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Abstract: This review summaries more than three decades of scientific knowledge on electrodepo-
sition of calcium phosphate coatings. This low-temperature process aims to make the surface of
metallic bone implants bioactive within a physiological environment. The first part of the review
describes the reaction mechanisms that lead to the synthesis of a bioactive coating. Electrodepo-
sition occurs in three consecutive steps that involve electrochemical reactions, pH modification,
and precipitation of the calcium phosphate coating. However, the process also produces undesired
dihydrogen bubbles during the deposition because of the reduction of water, the solvent of the
electrolyte solution. To prevent the production of large amounts of dihydrogen bubbles, the current
density value is limited during deposition. To circumvent this issue, the use of pulsed current has
been proposed in recent years to replace the traditional direct current. Thanks to breaking times,
dihydrogen bubbles can regularly escape from the surface of the implant, and the deposition of the
calcium phosphate coating is less disturbed by the accumulation of bubbles. In addition, the pulsed
current has a positive impact on the chemical composition, morphology, roughness, and mechanical
properties of the electrodeposited calcium phosphate coating. Finally, the review describes one of the
most interesting properties of electrodeposition, i.e., the possibility of adding ionic substituents to the
calcium phosphate crystal lattice to improve the biological performance of the bone implant. Several
cations and anions are reviewed from the scientific literature with a description of their biological
impact on the physiological environment.

Keywords: electrodeposition; pulsed current; biomaterials; coating; calcium phosphate; hydroxyap-
atite; titanium; bone implant; ionic substitution

1. Introduction

The worldwide clinical demand for bone tissue repair increases every year, particularly
due to the aging population [1–4]. The main metallic bone implants used in orthopedic or
dental surgeries are titanium alloys [5–10], stainless steel [11–15], and CoCr alloys [16–22].
These alloys are used because they have suitable mechanical properties for bone tissue
replacement and their biocompatibility with the body environment is good. According
to the International Union of Pure and Applied Chemistry (IUPAC), biocompatibility is
the ability of a material to be in contact with a biological system without producing an
adverse effect [23–25]. Although these alloys are biocompatible with the body environment,
their biological interaction with the bone tissues is very low. Without any improvement
in the bioactivity of the implant surface, the bone anchor fails, and revision surgery is
required. This is the reason why metal bone implants are commonly coated with calcium
phosphate, a ceramic material with a chemical composition similar to that of bone min-
eral [26–32]. The bioactivity of the calcium phosphate surface layer stimulates the formation
of a direct, adherent, and strong bond with bone tissue [33,34]. The calcium phosphate
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coating initiates a rapid biological response and improves the adhesion of the implant to
the bone by providing a scaffold for bone growth [35–37]. There are several methods to
produce calcium phosphate coatings on implant surfaces, such as plasma spraying [38–45],
magnetron sputtering [46–51], pulsed laser deposition [52–54], electrophoretic deposi-
tion [55–66], or electrodeposition [67–92]. Plasma spraying is the main coating process used
in the bone-implant industry due to its ability to produce large quantities of coatings with
good reproducibility. However, there are some drawbacks to plasma spraying because
this process involves very high temperatures that induce uncontrolled phase changes and
thermomechanical mismatches [40]. Electrodeposition is an alternative method for the
synthesis of calcium phosphate coatings at low temperatures, first introduced by Shirkhan-
zadeh in 1991 [93–95]. For more than three decades, several research laboratories and
companies around the world have regularly proposed new developments to improve the
efficiency of this electrochemical process (Figure 1).
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Figure 1. Industrial calcium phosphate coating electrodeposited on titanium hip implant. Reprinted
and adapted with permission from Aesculap—BBraun Gmbh.

Electrodeposition uses electrical energy from a generator to trigger a series of chemical
reactions in an aqueous solution, leading to the synthesis of a calcium phosphate coating on
a conductive surface [85]. The direct current was typically used first for more than twenty
years but pulsed current electrodeposition has grown in recent years. The main reason
is that the pulsed current mode includes some break times during deposition, providing
several benefits detailed in this review of the literature. The first section in-depth describes
the reaction mechanisms involved during the electrodeposition process. The direct current
and pulsed current modes are presented and compared in the following sections. The last
part presents more specific developments of electrodeposition with some ionic additives to
enhance the biological properties of the synthesized calcium phosphate coatings.

