whereas contrasting behaviour is revealed for the Prandtl number. Moreover,
in AA7075 and when treated with AA7072 alloy, the closeness of the thermal layer
further improves.

3. A growth in the reaction rate parameter and the Schmidt number brings down the
concentration profile. Similarly, all parameters negatively influence the concentra-
tion profile of alloy AA7075, which drops quicker than the concentration profile of
alloy AA7072.
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4. An improvement in the volume fraction enhances the surface drag force; however,
an improvement in the ferromagnetic interaction decreases the surface drag force.

5. The Nusselt number rises as the volume fraction and ferromagnetic interaction grow;
however it falls as the thermal relaxation parameter rises.
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Nomenclature

a Distance
c Constant

Cp Specific heat transfer
(

J·kg−1·K−1
)

C Concentration

k Thermal conductivity
(

W·m−1·K−1
)

K Constant
H Magnetic field intensity

(
A·m−1)

M Magnetisation
(
A·m−1)

Pr Prandtl number
Re Local Reynolds number
Sc Schmidt number
T Temperature of fluid
u, v Velocity components

(
m·s−1)

We Weissenberg number
x, y Coordinates axis (m)
Greek Letter
α Dimensionless distance
β Ferromagnetic interaction parameter
γ Constant
β1, ε Material constant of the fluid
δ Dimensionless Curie temperature
δe Thermal relaxation parameter
η, ξ Independent coordinate
θ1(η), θ2(η) Dimensionless temperature profile
λ Viscous dissipation parameter
λ2 Thermal relaxation time
µ Dynamic viscosity
µ0 Magnetic permeability
v Kinematic viscosity
ρ Density

(
kg·m−3)

ρCp Heat capacitance
σ Reaction rate parameter
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φ1 Scalar potential
φ Volume fraction
χ1(η), χ2(η) Dimensionless concentration profile
ψ Stream function

(
m2·s−1)

Subscript
f Fluid
n f Nanofluid
c Curie
w Surface
s Solid particle
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