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Abstract: The most important element of corrosion protection in industrial conditions is the protective
coating system. However, selecting the right coating can often be a real problem due to the sheer
number of coating manufacturers and their products on the market. A quantitative approach based on
the data mining technique used to analyze the obtained multi-site exposure data has been proposed.
This was demonstrated by the example of the selection of a coating system to protect an industrial
ball mill located in a hall for the enrichment of copper ore at the Polish company KGHM Polska
Miedz S.A. A collection of 21 two-layer coating systems from different manufacturers was tested
for one year. Multiple areas on the industrial ball mill, subjected to varying degrees of vibrations
and abrasion, were painted. In addition, sets of samples that can be detached from the mill housing
were mounted, as well as the set exposed in the hall without vibrations. The condition of the coatings
after exposure was assessed using impedance spectroscopy. The obtained data from many different
exposure areas were analyzed using principal components analysis (PCA). In this way, the most
advantageous coating systems for the specific conditions in the hall were indicated. Additionally, on
this basis, the contribution of various destructive factors, including vibrations and abrasion, to the
protective properties of the tested coatings, was estimated.

Keywords: protective coatings; industrial conditions; principal component analysis; impedance
spectroscopy

1. Introduction

Corrosion problems are expensive and potentially dangerous in many industries [1–4].
The proper operation of industrial devices in harsh, specifically corrosive, environments
requires the application of coating systems characterized by long-term substrate protection.
Hence, the correct selection of coating system is one of the important steps in the protection
of new structures and the maintenance of old ones.

Each plant has specific exposure conditions that may not exist in other places. More-
over, in the same plant, different conditions apply in different locations. It is about pa-
rameters such as humidity, temperature, the chemical composition of the atmosphere,
pollution, and mechanical (e.g., vibration) or physical (e.g., abrasion) impact. This affects
the behavior of the coating system. Additional requirements are another obstacle to the
optimal selection of the coating protection. Surface preparation procedures are often the
limiting factor. Abrasive blasting may not always be used due to the operating installations
or machines. The conditions for applying the coatings and their drying can be unfavorable
or restrictive. Generally, the plant area is dirty and it is very difficult, if even impossible,
to achieve the clean surface required by the standards. Furthermore, this has an impact
on the effectiveness of protection. Often, the information from the manufacturer is not
complete or insufficient. The paint manufacturer specifies the properties of the coating
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when the substrate is prepared following these standards. How will it behave if it fails to
meet these conditions?

There are many manufacturers of protective coating systems on the market. How
can we choose the product showing the best protective properties in specific industrial
conditions when limited performance data is available?

The methods used so far (accelerated test chambers, natural exposure) do not meet
the current requirements. In both cases, visual inspection is the primary method of
evaluation [5]. It is a largely subjective method that requires macroscopic signs of degrada-
tion, e.g., substrate corrosion products. However, current painting products are becoming
more and more effective. Accordingly, the waiting time for visually discernible macroscopic
signs of degradation increases significantly, especially for natural exposure. To improve
the description of coating systems, a quantitative evaluation method is necessary for the
detection of the earlier stages of degradation that are not macroscopically visible. It seems
justified to claim that changes at the microscopic level occur much earlier and their de-
tection would allow for the shortening of the waiting time for the differentiation of the
tested samples. Electrochemical impedance spectroscopy (EIS) is a quantitative method
that may be used to evaluate the protective performance of coatings [6–16]. Amirudin
and Thierry investigated the degradation phenomena of coatings on metals using EIS [6].
Bierwagen et al. used EIS to test coated samples exposed in accelerated cabinets [7]. On
the other hand, Shreepathi et al. have focused on the relation between EIS results and the
service-life predictions of organic coatings [8]. Various variants of the analysis of impedance
spectra were investigated in order to simplify their interpretation [9–11]. Miszczyk and
Darowicki proposed a multivariate approach using PCA for the analysis of impedance
data [12–14]. Margarit-Mattos et al. tested the possibility of using EIS to evaluate coating
performance in very aggressive conditions [15]. Xia et al. summarized the current state of
electrochemical measurements in the field with a particular focus on EIS [16].

Additionally, the corrosion chambers do not reproduce real environments and fail
to reliably predict coating performance [7,11,15]. This applies especially to industrial
environments characterized by the specific chemical composition of the environment and
often other types of exposure, e.g., vibration and/or abrasion. Mechanical influences in
industrial conditions affect the protective properties of the coatings [17]. These complex
conditions cannot be simulated in corrosion test chambers.

