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Abstract: This work attempted to fabricate superhydrophobic fabric via a simple immersion tech-
nique. Textile fabrics were coated with silica nanoparticles prepared from tetraethoxysilane (TEOS) to
obtain sufficient roughness with hydrophobic surface chemistry. Then, the coated fabrics were treated
with polydimethylsiloxane (PDMS) and aminopropyltriethoxysilane (APTES) to reduce the surface
energy. The effects of the PDMS concentration on the surface morphology and superhydrophobicity
of as-prepared fabric were investigated. The morphology and the composition of superhydrophobic
fabric were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDS),
and Fourier transform infrared (FTIR) spectroscopy. The results revealed the formation of spheri-
cal silica nanoparticles with an average particle size of 250 nm throughout the fabric surface. The
possible interactions between silica nanoparticles and APTES, as well as the fabrics, were elucidated.
Investigating the hydrophobicity of fabrics via water contact angle (WCA) measurement showed
that the treated fabric exhibits excellent water repellency with a water contact angle as high as 151°
and a very low water sliding angle. It was also found that the treated fabric maintained most of its
hydrophobicity against repeated washing, as the WCA of superhydrophobic fabrics decreased to
141° after 25 repeated washing cycles. The comfort properties of the obtained superhydrophobic
fabrics in terms of air permeability and bending length did not reveal any significant changes.

Keywords: sol-gel; hybrid coating; superhydrophobic; textile fabric; polydimethylsiloxane; contact angle

1. Introduction

A surface with a water contact angle (at equilibrium) higher than 150° and contact
angle hysteresis lower than 10° is considered a superhydrophobic surface. Nowadays,
superhydrophobic coatings have gained increasing attention due to their diverse appli-
cations, including electronic devices, water repellent and self-cleaning textiles, anti-icing
surfaces suitable for power network equipment, anticorrosion devices, biomedical devices,
construction industry, antibacterial fabrics, anti-biofouling surfaces in the marine industry,
and oil-water separation [1-3].

A combination of micro-nano roughness and low surface energy can lead to a su-
perhydrophobic surface. So, an intrinsically hydrophobic substrate can be converted to a
superhydrophobic structure by creating micro-nano roughness on its surface by utilizing
plasma etching, chemical etching, nanoparticle attachment, etc. The hydrophilic surfaces’
superhydrophobicity can be obtained by chemically modifying the micro-nano rough
surface with low-surface-energy compounds [2,4-7].
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The application of different nanoparticles on the surface of textiles and grafting of
hydrophobic bio-based and synthetic compounds has been considered as an effective
approach for the fabrication of hydrophobic and water-repellent fabrics [8-12]. One of
the widely studied strategies for the fabrication of superhydrophobic textiles is based
on increasing the surface roughness by coating the surface with inorganic nanoparticles
through the sol-gel process and subsequently lowering the surface energy by attachment
of a hydrophobic compound on its surface. Additionally, using a sol, modified with an
appropriate hydrophobic compound, may lead to a superhydrophobic surface coating by a
one-step process [13]. Hoefnagels et al. [14] turned hydrophilic cotton to superhydrophobic
with a two-step process including the sol-gel-based in situ growing of silica micro-particles
on cotton fibers followed by a hydrophobization step using polydimethylsiloxane (PDMS).
Xu et al. [15] examined the coating of the cotton surface with SiO, nanoparticles or ZnO
nanorods for the creation of nano-roughness and modification of the rough surface with
n-dodecyltrimethoxysilane (DTMS) to lower the surface energy and prepared superhy-
drophobic cotton fabrics. Based on their results, cotton fabrics prepared based on SiO,
nanoparticles and ZnO nanorods showed static water contact angles (WCAs) of 159° and
153°, respectively. Endiiarova et al. obtained superhydrophobicity on coarse calico fabric
(cotton) by dipping in a solution of AlCl3 (25-35 g/L) for 15 min and ironing at 120 °C
due to the formation of aluminum oxide on the surface of the cotton fibers [16]. Seth and
Jana fabricated a superhydrophobic cotton fabric based on micro and nano structures of
nickel stearate, which showed a static water contact angle of 160°. It showed wash-fast
antibacterial properties and high efficiency in oil/water separation as well [17]. The vapor
phase polymerization of pyrrole on cotton using Fe3* ions and stearic acid resulted in
superhydrophobic cotton with a high separation efficiency of oils from water [18].