2. Electrodeposition of Calcium Phosphate Coatings

Electrodeposition is an electrochemical process that uses two electrodes immersed in
an aqueous solution containing calcium and phosphate ions. Most experimental protocols
use calcium nitrate tetrahydrate ((CaNO3)2·4H2O) and ammonium dihydrogen phosphate
(NH4(H2PO4)) to produce the electrolyte solution. The two electrodes are connected to an
electrical generator (Figure 2).
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Figure 2. Sketch of the experimental setup used for electrodeposition.

In an electrolytic cell, the anode is the positive electrode, and the cathode is the
negative electrode. When a current density is applied, the electrolysis of water (the solvent)
triggers redox reactions on the surfaces of both electrodes. At the cathode where the metal
bone implant is connected, the electrochemical reactions imply a pH variation that induces
the surface precipitation of a calcium phosphate layer.

2.1. Electrochemical Reactions

Several redox reactions may occur at the two electrode-electrolyte interfaces. Oxidation
reactions take place at the anode, and reduction reactions take place at the cathode. The
main redox reactions of the process involve water, the solution solvent whose anodic
oxidation is:

2H2O→ O2 ↑ + 4H++4e− (1)

The cathodic reduction of water occurs simultaneously:

2H2O+2e− → H2 ↑ + 2OH− (2)

In an acidic medium, proton reduction can also take place at the cathode:

2H++2e− → H2 ↑ (3)

These reduction reactions locally increase the pH value of the solution at the cathode-
electrolyte interface, causing acid-base reactions. However, several authors also describe
other electrochemical reactions that affect the local pH value in the vicinity of the cath-
ode [69,96–98]:

O2+2H2O+4e− → 4OH− (4)

O2+2H2O+2e− → 2OH−+H2O2 (5)

NO−3 +2H++2e− → NO−2 +H2O (6)

NO−3 +10H++8e− → NH+
4 +3H2O (7)

NO−3 +H2O+2e− → NO−2 +2OH− (8)

NO−3 +7H2O+8e− → NH+
4 +10OH− (9)

NO−3 +6H2O+8e− → NH3+9OH− (10)

H2PO−4 +H2O+2e− → H2PO−3 +2OH− (11)

However, the amounts of oxygen, nitrate, and dihydrogen phosphate ions are very low
compared to the amount of water, the solvent of the electrolyte solution. The reduction of
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water or the reduction of protons are the main cathodic reactions during the electrochemical
process. The corresponding pH variations in the vicinity of the cathode promote the
dissociation of the dihydrogen phosphate ions according to an acid-base process.

2.2. Acid-Base Reactions

As prepared, the pH of the electrolyte solution is typically acid (4 < pH < 5). At the
cathode-electrolyte interface, the variation of pH due to the reduction of water induces the
dissociation of dihydrogen phosphate ions in the solution (Figure 3).
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The concentration of phosphate species as a function of the pH of the solution is shown
in Figure 4.
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Figure 4. Concentration of phosphate species as a function of the pH value. Reprinted and adapted
with permission from Ref. [99]. Copyright 2020 Clarolux.

With a pH value between 4 and 5, the electrolytic solution initially contains dihydrogen
phosphate ions (H2PO−4 ). When the local pH increases between 7.2 and 12.3 in the vicinity
of the cathode, the hydrogen phosphate ions (HPO2−

4 ) become the major phosphate ions
produced according to reaction (12):

H2PO−4 → HPO2−
4 +H+ (12)
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For pH values greater than 12.3, the phosphate ions (PO3−
4 ) predominate according to

reaction (13):
HPO2−

4 → PO3−
4 +H+ (13)

2.3. Calcium Phosphate Coating Precipitation

Reactions (12) and (13) induce a local ionic supersaturation that causes the precipitation
of a calcium phosphate coating characterized by low solubility and high thermodynamic
stability. As a function of the pH value in the vicinity of the cathode, various phases can
precipitate:

- dicalcium phosphate dihydrate (brushite):

Ca2++HPO2−
4 +2 H2O→ CaHPO4·2 H2O (14)

- octacalcium phosphate:

8 Ca2++2 HPO2−
4 +4 PO3−

4 + 5 H2O→ Ca8(HPO4)2(PO4)4·5 H2O (15)

- calcium-deficient apatite:

(10− x)Ca2++ xHPO2−
4 +(6− x)PO3−

4 +(2− x)OH− → Ca10−x(HPO4)x(PO4)6−x(OH)2−x (16)

with 0 < x < 2
- hydroxyapatite:

10 Ca2++6 PO3−
4 +2OH− → Ca10(PO4)6(OH)2 (17)

The composition of the calcium phosphate coating depends on the pH value at the
cathode, which is related to the current density imposed by the generator. The main charac-
teristic of these calcium phosphate phases is their stoichiometry, specifically described in
biomaterials science by their calcium to phosphorus atomic ratio (Ca/P). The stoichiometry
of the phase is related to its solubility in a physiological environment, corresponding to the
surface bioactivity conferred to the bone-implant (Table 1).