This situation calls for a different approach to problem solving. Modern techniques
of machine learning, data mining, and big data analysis provide novel strategies to solve
different problems [18–20]. The use of advanced multivariate data analysis algorithms
in these techniques allows for the extraction of useful information from larger amounts
of data.

As mentioned, different places, even in the same industrial hall, may have many
different conditions. The analysis of the behavior of the coating in various conditions
will allow us to better optimize the selection of the most advantageous solutions using a
quantitative approach.

According to the theoretical and practical knowledge, the durability of the coating
protection depends on the general conditions, which can be formulated in the form of three
points [5,21,22]:

(1) Selection of an appropriate paint system for the conditions of target users;
(2) Proper preparation of the surface of the substrate before painting;
(3) Applying paint in appropriate conditions (temperature, humidity, no rainfall, etc.).

The selection of the appropriate paint system is of key importance here, because it
determines, while meeting the requirements of the following points, the durability of
the protection. This procedure is difficult to carry out if there are no proper tools for
the purpose.

In this paper, we proposed a new, innovative way to evaluate and choose the best
systems in specific corrosive industrial environments in a reasonable time. This has been
proven in the conditions of a mining and processing company at the division of copper
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ore enrichment in the Polish company KGHM Polska Miedz S.A., using the example of a
ball mill for grinding copper ore. Coating system samples of various manufacturers were
exposed to the natural conditions of flotation and the ore enrichment facility for one year
and were assessed using EIS and the most frequently used chemometric tool, which is the
principal components method (PCA).

2. Materials and Methods

A set of 21 paint systems from nine manufacturers (P1, . . . , P9) was collected (Table 1),
intended for the renovation of steel surfaces in difficult atmospheric and industrial con-
ditions without the possibility of careful preparation of the surface before painting. The
use of abrasive blasting for cleaning the surface of the substrate was not possible due to
the presence of electrical devices (motors) operating continuously in the hall. The dust
generated during such cleaning could cause the engines to seize and the flotation bath to
be contaminated.

Table 1. Types of the tested coatings and their averaged thicknesses.

Sample Number Type of the Coating The Thickness of the
Coating System/µm Producer

1 epoxy primer + polyurethane 140 (±20) P1

2 polyurethane 110 (±30) P1

3 alkyd 105 (±20) P1

4 epoxy 150 (±30) P2

5 polyurethane 140 (±30) P2

6 acrylic 160 (±40) P3

7 alkyd 130 (±30) P2

8 polyurethane 90 (±40) P4

9 epoxy 160 (±40) P5

10 alkyd 120 (±30) P6

11 epoxy 140 (±30) P7

12 acrylic-polyurethane 110 (±30) P7

13 alkyd 100 (±30) P8

14 alkyd 95 (±30) P9

15 polyurethane 110 (±30) P9

16 polyurethane 100 (±20) P9

17 epoxy 100 (±30) P9

18 polyurethane 1800 (±200) P9

19 epoxy primer + polyurethane 160 (±40) P9

20 bitumen-epoxy 150 (±30) P9

21 epoxy primer + polyurethane 150 (±30) P9

The systems were applied with a brush in two layers. Before the coating was applied,
the surface was cleaned with a wire brush, washed with tap water, dried, and degreased
with acetone. As can be seen from the results of thickness measurements (Table 1), there is
a noticeable spread of thickness. It results from the use of a brush to apply coatings and the
specific properties of each paint.

Paintings were made on the casing of the ball mill in six places characterized by
different vibration parameters (A, B, C, D, E, F; Figures 1 and 2). Additionally, a set of
15 cm × 8 cm × 0.3 cm test coating samples (G, H; Figures 1 and 3–5) was attached to
the body of the mill (Figure 4) and near the mill, but without the presence of vibrations
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(Figure 5). As the samples were prepared outside the hall, albeit similarly, it was easier to
obtain better substrate preparation (e.g., by lower atmospheric humidity and less possibility
of contamination of the substrate in the period between cleaning the surface and applying
the coating).
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Figure 5. Mounted samples in the hall in a vibration-free place.

The hall has a stable, elevated temperature concerning the ambient temperature;
the relative air humidity is about 90%. Most of the surface is wetted with mine water
containing 30 to 120 g/dm3 of salt, mainly chlorides and sulphates, and dump copper ore
dust. Additionally, there are present compounds added to the feed to facilitate the flotation
process (collectors: ethyl and iso-butyl xanthates; frothers: a mixture of polyglycols and
polyglycol ethers) [23]. Most of the devices used in the hall are subject to vibration and
abrasion [24]. Earlier, the corrosivity of the atmosphere was examined by measuring the
rate of corrosion loss of carbon steel plates in accordance with the EN ISO 12944-2 (2018)
standard (European standard, EN ISO 12944-2 Paints and varnishes—Corrosion protection
of steel structures by protective paint systems—Part 2: Classification of environments). The
steel corrosion rate in these conditions was in the range of 39–222 µm/year. The range of
medium to extreme corrosivity categories according to EN ISO 12944-2 occurs in the hall
where the tests were carried out.

