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Abstract: In this paper, porous zinc oxide (ZnO) nanosheets were successfully prepared by a simple
low-temperature hydrothermal method. X-ray diffraction (XRD), scanning electron microscopy (SEM),
transmission electron microscopy (TEM) and Brunauer–Emmett–Teller (BET) tests showed that the
synthesized product was ZnO with porous sheet structure. The diameter of porous nanosheets was
about 100 nm and the thickness was about 8 nm. As a photocatalyst, the degradation efficiencies
of porous ZnO nanosheets for methyl orange (MO), methylene blue (MB) and Rhodamine B (RhB)
were 97.5%, 99% and 96.8%, respectively. In addition, the degradation efficiency of ZnO for mixed
dyes (Mo, MB and RhB) was satisfactory, reaching 97.7%. The photocatalytic stability of MB was
further tested and remained at 99% after 20 cycles. In the experiment, ZnO/FTO (fluorine-doped
tin oxide) composites were prepared by using ZnO as the conductive layer. Titanium dioxide (TiO2)
was deposited on the surface of ZnO/FTO by electrodeposition, so as to obtain a TiO2/ZnO/FTO
composite. By studying the electrochromic properties of this composite, it was found that the
TiO2/ZnO/FTO composite shows a large light modulation range (55% at 1000 nm) and excellent
cycle stability (96.6% at 200 cycles). The main reason for the excellent electrochromic properties
may be the synergistic effect between the porous structure and the polymetallic oxides. This study
is helpful to improve the photocatalytic efficiency and cycling stability of metal oxides, improve
the transmittance of thin films and provide a new strategy for the preparation of ZnO composite
materials with excellent photocatalytic and electrochromic properties.

Keywords: hydrothermal method; porous ZnO nanosheets; photocatalytic; electrochromic perfor-
mances

1. Introduction

With the rapid development of modern society, energy consumption is becoming more
and more significant. Energy consumption has become a problem that must be solved
in social development. At the same time, the use of coal, oil and other fossil energy and
the discharge of wastewater in the production process are causing serious environmental
pollution. Therefore, green and efficient utilization methods have become a research hotspot
in the field of energy and environment. To achieve the goal of low-carbon, energy-saving,
green and sustainable development, it is important to develop high-performance green
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energy-saving devices, realize the efficient use of sunlight and change the current energy
consumption structure [1,2].

In recent years, ZnO semiconductor materials have received widespread attention
due to their simple and diverse preparation methods, easy operation, high conductivity
and excellent photocatalytic performance. ZnO materials have a variety of nanostructures
and a large bandgap. The catalytic decomposition efficiency of pollutants is very good.
Due to its high sunlight utilization [3–5], ZnO has become the most likely photocatalyst
to replace TiO2 and has become one of the most popular photocatalysts. ZnO has higher
conductivity because it can carry more electrons and holes when given external energy.
Therefore, by mixing ZnO with other substances, a semiconductor material with good
conductivity can be obtained, which plays an excellent role in material devices [6]. ZnO
can also be used to detect gas. The main principle is that the resistivity of a semiconductor
device changes due to changes in the surrounding gas [7]. This allows us to accurately
detect the most harmful gases, further improving the quality of life. ZnO materials are
also commonly applied in many areas such as quantum dot solar cells, photocatalysts,
light-emitting LEDs, and electrochromism conductive layers. Ngullie et al. [8] successfully
prepared ZnO nanocomposites by pyrolysis of urea and thiourea; the material was very
effective in photocatalytic degradation of MB, and the material could effectively degrade
98% of MB dyes within 180 min. Lu et al. [9] synthesized ZnO NPs using the root extract
of lanceolate and found that the material can effectively degrade 90.2% of MB in 40 min,
and the cycle stability can reach 95% after 10 experiments. Qamar et al. [10] synthesized a
G-C3N4/Cr-ZnO hybrid nanocomposite. The composite showed a significant enhancement
in solar energy utilization, and was able to effectively degrade 93% of methylene blue dye
within 90 min. Ali et al. [11] successfully fabricated ZnO nanofilms by thermal evaporation,
which had a transmittance of more than 50% at 870 nm. Yang et al. [12] successfully
prepared double-layer ZnO nanobricks by a two-step hydrothermal method and the RF
sputtering method, with a reaction time of 12.8 s and a coloring efficiency of 18.28 cm2 c−1.
After 2000 cycles, the capacity retention rate reached 60.3%.