Table 1. Calcium phosphate coatings produced by electrodeposition.

Calcium Phosphate Abbreviation Chemical Formula (Ca/P)at.
Solubility
[−log(Ks)] References

dicalcium phosphate
dihydrate (brushite) DCPD CaHPO4·2 H2O 1.00 6.6 [100–102]

octacalcium phosphate OCP Ca8(HPO4)2(PO4)4·5 H2O 1.33 96.6 [103–105]
calcium-deficient apatite Ca-def apatite Ca10−x(HPO4)x(PO4)6−x(OH)2−x 1.34–1.66 85.1 [106–108]
β-tricalcium phosphate * β-TCP β-Ca3(PO4)2 1.50 28.9 [109–111]

hydroxyapatite HAP Ca10(PO4)6(OH)2 1.67 116.8 [72,73,85]

* only after thermal annealing at T > 800 ◦C.

Experimentally, the phases of calcium phosphate are mostly identified by X-ray diffrac-
tion (Figure 5) and infrared spectroscopy (Figure 6).
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Thermal annealing of calcium-deficient apatite (Ca10−x(HPO4)x(PO4)6−x(OH)2−x) at
800 ◦C produces a mixture of crystalline phases whose proportions depend on its stoichiom-
etry, hence its Ca/P atomic ratio. The obtained crystallized material is a biphasic compound.

If the value of x is between 0 and 1, the calcium-deficient apatite phase has a Ca/P
atomic ratio between 1.5 and 1.67. Crystallization of calcium-deficient apatite produces a
mixture of HAP and β-tricalcium phosphate (β-TCP) according to reaction (18).

Ca10−x(HPO4)x(PO4)6−x(OH)2−x
800 ◦C−→ (1− x)Ca10(PO4)6(OH)2 + (3x)Ca3(PO4)2+(x) H2O (18)

Ca-def apatite (1− x) HAP + (3x) β-TCP + (x) H2O
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If the value of x is exactly 1, the calcium to phosphorus atomic ratio is 1.5 and the
calcium-deficient apatite phase is specifically named tricalcium phosphate (TCP). Thermal
annealing at 800 ◦C crystallizes it into the β phase according to reaction (19) [113].

Ca9(HPO4)(PO4)5(OH)
800 ◦C−→ 3 Ca3(PO4)2 (19)

TCP β-TCP

The XRD pattern and the FT-IR spectrum of β-TCP are shown in Figures 7 and 8,
respectively.
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3. Drawbacks of Direct Current Electrodeposition

Although electrodeposition is an efficient process to produce calcium phosphate
coatings, there are several disadvantages and limitations to using it in a direct current mode.

3.1. Ionic Mobility

As described in Section 2.3, electrodeposited calcium phosphate coatings are obtained
by precipitation of cations (Ca2+) with anions (phosphates). Most of the protocols in the
literature describe electrolytic solutions prepared with calcium salt and phosphate salt
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whose molar concentrations have a ratio of 1.67. Typically, the concentration of calcium salt
is 0.042 mol L−1 and the concentration of phosphate salt is 0.025 mol L−1. This molar ratio
is generally chosen with the perspective to produce hydroxyapatite (Ca10(PO4)6(OH)2),
the gold standard among calcium phosphates, whose calcium to phosphorus atomic ratio is
1.67. However, despite this molar ratio in solution, very few articles show electrodeposited
calcium phosphate coatings with the stoichiometry of hydroxyapatite. This could be the
result of the mobility of the ions in the solution that modifies the local concentrations of
calcium and phosphate ions in the vicinity of the electrodes. During the electrochemical
process, the ions move under the influence of the electric field between the two electrodes.
The cations move toward the cathode, and the anions move toward the anode [116,117].
The longer the deposition, the more local concentrations in the solution are modified and
impact the stoichiometry of the electrodeposited coating. This implies a limitation of the
process duration when electrodeposition is used in a direct current mode. This is one of
the reasons why regular break times are necessary during deposition, to restore the initial
electrolyte concentrations everywhere in the solution.