Superhydrophobic PET fabric was obtained by a two-step process, including coat-
ing with SiO, nanoparticles and PDMS in the first step and subsequent hydrophobiza-
tion through a sol-gel process using tetraethoxysilane and cetyltrimethoxysilane. The
coated textile showed a WCA of 162.5° and was resistant to hydrostatic pressure up to
38.6 KPa [19]. Xue et al. [20] fabricated a self-healing and superhydrophobic PET fabric
using polydimethylsiloxane and octadecylamine (ODA) through a dip-coating followed by
a curing procedure. The required roughness was provided by the self-roughed property of
ODA, and the obtained superhydrophobicity was durable to abrasion (5000 cycles) and
washing (120 cycles). Huang et al. prepared superhydrophobic polyester fabrics with a
one-pot sol-gel method employing hexadecyltrimethoxysilane (HDTMS), polymethylhy-
drosiloxane (PMHS), and hydroxyl-terminated polydimethylsiloxane (HTPDMS), which
showed high efficiency in oil separation from water [21].

TiO; sol modified with poly(hexafluorobutyl methacrylate) was another approach
employed by Yang et al. [22] to prepare superhydrophobic cotton fabrics with a WCA of
152.5°. Chauhan et al. reported the preparation of superhydrophobic cotton with self-
cleaning and stain-resistant properties by simple coating with hexadecyltrimethoxysilane
with the immersion—-drying method. A WCA of 157° was obtained. It was concluded that
the high contact angle was due to the hierarchical microstructures and the presence of
long-chain alkyl groups on the modified cotton surface [23].

Herein, we present a facile and non-fluorinated approach to construct superhydropho-
bic and breathable fabric based on hydrolysis and condensation of tetraethylorthosilicate
(TEOS) followed by crosslinking with amino-modified polydimethylsiloxane (PDMS). The
formation of silica nanoparticles, morphology, and structure of treated fabric were in-
vestigated by scanning electron microscopy (SEM), energy dispersive X-ray (EDS), and
Fourier transform infrared (FTIR) spectroscopy. The treated fabric exhibited excellent water
repellency with durable washing fastness.
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2. Experimental Procedure
2.1. Materials

Poly(dimethylsiloxane) mono-glycidyl ether terminated (PDMS) and tetraethylorthosilicate
(TEOS, 98%) were purchased from Sigma-Aldrich, (St. Louis, MO, USA). Ammonium hydroxide
(25% in water), ethanol (C;H¢O), toluene (CyHsg), and 3-aminopropyltriethoxysilane (APTES)
were supplied from Merck Co. (Darmstadt, Germany) and used without additional purifi-
cation. Commercial polyester-viscose fabrics (350 g/ m?2, Yazdbaf Co., Yazd, Iran) were used
as the substrate. The fabric was scoured with 5 g/L of non-ionic detergent (Triton X-100,
Sigma-Aldrich, St. Louis, MO, USA), rinsed with distilled water separately several times,
and dried at 100 °C for 30 min. Deionized water was used in all the prepared solutions.

2.2. Fabrication of Silica-Coated Fabrics

The spherical silica nanoparticles were prepared by the modified Stober method [24].
Briefly, first, a mixture of TEOS (0.39 mol) and ethanol (2.35 mol) was prepared as solution
A. Similarly, 2.94 mol distilled water, 2.35 mol ethanol, and NH;OH were mixed to form
solution B. Then, solutions A and B were mixed at 40 °C for 40 min. Finally, the washed
fabric was immersed in a solution of silica nanoparticles for 20 min and after dip-coating
(100% pick-up), the fabrics were left at room temperature to remove the solvent and cured
at 80 °C for 10 min.

2.3. Fabrication of Superhydrophobic Fabric

In this procedure, different amounts of PDMS were first added into 50 mL toluene to
find the optimum value. After stirring about 60 min, 0.5 mL APTES solution was added.
Then, the mixture was stirred (500 rpm) for 3 h at room temperature. Finally, the silica-
coated fabrics were dip-coated in APTES-PDMS solution for 20 min (100% pick-up) and
cured at 120 °C for 60 min. The schematic representation of the superhydrophobic coating
of fabric is shown in Figure 1.

20 min

Curing at 80 °C
for 10 min

padding with
100% pick-up Silica-coated fabric

Curing at 120 °C solution

APTES-PDMS
for 60 min ]
‘ —
padding with L 25°C

Superhydrophobic fabric 100% pick-up \ /

Figure 1. Schematic representation of fabric superhydrophobic coating.

2.4. Characterization

The surface morphology of pristine and treated fabrics, as well as the composition
of materials, were studied after gold coating of samples by scanning electron microscopy
(Hitachi su3500, Tokyo, Japan) and energy-dispersive X-ray spectroscopy (EDS). Fourier
transformed infrared (FTIR) spectra of samples were recorded on AVATAR FTIR instru-
ment (Thermo Nicolet, Madison, WI, USA) to study the functional group analysis and
possible reactions.