In this work, we prepared porous ZnO nanostructures by a simple low-temperature
hydrothermal method. We studied their photocatalytic and electrochromic properties.
The results show that the length and thickness of nano-flake porous structures are about
100 nm and 8 nm, respectively. We further studied the photocatalytic decomposition
and electrochromic properties of the prepared materials. Through the photocatalytic
performance test, the material has suitable degradation efficiency for MO, MB and RhB.
Through the electrochromic performance test, the material has light transmittance in the
visible near-infrared band, and the transmittance value is 55% at the wavelength of about
1000 nm. After 200 cycles in the 550 nm visible band and the 1000 nm near-infrared band, the
stability of the material remains 96.8% in the near-infrared band and 45% in the visible band.
This indicates that the TiO2/ZnO/FTO composite has better stability in the infrared band.
By referring to the relevant literature and analyzing the experimental results, there are many
influential factors. (1) The effect of particle size: Grain size determines if there is a quantum
size effect. Grain size indirectly affects photocatalytic efficiency because the quantum size
effect can effectively improve photocatalytic efficiency [13–15]. (2) The influence of the
surface area: Under certain conditions such as lattice defects, the surface area is proportional
to the photocatalytic activity. At the same time, some of the electrons and holes with a large
surface area will overlap and produce a recombination effect. When the recombination
effect is large, the result is opposite, and the surface area is inversely proportional to
the catalytic activity [16,17]. (3) Effect of adsorption effect: The strength of adsorption
capacity is closely related to the specific surface area of semiconductor nanoparticles. The
adsorption area is proportional to the ability to adsorb organic pollutants, and then to the
photocatalytic decomposition effect [18]. (4) Electrical conductivity of the material itself.
(5) The influence of light: The light source determines the quality and uniformity of light,
among which the light intensity has the greatest influence. The light intensity determines
the number of photons irradiated onto the surface of the photocatalyst, determines the
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high-energy hole electron logarithm formed by the exciting transition of semiconductor
electrons and ultimately determines the performance of the catalyst (the light intensity is
proportional to the photocatalytic degradation effect of pollutants) [19,20].

The products prepared by low-temperature hydrothermal and electrodeposition meth-
ods in this paper have favorable photocatalytic and electrochromic properties. This study
will contribute to the realization of multifunctional applications of materials, and provide a
new approach and method to solve the problems of energy shortage and environmental
pollution, which will have wide application prospects in the future.

2. Materials and Methods
2.1. Preparation of 2D Porous ZnO Nanosheets

Zn(NO3)2·6(H2O) was purchased from Shanghai Collaman Reagent Co., Ltd. (Shang-
hai, China) and the product purity reached 99%. Na2CO3 was purchased from Weifang
Haizhiyuan Chemical Co., LTD. (Shandong, China). The purity of the product reached
99.2%. First, we weighed 2.97 g of Zn(NO3)2·6(H2O) solid and 1.06 g of Na2CO3 solid into
different beakers, then added 20 mL of deionized water to the two beakers and poured
the Na2CO3 solution into zinc nitrate solution. Magnetic stirring was carried out at room
temperature for 1 h, and then 1.0 g sustained-release agent hexamethylenetetramine (HMT)
was added to the solution and stirred continuously for 1 h. Then, the above-mixed solution
was transferred to a 100 mL Teflon-lined stainless-steel autoclave and heated at 150 ◦C for
12 h. After completing the reaction, cooling to room temperature and opening the reaction
kettle, the reaction kettle substrate generated white precipitate. After the temperature of
the reactor cooled to room temperature, the white precipitated material was repeatedly
cleaned with ethanol and water, and then centrifuged at 600 rpm for 0.5 h to obtain the
white precipitated material. After cleaning, the white precipitate was transferred to an
oven at 45 ◦C for drying until it was completely dried. After 12 h, the white precipitate was
transformed into a white powder. The obtained material was further heated at 350 ◦C in
a muffle furnace and calcined for 3 h. Finally, the porous structure material of ZnO was
obtained, as shown in Figure 1.
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Figure 1. Schematic diagram of the as-prepared porous ZnO nanosheets.