The flotation process itself is associated with the need to enrich the ore (usually con-
taining 1.5% to 2% of copper) to the amount of 20–30%, which is required for metallurgical
processes [23]. The applied technologies for processing include such operations as crushing,
screening, milling, classification, flotation, thickening, filtration, and drying of the concen-
trate. For enrichment, pneumatic–mechanical flotation machines requiring compressed air
supply are used [23]. They generate an aerosol containing chlorides and sulfates in the hall.

The samples and paintings on the mill casting were exposed in the hall for 1 year.
After this period, the samples were tested by employing impedance spectroscopy (to

obtain coating resistance). Impedance tests were performed on the coating samples and
paintings on the mill casting. The measuring cells (Figures 2 and 3) were glued to the
surface and filled with a 3% NaCl solution and after about 24 h immersion (to stabilize the
condition of the coatings) impedance tests were performed. Figure 6 shows a schematic
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view of the measuring cell glued to the coated surface. The transparent cell wall is used to
check the electrolyte level in the measuring cell.
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Figure 6. Schematic view of the measuring cell glued to the coated surface for impedance measurements.

The coatings on the mill body were tested with the impedance method using a Palm-
Sens4 mobile impedance meter (PalmSens BV, Houten, the Netherlands) in the frequency
range from 1 MHz to 0.1 Hz, and the collected samples were tested in the laboratory
using a system consisting of a transmittance analyzer Schlumberger 1255 (Solartron In-
struments, Farnborough, UK) and Buffer Atlas 8991 (Atlas-Sollich, Gdansk, Poland) in
the frequency range from 1 MHz to 0.1 Hz. In both cases, the voltage amplitude of the
perturbation signal in the range of 20–60 mV was used. The exposed area was 12 cm2.
During the measurements, in both cases, Faraday cages were used to eliminate external
electromagnetic disturbances.

The barrier aspect of the system was examined—in this case, the value of the impedance
modulus for frequency of 0.1 Hz.

All statistical calculations were conducted using the software PAST (version 3.24) [25].

3. Results and Discussion

The samples rigidly attached to the mill body were compared with the samples
suspended near the mill but without the presence of vibrations. In this way, it was assessed
whether the vibrations of the mill during its operation affected the protective properties
of the tested coatings. Figure 7 shows examples of the impedance spectra of the selected
coatings, and Figure 8 summarizes the results for all the coating systems in the form of a
log impedance modulus at a frequency of 0.1 Hz, log|Z|@0.1Hz.

Coatings 2022, 12, x FOR PEER REVIEW 7 of 13 
 

 

  
(a) (b) 

Figure 7. Exemplary spectra in Bode format (modulus) for samples No. 1 (a) and 12 (b) exposed for 
one year in the absence and presence of vibrations. 

1 3 5 7 9 11 13 15 17 19 212 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10

lo
g 

IZ
I @

0.
1H

z /
 Ω

cm
2

samples  
Figure 8. The logarithm of the impedance modulus log|Z| at 0.1 Hz for 21 samples exposed to the 
mill housing (white) in the presence of vibration and adjacent to the exposure without vibration 
(red) after one year of exposure. 

As can be seen from Figure 8, most of the samples show much lower values in the 
presence of vibrations, and some of the samples have similar values (Figure 9). This means 
that in the first case we observe the most likely destructive effect of vibrations causing the 
reduction of the barrier properties, and in the second case, the vibrations do not cause 
significant changes. Insofar as these values are within the range considered adequate for 
protection, such coatings can be considered suitable for painting components subject to 
vibration and aggressive environments. 

-1 0 1 2 3 4 5 6
2

3

4

5

6

7

 with vibration
 no vibration

Coating sample No. 1

lo
g 

IZ
I /

 Ω
cm

2

log f / Hz
-1 0 1 2 3 4 5 6

2

3

4

5

6

7

8

9

 no vibration
 with vibration

Coating sample No. 12

lo
g 

IZ
I /

 Ω
cm

2

log f / Hz

Figure 7. Exemplary spectra in Bode format (modulus) for samples No. 1 (a) and 12 (b) exposed for
one year in the absence and presence of vibrations.