Water contact angle (CA) measurement was carried out at room temperature using
homemade instrumentation, including a microscope equipped with a CCD camera and
PCTV vision software (Version: 4.1.0.148). A 5 uL water droplet was dropped to the five
different locations of fabric surface, and an average value was reported. Wash fastness of
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superhydrophobic fabric, as an important characteristic in terms of users, was evaluated
based on AATCC Test Method 61-2A. The treated fabrics were washed with an aqueous
solution of an anionic detergent (0.23%) at 45 °C with mild agitation, followed by rinsing
with water and drying at 49 °C for 45 min after each washing cycle. According to this
standard, each washing cycle is equivalent to five home machine launderings at 38 °C. The
washing operation was repeated five times. The air permeability of treated samples was
evaluated based on ASTM-D737-75 by using the SDL-Air Permeability device (TESTEX,
Guangdong, China). Crease recovery angle was measured based on ASTMD 123 standard
with Shrirley device. The bending test, as a very important factor reflecting the flexibility
of the fabrics, was performed according to ASTM-D1388 standard with Shirley Bending
length device. Five samples (both warp and weft) were measured, and the average value
was reported.

3. Results and Discussion
3.1. Morphological Analysis

Figure 2 shows the SEM micrographs of pristine and treated fabrics. The results
exhibited a rough surface and the presence of silica nanoparticles on the surface of the
fabric. The high-magnification (inset) SEM image (Figure 2b) showed that the uniform silica
nanoparticles were deposited throughout the fabric surface with an average particle size of
about 290 nm. After modification of silica-coated fabric with the PDMS-APTES solution,
the surface morphology becomes inhomogeneous with sticky particles. The change in the
morphology of PDMS-APTES treated silica-coated fabric is clearly shown in Figure 2c. The
results of EDS spectra (Figure 2d) confirm the presence of Si on the superhydrophobic
fabric surface. The peaks of C and O elements were also detected in EDS spectra, which are
attributed to the polymer chain.

Element Wt % At %

C K 29.33  38.54
i o K $1.20 50:51 ~—
SiK 19.48  10.95

Total 100.00 100.00

Figure 2. SEM micrographs of fabrics: (a) pristine, (b) silica-coated, (c) PDMS-APTES treated, and
(d) EDS pattern of superhydrophobic fabric.

3.2. Structural Analysis

Amino-modification of mono-glycidyl ether terminated PDMS with APTES was car-
ried out, and the possible reactions were investigated by FTIR (Figure 3a). The diminishing
characteristic absorption band of the epoxide ring at 913 cm ™! as well as the increasing
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hydroxyl and amine groups at 3420 and 1495 cm ™!, respectively, confirm the successful
amine-modification of PDMS [25]. As can be seen in the spectrum of modified PDMS, the
absorption band of the oxirane group was completely disappeared, revealing a complete
reaction between APTES and PDMS. The possible chemical reaction process between silica
nanoparticles and modified PDMS is represented in Scheme 1. The FTIR spectrum of
pristine and treated fabrics is shown in Figure 3b. As can be seen, the Si-O-5i absorption
band near 1100 cm~! becomes sharper and more intense after the treatment of fabric with
silica and modified PDMS.

(a) —— PDMS-APTES
‘‘‘‘‘ APTES _ (b)
100 —W PDMS-APTES treated fabric
I‘\' ; ! ~
80 Tng | ®
i 2 : p : : Silica-coated fabric
X 2N P
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H 1 1 ‘e
= | I z
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Z 404 | I =
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20~ |
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Figure 3. FTIR spectra of (a) amino-modified PDMS solution; (b) pristine and treated fabrics.
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Scheme 1. Possible chemical reaction scheme for the synthesis of amino-modified PDMS and
superhydrophobic fabric.
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Contact angle (degree)

180

3.3. Superhydrophobic Property

The hydrophobicity of fabrics was assessed using water contact angle (WCA) measure-
ment. The pristine fabric, due to the presence of hydrophilic hydroxyl and carboxyl groups,
was completely wetted by a water droplet. The in situ deposition of silica nanoparticles
makes the fabric surface rough, as depicted in the SEM image (Figure 2b), and induces
hydrophobicity. After modification of the silica-coated fabric with the APTES-PDMS solu-
tion, the fabric was completely turned superhydrophobic (Figure 4) due to the low-surface
energy of PDMS. The effect of the PDMS concentration on the hydrophobicity and contact
angle of treated fabric was studied at 25 °C by changing its value in the range of 1 to 5%.
As can be seen in Figure 4, all the concentrations provided superhydrophobicity, although
the maximum contact angle (155°) was achieved at a 2% concentration of PDMS. The high
water contact angle obtained here is due to the formation of micro-nano roughness by silica
nanoparticles as well as the low surface energy provided by PDMS.

170

160 -

150

140

130 -

120

110

Pristine fabric

Superhydrophobic
fabric

T Y T ! T

1 2 3 < 5
PDMS content (%)

Figure 4. The effect of PDMS content on contact angle of treated fabrics.