3.2. Accumulation of Dihydrogen Bubbles

The main electrochemical reaction involved in the process is the reduction of water
according to reaction (2). This reaction produces dihydrogen bubbles on the surface of the
cathode, where the deposition of the coating is expected. Most of the dihydrogen bubbles
escape quickly from the cathode, but some of them remain adsorbed on the surface. These
bubbles prevent uniform deposition and promote the formation of many porosities that
reduce the mechanical properties of the calcium phosphate coating. The cohesion of the
layer and its adhesion to the substrate are particularly impacted. The SEM image of Figure 9
shows an example of the porosities caused by adsorbed dihydrogen bubbles on a calcium
phosphate coating electrodeposited in direct current mode.
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The higher the current density, the more dihydrogen bubbles are produced [118].
Therefore, the maximum current density value is limited by the number of bubbles pro-
duced by the process. This implies a limitation of the pH values reachable in the vicinity
of the cathode, i.e., a limitation of the chemical compositions the process can produce.
Since dihydrogen bubbles impose some limitations on the stoichiometry of the synthesized
calcium phosphate coatings, the surface bioactivity of the implant is affected. This is one
of the reasons why regular break times are necessary during deposition to reduce the
accumulation of disturbing dihydrogen bubbles on the surface of the cathode.

4. Advantages of Pulsed Current Electrodeposition

The use of pulsed current is an efficient solution to solve the problems described above.
The idea is to provide some regular break times (toff) during deposition (ton) to restore the
initial experimental conditions (Figure 10).
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Figure 10. Sketch of the pulsed current.

Different experimental protocols for pulsed currents are described in the literature,
with short or long break times. Most protocols describe deposition times and break times
of the same duration, but longer break times are also possible. Various durations can be
used, ranging from a few microseconds to tens of seconds [72–75,119–121]. However, in
all these works, the authors note several advantages of using pulsed currents, describing
the improved properties of the electrodeposited calcium phosphate coatings. The authors
describe more uniform calcium phosphate coatings with less porosity (Figure 11).
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4.1. Higher Current Densities

As previously described, the current density values are limited because of their impact
on the local ionic concentrations in the solution and on the number of dihydrogen bubbles
produced. Both phenomena are undesirable and must be reduced to ensure appropriate
electrodeposition of calcium phosphate coatings.

When electrodeposition is carried out in direct current mode, current densities are
limited to a maximum of 10 mA cm−2 [122]. Beyond this value, the generated dihydrogen
bubbles damage the electrodeposited coating [118]. This maximum current density can
be used to produce a calcium-deficient apatite according to reaction (16). Typically, this
phase has a calcium to phosphorus atomic ratio between 1.5 and 1.6. After post-deposition
thermal annealing at a temperature higher than 800 ◦C, calcium-deficient apatite crystallizes
into a biphasic compound made of hydroxyapatite and β-tricalcium phosphate according to
reaction (18) [109]. The proportion of each crystallized phase depends on the stoichiometry
of the calcium-deficient apatite, which is described by its calcium to phosphorus atomic ratio.

When electrodeposition is used in a pulsed current mode, the regular break times
during the process are efficient for homogenizing the electrolyte solution and letting the dihy-
drogen bubbles escape from the cathode surface. Therefore, the impact of the two unfavorable
phenomena is reduced. The range of usable current densities increases, giving access to an
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extended range of chemical compositions. Current densities of up to 15 mA cm−2 can be
used to reach higher pH values and reduce the calcium deficiency of the apatite coating.
Another solution to further increase the pH value in the vicinity of the cathode consists
of adding hydrogen peroxide (H2O2) to the electrolyte solution. Hydrogen peroxide is a
strong oxidative reagent whose reduction at the cathode produces hydroxide ions according
to the reaction (20):

H2O2+2e− → 2 OH− (20)

However, the amount of hydrogen peroxide in the electrolytic solution is limited
to avoid the overproduction of hydroxide ions that prevent an appropriate deposition
of the coating [123]. When combining an optimized pulsed current with a 9 vol.% H2O2
concentration, a stoichiometric hydroxyapatite coating with a calcium to phosphorus atomic
ratio of 1.67 is produced according to reaction (17). The obtained coating is less porous
and composed of thin needles agglomerates that form spheroids of 1 µm in diameter. This
means that the process can be used to produce all the calcium phosphate phases shown in
Table 1 or a mixture of these phases. The low current densities of about 1 mA cm−2 produce
brushite [122]. Intermediate current densities with values ranging from 2 mA cm−2 to
15 mA cm−2 produce octacalcium phosphate and calcium-deficient apatite [111]. Therefore,
the combination of a current density of 15 mA cm−2 and hydrogen peroxide produces
stoichiometric hydroxyapatite [72,73,85]. The bioactivity of the calcium phosphate coating
can be chosen from a more soluble and reactive compound (brushite) to a more stable
material (hydroxyapatite). This flexibility in composition gives full control over the kinetics
of interactions between the bone-implant and the body environment, i.e., full control over
the bioactivity of the biomaterial.