Coatings 2022, 12, 523 7 of 12

Coatings 2022, 12, x FOR PEER REVIEW 7 of 13 
 

 

  
(a) (b) 

Figure 7. Exemplary spectra in Bode format (modulus) for samples No. 1 (a) and 12 (b) exposed for 
one year in the absence and presence of vibrations. 

1 3 5 7 9 11 13 15 17 19 212 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10

lo
g 

IZ
I @

0.
1H

z /
 Ω

cm
2

samples  
Figure 8. The logarithm of the impedance modulus log|Z| at 0.1 Hz for 21 samples exposed to the 
mill housing (white) in the presence of vibration and adjacent to the exposure without vibration 
(red) after one year of exposure. 

As can be seen from Figure 8, most of the samples show much lower values in the 
presence of vibrations, and some of the samples have similar values (Figure 9). This means 
that in the first case we observe the most likely destructive effect of vibrations causing the 
reduction of the barrier properties, and in the second case, the vibrations do not cause 
significant changes. Insofar as these values are within the range considered adequate for 
protection, such coatings can be considered suitable for painting components subject to 
vibration and aggressive environments. 

-1 0 1 2 3 4 5 6
2

3

4

5

6

7

 with vibration
 no vibration

Coating sample No. 1

lo
g 

IZ
I /

 Ω
cm

2

log f / Hz
-1 0 1 2 3 4 5 6

2

3

4

5

6

7

8

9

 no vibration
 with vibration

Coating sample No. 12

lo
g 

IZ
I /

 Ω
cm

2

log f / Hz

Figure 8. The logarithm of the impedance modulus log|Z| at 0.1 Hz for 21 samples exposed to the
mill housing (white) in the presence of vibration and adjacent to the exposure without vibration (red)
after one year of exposure.

As can be seen from Figure 8, most of the samples show much lower values in the
presence of vibrations, and some of the samples have similar values (Figure 9). This means
that in the first case we observe the most likely destructive effect of vibrations causing
the reduction of the barrier properties, and in the second case, the vibrations do not cause
significant changes. Insofar as these values are within the range considered adequate for
protection, such coatings can be considered suitable for painting components subject to
vibration and aggressive environments.
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Figure 9. Differences in the value of the impedance modulus log|Z| at 0.1 Hz for samples exposed
without and with the presence of vibrations after one year of exposure.

Paintings made directly on the mill housing in various places were also examined
using impedance spectroscopy.

Similarly, for each painting on the mill body, the impedance spectrum was measured
and the logarithm of the impedance module was determined at a frequency of 0.1 Hz. The
obtained data were compiled in the form of a matrix in such a way that each column refers
to a different exposure site (A, B, C, D, E, F—directly on the mill housing, G—samples
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exposed in the hall without vibration, H—samples attached to the mill housing; Figure 1),
and each row contains information about the same coating system.

It was decided to use the data mining method to analyze the obtained data collected
in the form of a matrix. Principal component analysis (PCA) is one of the most widely
used techniques in multivariate analysis and is used to reduce the dimensionality of large
data sets by transforming a large set of variables into a smaller one that contains most
of the information included in the large set [26,27]. In the case under consideration, we
have an eight-dimensional space of results, which, due to a large number of results, is
difficult to analyze visually because human eyesight is adapted to analyzing two- or three-
dimensional charts. On the other hand, we suppose that the obtained results are mutually
correlated, as they refer to the same coatings. Moreover, in this situation, PCA helps
by finding a two- or three-dimensional subspace, which, in the new coordinate system
determined by the principal components, will contain a significant part of the information
contained in the original set. Additionally, and advantageously, this method partially
eliminated random errors by transferring them to the dimensions that are rejected. This
type of approach is used in many research areas, including the science of corrosion and the
research of protective coatings [12–14,28,29]. More information about PCA can be found in
the literature [26,27].

To “calibrate” the points in the new space, two virtual coatings with the most favorable
and the least favorable parameters were added. They were constructed this way: the coating
with the most favorable properties had parameters that are the set of the best results in a
given column, while the worst coating had the lowest parameters in each column. In the
new space, the geometric distance of a point representing a given coating and the virtual
coatings will allow the evaluation of the tested coatings.