2.2. Preparation of ZnO/FTO Composite Film

The experimental procedure of preparing ZnO thin film by the hydrothermal method
on FTO conductive glass substrate is as follows: Transfer the above-mentioned ZnO
precursor to the hydrothermal and put the cleaned FTO conductive glass at an angle
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followed by heated at 60 ◦C for 12 h. After the temperature is naturally cooled, take out the
FTO glass, wash and dry to obtain a white film sample covering the FTO conductive surface
and finally put the white film sample covering the FTO glass at 350 ◦C. After annealing for
3 h, samples of the annealed ZnO/FTO composite film were obtained.

2.3. The Experimental Procedure of Preparing TiO2/ZnO Composite Film

The nanostructured TiO2 film was grown on the ZnO/FTO-coated glass substrate
using a hydrothermal method as follows: 1 g of polyethylene oxide-polypropylene oxide-
polyethylene oxide (PEO-PPO-PEO) was added to 40 mL of anhydrous ethanol and stirred
at room temperature for 30 min, and then dispersed ultrasonically for 30 min to form a
transparent solution. After that, 40 mL of concentrated hydrochloric acid (HCl) was added
and stirred for 30 min, followed by adding 0.85 mL of titanium isopropoxide into the
solution. The solution was subsequently transferred to a 100 mL Teflon-lined stainless steel
autoclave. The ZnO/FTO was placed inside the autoclave with the FTO layer facing the
bottom. The hydrothermal process was carried out at 120 ◦C for 8 h in an electric oven and
then cooled down to room temperature. The obtained TiO2/ZnO/FTO film was washed
with deionized rinse and dried in an oven at 60 ◦C for 4 h.

3. Results

Figure 2 shows SEM images of porous ZnO nanosheets. Figure 2a is a low-power
scanning electron micrograph of the untreated composite. Many nanosheet structures
can be found, which are uniform in morphology and have almost no difference in size.
As can be seen from Figure 2b, the length of the synthesized nanosheet is 100–150 nm,
and the holes are formed by structural accumulation of each other. When the product is
hydrothermally treated, as shown in Figure 2c, it can be seen that the synthesized material is
still in a sheet-like structure. In order to observe the products more carefully, we conducted
a high-magnification SEM test on the material. As shown in Figure 2d, the size of ZnO
nanomaterials after hydrothermal treatment is significantly reduced, and there are many
holes in the nanosheets, forming ZnO porous nanosheets. Figure 2e is an SEM element
spectrum. It can be found from the figure that only two elements exist, Zn and O, indicating
that the prepared product is pure zinc oxide without impurities.