4.2. Improved Morphology and Roughness

The electrodeposited calcium phosphate coatings are made of crystallites that grow
during deposition. The direct current mode produces crystallites that have the morphology
of needles of about 1 µm in size stacked one upon another (Figure 12). Sharp microneedles
are harmful to bone cells, preventing attachment and spreading [124,125].

Coatings 2022, 12, x FOR PEER REVIEW 10 of 25 
 

 

dihydrogen bubbles escape from the cathode surface. Therefore, the impact of the two 

unfavorable phenomena is reduced. The range of usable current densities increases, giv-

ing access to an extended range of chemical compositions. Current densities of up to 15 

mA cm−2 can be used to reach higher pH values and reduce the calcium deficiency of the 

apatite coating. Another solution to further increase the pH value in the vicinity of the 

cathode consists of adding hydrogen peroxide (H2O2) to the electrolyte solution. Hydro-

gen peroxide is a strong oxidative reagent whose reduction at the cathode produces hy-

droxide ions according to the reaction (20): 

H2O2 + 2e−  → 2 OH− (19) 

However, the amount of hydrogen peroxide in the electrolytic solution is limited to 

avoid the overproduction of hydroxide ions that prevent an appropriate deposition of the 

coating [123]. When combining an optimized pulsed current with a 9 vol.% H2O2 concen-

tration, a stoichiometric hydroxyapatite coating with a calcium to phosphorus atomic ra-

tio of 1.67 is produced according to reaction (17). The obtained coating is less porous and 

composed of thin needles agglomerates that form spheroids of 1 μm in diameter. This 

means that the process can be used to produce all the calcium phosphate phases shown 

in Table 1 or a mixture of these phases. The low current densities of about 1 mA cm−2 

produce brushite [122]. Intermediate current densities with values ranging from 2 mA 

cm−2 to 15 mA cm−2 produce octacalcium phosphate and calcium-deficient apatite [111]. 

Therefore, the combination of a current density of 15 mA cm−2 and hydrogen peroxide 

produces stoichiometric hydroxyapatite [72,73,85]. The bioactivity of the calcium phos-

phate coating can be chosen from a more soluble and reactive compound (brushite) to a 

more stable material (hydroxyapatite). This flexibility in composition gives full control 

over the kinetics of interactions between the bone-implant and the body environment, i.e., 

full control over the bioactivity of the biomaterial. 

4.2. Improved Morphology and Roughness 

The electrodeposited calcium phosphate coatings are made of crystallites that grow 

during deposition. The direct current mode produces crystallites that have the morphol-

ogy of needles of about 1 μm in size stacked one upon another (Figure 12). Sharp mi-

croneedles are harmful to bone cells, preventing attachment and spreading [124,125]. 

 

Figure 12. Calcium phosphate coating obtained by direct current electrodeposition. (a) 

SEM image and (b) TEM image. Reprinted with permission from Ref. [85]. Copyright 

2012 Nova Science Publishers. 

On the other hand, pulsed current electrodeposition produces smaller crystallites 

that agglomerate to form spheroids (Figure 13). 

 

(a) (b) 

Figure 12. Calcium phosphate coating obtained by direct current electrodeposition. (a) SEM image
and (b) TEM image. Reprinted with permission from Ref. [85]. Copyright 2012 Nova Science Publishers.

On the other hand, pulsed current electrodeposition produces smaller crystallites that
agglomerate to form spheroids (Figure 13).
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Figure 13. Calcium phosphate coating obtained by pulsed current electrodeposition. (a) SEM image
and (b) TEM image. Reprinted with permission from Ref. [74]. Copyright 2011 Springer US.