PCA was applied and eight principal components (PCs) were extracted. The per-
centages of the variances explained by each PC were 49.021%, 18.921%, 14.27%, 7.617%,
5.048%, 3.299%, 1.263%, and 0.560%, respectively. Figure 10 shows the cumulative variance
of the eight principal components. Clearly, the percentage of the first two PCs describe
67.942% and the first three as being 82.212% of the total information reflected by the
eight parameters. If applying the Kaiser criterion (a single component should be greater
than one [30]), the first four components should be retained.
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As a result of the PCA operation, we obtain the so-called score plot. Figure 11 shows a
score plot for the first two principal components, PC1 and PC2. Each point in the plane
represents a coating system. The figure also shows virtual coating systems with the best (23)
and worst (22) barrier properties.
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Figure 11. PCA score plot for the first two components, PC1 and PC2. Two virtual coating systems
with the best (23) and worst (22) protective properties are marked.

The (Euclidean) distances between the points characterize the similarity between the
samples. The smaller the distances, the more similar the compared samples are in terms of
protective properties. By creating two virtual coatings with the best and worst protective
parameters, it is possible to assess which of the tested coatings are closest to the best virtual
coating and which are closest to the worst virtual coating.

The distances of each point representing the sample to the point (23) (Figure 12a) were
determined. In this way, a ranking of the tested coatings was created in terms of their
protective properties (Figure 12b).

Coatings 2022, 12, x FOR PEER REVIEW 10 of 13 
 

 

 
(a) 

 
(b) 

Figure 12. The computed distances of each point represent a given coating sample to the point cor-
responding to the virtual coating sample 23 (a). After ordering from nearest to farthest (b). 

As a result of the analysis, the best coating systems are: 
1. Paint no. 18 (polyurethane); 
2. Paint no. 5 (polyurethane); 
3. Paint no. 19 (epoxy primer + polyurethane). 

It is noticeable that, in principle, polyurethane products perform best when used to 
protect a ball mill in hall conditions. PCA extracts the orthogonal directions with the great-
est variance. In contrast to the original features, the principal components will be uncor-
related. This suggests that the relevant principal components represent independent ex-
posures. To test this assumption, it is possible to check which component is responsible 
for the vibration. 

To identify the impact of vibrations on the protective properties of the coatings, load-
ings were analyzed to find those in which the vibrated and non-vibrated samples would 
differ in opposite directions (Figure 13). We find this for PC4. Hence, it can be estimated 
that under the tested conditions, the contribution of vibrations to the degradation of coat-
ings can be estimated to be at 8% (Figure 10). Earlier loadings most likely relate to the 
parameters of the chemical composition and the physical parameters of the environment 

Figure 12. The computed distances of each point represent a given coating sample to the point
corresponding to the virtual coating sample 23 (a). After ordering from nearest to farthest (b).



Coatings 2022, 12, 523 10 of 12

As a result of the analysis, the best coating systems are:

1. Paint no. 18 (polyurethane);
2. Paint no. 5 (polyurethane);
3. Paint no. 19 (epoxy primer + polyurethane).

It is noticeable that, in principle, polyurethane products perform best when used
to protect a ball mill in hall conditions. PCA extracts the orthogonal directions with the
greatest variance. In contrast to the original features, the principal components will be
uncorrelated. This suggests that the relevant principal components represent independent
exposures. To test this assumption, it is possible to check which component is responsible
for the vibration.

To identify the impact of vibrations on the protective properties of the coatings, load-
ings were analyzed to find those in which the vibrated and non-vibrated samples would
differ in opposite directions (Figure 13). We find this for PC4. Hence, it can be estimated that
under the tested conditions, the contribution of vibrations to the degradation of coatings
can be estimated to be at 8% (Figure 10). Earlier loadings most likely relate to the parame-
ters of the chemical composition and the physical parameters of the environment (probably
PC1 and PC2), and the abrasive effect of the copper ore on the coating (probably PC3).
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4. Conclusions

This study proposes a method of selecting coating systems with the best protective
properties for specific and unusual industrial conditions with high aggressiveness using a
multivariate approach and electrochemical impedance spectroscopy.

Characteristic features of the presented approach are that quantitative data from many
points of natural exposure are analyzed based on micro symptoms of coating degradation,
which allows for a faster evaluation. The score plot obtained from the proposed principal
component analysis (PCA) procedure indicates the rankings of the tested coatings visually
and quantitatively and shows that the principal components (PCs) are representative of the
specified exposure types.

The 21 tested two-layer coating systems from different manufacturers were ranked
according to their protective properties in specific industrial conditions. Among the tested
samples, the best protective properties were shown by coating systems marked as 18
(polyurethane system), 5 (polyurethane system), and 19 (epoxy primer + polyurethane
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top layer). The analysis of the loadings determined by the PCA allows us to estimate the
contribution of the identified destructive factors to the degradation of the coating systems.

While this study focused on an industrial ball mill in the copper ore enrichment
department, the same concepts could be adapted and applied to other conditions and
industrial facilities.
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