Table 1 summarizes the hydrophobic properties of different substrates in terms of
fabrication approach, contact angle, and washing fastness. As shown in Table 1, with
respect to the reported literature, the proposed fluorine-free coating formulation exhibited
robust superhydrophobic with a water contact angle higher than 150°.

3.4. Physical Properties

The breathability and physical properties of pristine and superhydrophobic fabric
were measured in terms of the air permeability, crease recovery angle, and bending length,
and the obtained results are summarized in Table 2. The air permeability of treated fabrics,
which serves as an indication of their breathability, was investigated. It can be seen that
the superhydrophobic treatment of silica-coated fabric with the PDMS-APTES solution
moderately decreases the air permeability of fabric by about 36.3%. The crease recovery
angle of fabrics (Table 2) indicates that the superhydrophobic fabric exhibits a lower crease
recovery angle than the pristine fabric. It can be seen that for pristine fabric, the crease
recovery angle in warp and weft directions are 155° and 163°, respectively, and both
values gradually decreased by only 10.6% (warp) and 10.4% (weft) after superhydrophobic
treatment. The effects of superhydrophobic treatment on the bending rigidity of fabrics
in both the warp and weft directions are also shown in Table 2. There were increases in
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the bending length of superhydrophobic fabric for both the warp and weft directions. This
could be attributed to the formation of hydrogen bonds between the hydroxyl group of
fibers and the hydroxyl group of the superhydrophobic coating, making the fiber a bit
difficult to bend.

Table 1. Comparison of hydrophobicity of different substrates using various approaches.

. Wash
. Hydrophobic Contact
No. Substrate Material ydrop o Method > Cycle Ref.
Agent (%) Angle (°) (Number)
1 Cotton HDTMS-GPTMS-TEOS 3 Immersion 141 10 26
2 Polyester—cotton Flour-acrylate monomer - Plasma 145 - 27
3 Silicon Si with XeF, - Etch 156 - 28
4 Cotton TEOS-OTES-AgNO3 3 Immersion 151 - 29
5 Cotton MTMS-HDTMS 3 Sol-gel 134 - 30
6 Cotton MTCS 1 Immersion 150 - 31
7 Silicon Modified SiNPs with APTS 1 Immersion 143 - 32
8 Silicone PDMS/SiO, 4 Immersion 153 5 33
9 Glass PDMS-nanosilica + FAS 4 Spray 158 - 34
10 Glass Polydimethylsiloxane/silica 0.6 Drop-coating 155 - 35
11 Cotton TEOS-FAS 14 Drop-coating 163 100 36
12 Glass PDMS and polystyrene/ SiO, - Etch 155 4 37
13 Glass PDMS 0.5 Immersion 120 - 38
14 Cotton PDMS—-ormosil 2 Immersion 160 5 39
15 Polyester HDTMS-TEOS 4 Immersion 150 30 13
. Modified silica nanoparticles . .
16 Polyester-viscose with PDMS 2 Immersion 152 25 This study
Table 2. Physical properties of pristine and superhydrophobic fabrics.
Air Permeability Crease Recovery Angle (°) Bending Length (cm)
Sample >
(mL/s. cm*®) Warp Weft Warp Weft
Pristine Fabric 26.67 155 163 1.69 1.27
Superhydrophobic Fabric 17.00 138.5 146 2.94 1.61

3.5. Durability

To study the durability of the treated fabric against laundering, they were subjected
to several washing cycles. The CA of treated fabric as a function of washing cycles is
shown in Figure 5. The obtained results imply that the CA of superhydrophobic fabric after
25 domestic washing cycles with water and 0.23% detergent solution decreased from 150°

to 143°.
180
= 1604 450 150 149 147
® A A A re 145 143
Pt A A
s ] ()
ac)
s Q »
2 120
©
©
)
S 100
(&)
80
60 T T T T T T
0 5 10 15 20 25

Washing cycle (number)

Figure 5. The contact angle of superhydrophobic fabrics as a function of washing cycles.
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4. Conclusions

We successfully fabricated superhydrophobic fabric by modifying the pristine fabric
with silica nanoparticles followed by amino-modified PDMS through a dip-coating process.
The morphological study of treated fabric exhibits spherical silica nanoparticles distributed
throughout the fabric surface, providing the necessary nanoscale roughness for hydropho-
bicity. The prepared fabric shows outstanding superhydrophobicity with a contact angle
of 151° and long-term stability in washing cycles. The employed compounds provided
micro-nano roughness as well as the suitable functional groups favoring the low surface
energy provided by PDMS. The air permeability, bending length, and crease recovery angle
of superhydrophobic fabrics revealed that the treatment did not significantly affect the
comfort properties of the fabric. This work provides new insights into the fabrication of
robust superhydrophobic and water-repellent fabrics with physical comfortability.
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