This characteristic morphology is more beneficial to bone cells and induces a decrease
in the roughness of the coating. Morphology and roughness are two key parameters of cal-
cium phosphate coatings, which are known to affect cell adhesion, spreading, proliferation,
and differentiation. However, osteoblastic cell adhesion is a complex phenomenon and
not only a simple physical attachment of cells [126,127]. Surface roughness is necessary,
but only in a specific range. Roughness values greater than 2 µm inhibit osteoblastic cell
adhesion because the long distances between the peaks and valleys are unfavorable to the
formation of osteoblastic pseudopodia [128,129]. Cairns et al. explain that regular smooth
topography significantly increases osteocalcin expression and alkaline phosphatase activity,
which promote bone cell growth [130]. Valleys are necessary to promote cell localization and
stretch, and peaks of appropriate size are suitable to facilitate cell adhesion. Pulsed electrode-
position produces calcium phosphate coatings with roughness values of ca. 1 µm and below,
which is in the range of the most appropriate values for the best cell behavior [131,132].

4.3. Enhanced Mechanical Properties

Because of the break times during electrodeposition in pulsed current mode, the
dihydrogen bubbles produced by the reduction of water can easily escape from the cathode
surface. The nucleation and growth of the calcium phosphate coatings are less disturbed by
the bubbles, resulting in the densification of the electrodeposited coatings. Scratch test and
nanoindentation measurements show that pulsed electrodeposition improves adhesion,
apparent Young’s modulus, and hardness of calcium phosphate coatings compared to those
obtained in direct current mode [133].

Post-deposition thermal annealing can be used to densify the coating [134–136]. Tem-
peratures up to 550 ◦C are generally used for air treatments to avoid oxidation of the
metallic substrate. Under a controlled atmosphere (e.g., argon or vacuum), temperatures
up to 1000 ◦C have been described [111]. The corresponding improvement in adhesion
is generally studied by a standardized measurement of tensile adhesion according to the
international standard ISO 13779-4 (Figure 14) [137].
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Briefly, a Ti6Al4V cylinder (25 mm in diameter and 25 mm in height) is coated with
calcium phosphate and the coated surface is pasted against another Ti6Al4V cylinder coated
with adhesive glue (Figure 14a). After polymerization of the glue, the system is exposed to
an increasing load applied by a standard tensile machine (Figure 14b) until a total removal
of the coating (Figure 14c). The test is repeated five times to obtain an average adhesion
value. The resulting adhesion values must be greater than 15 MPa to be accepted by the
bone-implant industry [138].

5. Ionic Substitution to Enhance the Properties of Electrodeposited Coatings

A powerful property of electrodeposition is the possibility of adding ionic substituents
to the electrolyte solution used for the synthesis. During deposition, the ionic substituents
are integrated into the calcium phosphate lattice to enhance the biological properties of
the coating. Several ions are described in the scientific literature with different biological
effects [139–147].

5.1. Divalent Cations

The most common substitutions of electrodeposited calcium phosphate coatings are
obtained from divalent cations (M2+) substituting calcium (Ca2+) according to reaction (21):

(10− x)Ca2++xM2++yHPO2−
4 +(6− y)PO3−

4 +2OH− → Ca10−xMx(HPO4)y(PO4)6−y(OH)2 (21)

Among the divalent cations capable of enhancing the biological properties of electrode-
posited calcium phosphate coatings, Co2+, Cu2+, Mg2+, Mn2+, Sr2+, Zn2+ are particularly
studied in the scientific literature.

5.1.1. Cobalt (Co2+)

The addition of cobalt to the calcium phosphate coating aims to promote angiogenesis
in vivo, i.e., the neovascularization of newly formed bone tissues. These new blood vessels
are involved in the supply of nutrients to bone cells and the transport of macromolecules
during bone repair and regeneration [148]. For the efficient promotion of angiogenesis and
to prevent any toxic effect of cobalt ions within the body, a 5 at.% substitution is commonly
recommended [149].

5.1.2. Copper (Cu2+)

Copper is well known to provide antibacterial properties to various surfaces, par-
ticularly against Escherichia coli (E. coli) strains [150]. Copper reduces the permeability
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of the cell membrane of bacteria, preventing their replication, and finally causing their
death [151]. However, the amount of copper in the physiological environment must be
limited to prevent any toxic effect on bone cells at high concentrations [152].

5.1.3. Magnesium (Mg2+)

Magnesium is known to promote bone densification. An appropriate amount of
magnesium in the implant coating improves osteoblastic cell attachment and prolifera-
tion. Magnesium also increases the production of alkaline phosphatase, the main enzyme
involved in the mineralization of the extracellular matrix of bone [153–156].

5.1.4. Manganese (Mn2+)

Manganese is mainly described for its ability to regulate osteoblast differentiation,
control bone resorption, and promote cell adhesion [157]. Furthermore, manganese ions
promote the production of osteocalcin, a protein produced by osteoblasts and involved in
the bone formation process [158].

5.1.5. Strontium (Sr2+)

The use of strontium is well known in the form of strontium ranelate, a widely used
drug for the treatment of bone defects such as postmenopausal osteoporosis. Strontium
stimulates bone formation and inhibits bone resorption, which explains the increase in
bone density in patients [159,160]. A 5 at.% substitution shows the best results in osteoblast
cell activity and differentiation, and in osteoclast cell proliferation [161–163].

5.1.6. Zinc (Zn2+)

Zinc in calcium phosphate coatings is described for several biological actions. Zinc
mainly provides antibacterial and anti-inflammatory properties, but the promotion of bone
formation and regeneration is also described in the literature [164]. Bone cell adhesion and
viability are generally improved due to the presence of a few percent of zinc in the calcium
phosphate coatings [165,166].

5.2. Monovalent Cations

Several monovalent cations are also described for their interesting biological action.

5.2.1. Potassium (K+)

Potassium can activate several enzymes involved in the bone mineralization pro-
cess [167–169]. Potassium also promotes cell adhesion and regulates biomechanical pro-
cesses in bone minerals [170–172].

5.2.2. Silver (Ag+)

Silver is well-known to provide remarkable antibacterial properties to various surfaces.
The bacterial inhibition is due to the ability of silver to penetrate the cytoplasm of bacteria.
Silver can interact with thiol groups in proteins, inhibiting cellular respiration and causing
the death of bacteria [173]. Another mechanism is attributed to the ability of silver to bind
to microbial DNA to prevent bacterial replication [174,175].

5.2.3. Sodium (Na+)

Substitution with sodium ions enhances the biomineralization capacity of calcium
phosphates in the physiological environment. Moreover, the positive contribution of
sodium to bone cell adhesion and proliferation has been observed in vivo [176,177].

5.3. Anions

Anionic substitutions are described in the scientific literature in the case of hydrox-
yapatite. Anions can substitute phosphate groups to produce Ca10(PO4)6−xMx(OH)2
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compounds or hydroxyl groups to produce Ca10(PO4)6Mx(OH)2−x [146]. The most com-
mon anions used to substitute electrodeposited calcium phosphate coatings are CO2−

3 , Cl−,
F−, and SiO4−

4 .

5.3.1. Carbonate (CO2−
3 )

Carbonate ions are naturally present in electrolyte solutions at room temperature
because atmospheric carbon dioxide (CO2) dissolves in water to produce carbonic acid
(H2CO3) according to reaction (22).

CO2+H2O→ H2CO3 (22)

Carbonic acid is a weak dibasic acid characterized by two dissociation constants,
pKa1 = 6.8 and pKa2 = 9.9. When the pH of the electrolyte solution increases, bicarbonate
ions (HCO−3 ) and carbonate ions (CO2−

3 ) are formed [85]:

H2CO3 → HCO−3 +H+ (23)

HCO−3 → CO2−
3 +H+ (24)

The chemical composition of carbonate calcium phosphates is very similar to that of
bone apatite. Substitution with carbonate ions induces higher solubility and bioactivity of
the calcium phosphate coating in the physiological environment [80,178,179].

5.3.2. Fluorine (F−)

The use of fluorine is widespread in tooth care products to provide antibacterial
properties. Substituting calcium phosphates with fluorine also stimulates the formation
of the extracellular matrix and significantly improves bone cell proliferation and alkaline
phosphatase activity [180,181].

5.3.3. Silicates (SiO4−
4 )

Calcium phosphate substituted with silicates improves osteoblast attachment, prolif-
eration, and differentiation. Silicates also favor the formation of extracellular matrix and
increase alkaline phosphatase activity and osteocalcin expression [182,183].

5.4. Next Generation of Substituted Calcium Phosphate Coatings

Due to the variety of biological behaviors previously described, the multi-substitution
of calcium phosphate coatings is an attractive solution to combine several biological prop-
erties of different ions [184–193]. For example, Bracci et al. describe multi-substitution with
three divalent cations (Mg2+, Sr2+, and Mn2+) to cumulate their positive impact on bone
cell activity [194]. Another development proposed by Furko et al. is the electrodeposition
of calcium phosphate coatings substituted with Ag+ and Zn2+ to provide simultaneous an-
tibacterial and anti-inflammatory properties to the surface of the bone-implant [195]. They
also experiment with multi-elemental substitution of electrodeposited calcium phosphate
coatings [196,197]. Other works describe electrodeposited calcium phosphate coatings that
are simultaneously substituted by anions and cations. Olivier et al. use CO2−

3 and Sr2+ to
produce coatings with a biomimetic chemical composition capable of improving bone cell
proliferation [80]. Huang et al. substitute calcium phosphate coatings with F− and Sr2+

to provide antibacterial properties and improve bone formation [198]. Bir et al. combine
the antibacterial effects provided by F− and Ag+ to inhibit more bacterial growth on the
surface of the bone-implant [199]. Many other combinations remain to be explored with
different amounts of cations and anions added to the calcium phosphate crystal lattice.
Ideally, the resulting coating will combine all the biological enhancements previously
described (Table 2).
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Table 2. Main ions used to substitute electrodeposited calcium phosphate coatings.

Ions Salt Electrolyte
Concentration

Electrodeposition
Mode Biological Effect Reference

divalent cations - - - - -
Co2+ Co(NO3)2·6H2O 0.525 to 4.20 mM pulsed current angiogenesis [149]
Cu2+ Cu(NO3)2·3H2O 0.167 mM pulsed current antibacterial activity [152]
Mg2+ Mg(NO3)2·6H2O 1.05 to 2.10 mM pulsed current bone formation [156]
Mn2+ Mn(NO3)2·4H2O 0.30 mM direct current bone formation [158]
Sr2+ Sr(NO3)2 1.02 to 4.20 mM pulsed current bone formation [163]

Zn2+ Zn(NO3)2·6H2O 5.0 to 10.0 mM pulsed current bone forma-
tion/antibacterial [166]

monovalent cations - - - - -
K+ KCl 5.37 mM direct current bone formation [172]

Ag+ AgNO3 10.0 mM pulsed current antibacterial activity [175]
Na+ NaNO3 60.0 mM cathodic polarization bone formation [177]

anions - - - - -
CO2−

3 no salt (see Section 5.3) - direct current bioactivity [179]
F− NaF 1.0 to 16.0 mM direct current antibacterial activity [181]

SiO4−
4 Na2SiO3·9H2O 2.5 to 7.5 mM pulsed current bioactivity [183]

Another possible development is the substitution with new ions, already described in the
literature to substitute calcium phosphate materials, but never in the case of electrodeposited
coatings. For example, iron (Fe2+ or Fe3+) is known to improve osteogenesis, simultaneously
providing anticancer and antibacterial properties to calcium phosphates [200–202]. Chloride
ions (Cl−) are known to promote cell proliferation and osteoconductivity because of their
ability to develop an acidic environment on the surface of bones. This acidity supports
the action of osteoclasts in the bone resorption process [203–205]. Lithium (Li+) improves
bone regeneration by promoting alkaline phosphatase and osteogenic gene expression in
osteoblasts [206,207]. Cerium (Ce3+ or Ce4+) is used for effective antibacterial properties
against E. coli and S. aureus [208,209]. Bismuth (Bi3+), gallium (Ga3+), and selenium (SeO2−

3 )
show simultaneous positive impacts against bacteria and tumor cells [210–216]. Erbium
(Er3+), europium (Eu3+), or terbium (Tb3+) are added for their photoluminescence properties
used in biological imaging systems [217–222]. The variety of all these ions and their
biological impacts on calcium phosphate coatings used for bone implant applications will
be part of the upcoming developments of the electrodeposition process.

6. Conclusions

In this review, the three steps to synthesize calcium phosphate coatings by electrode-
position were described: electrochemical reactions, acid-base reactions, and precipitation
reactions. The process has limitations in the direct current mode because of the production
of undesired dihydrogen bubbles due to the reduction of water, the solvent of the electrolyte
solution. To solve this problem, pulsed current electrodeposition is a relevant solution that
produces uniform calcium phosphate coatings with improved morphology, roughness, and
mechanical properties. Moreover, the addition of hydrogen peroxide to the electrolytic
solution provides more control over the chemical composition of the coating. Finally, the
ionic substitution of electrodeposited calcium phosphate coatings was reviewed, and some
new perspectives on the process were described. Multi-substitution or substitution with
new ions will be the next development to improve the process.
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