In order to further observe the microstructure of the material, we carried out a TEM
test on the ZnO porous nanosheets, as shown in Figure 3. Figure 3a is the low-magnification
TEM image of ZnO, and we can clearly see that the size of the sheet-like structure is around
100 nm. Figure 3b is a high-resolution transmission electron microscope image. It can be
seen from the figure that the lattice spacing of the material is 0.26 nm, and it grows along the
growth direction of the (002) crystal plane. The inset in the upper right corner of Figure 3b
is the selected area electron diffraction test, and it can be seen that the ZnO nanosheets are
polycrystalline materials. Figure 3c shows the energy spectrum analysis of ZnO nanosheets,
which only contain zinc and oxide elements, indicating that the synthesized product is
ZnO without impurities. Figure 3d shows the XRD test of the ZnO nanosheets. The
diffraction peaks (100), (002), (101), (102), (110), (103) and (200) are all characteristic peaks
of ZnO, which are consistent with the PDF card (JCPDS No. 36-1451), indicating that
the synthesized product is ZnO, consistent with the above analysis. Figure 3e contains
the nitrogen adsorption and desorption curves of ZnO nanosheets. Through analysis,
its specific surface area is 170.94 m2 g−1. The large specific surface area facilitates the
shortening of the electron diffusion path and speeds up the reaction [21,22]. Figure 3f
shows the pore size distribution curve. It can be seen from the figure that the pores around
5 nm are the pores of the zinc oxide nanosheets themselves. The pores between 10 and
50 nm are the pores formed by interlacing between materials.
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Compared with other technologies, photocatalytic technology has the characteristics
of environmental protection, cheap, stable and reusable, and has excellent performance
in sewage treatment and air pollution; thus, it is considered a promising environmental
remediation technology. Nano-sized zinc oxide (ZnO) has the application characteristics of
non-toxicity, easy preparation, low cost and controllable surface properties, and has good
adsorption effects on both heavy metal ions and organic pollutants, and its structure has
a great influence on the adsorption effect; in general, the larger the specific surface area,
the higher the adsorption capacity and better the degradation effect. The same metal oxide
nanomaterials are synthesized by different methods, and their particle size and surface
chemistry will be different; factors such as pH and temperature during experimental testing
impact the final results [23].
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Adsorption is the first step in the photocatalytic reaction. High adsorption efficiency
is beneficial for the photocatalytic reaction, and the defects can be used as active sites for
the photocatalytic reaction. Under the conditions of 20 ◦C, initial concentration of dye
C0 = 40 mg/L, pH = 2 and catalyst dosage of 0.1 g, we investigated the effect of contact
time between the photocatalyst and the three dyes on the adsorption amount, as shown
in Figure 4. According to the figure analysis, the zinc oxide catalyst has a fast adsorption
speed for MO, MB and RhB dyes, and the removal rate reaches about 80% in the first 40 min
of the initial adsorption stage. The adsorption rates of MO, MB and RhB reached 98.2%,
94.7% and 96.7%, respectively, when the adsorption equilibrium was reached. At the initial
stage of the reaction, the zinc oxide surface has a large number of unoccupied surface
sites for adsorption; at this time, the adsorption rate is fast. However, with the increase in
adsorption capacity, the dye molecules adsorbed on the surface of the material and the dye
molecules in the solution produce a repulsive force, which makes the remaining empty
surface sites difficult to occupy, leading to the saturation of adsorption capacity [24].
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Among many photocatalytic materials, ZnO nanomaterials in metal oxides have a
relatively large area, and zinc oxide is non-toxic and odorless. In recent years, it has
been widely used as a photocatalyst to degrade organic dyes [25,26]. In order to analyze
the photocatalytic degradation efficiency of our prepared ZnO nanosheets, we tested the
material to degrade MO, MB and RhB dyes at room temperature, with light irradiance
of 0.23 mW/cm2 and pH = 2. The concentration of dye was 40 mg/L, and the mass of
zinc oxide was 0.1 g. We placed each dye in a centrifuge tube, put 0.1 g of zinc oxide into
each dye solution, stirred in the dark for 1 h to reach the equilibrium of adsorption and
desorption and took the equilibrium solution again in a centrifuge tube. The solution after
reaching the equilibrium of adsorption and desorption was irradiated with ultraviolet light
with a 500 W Hg lamp, and the solution was taken on time. After the degradation was
completed, centrifugation was performed, and finally, the supernatant was taken for UV
analysis and testing. The data are shown in Figure 5. Figure 5a is a graph of the degradation
of MO and the degradation percentage in 90 min is 97.5%. Figure 5b shows the degradation
curve of MB, and the degradation rate reached 98.5% in 40 min.

Figure 5e shows the degradation curve of RhB; the degradation rate reached 96.8% in
120 min. Figure 5b,d,f are photos of the degraded dyes. From the pictures, we can clearly see
that the color of the dyes becomes lighter as time increases, and finally almost transparent,
indicating that the dyes become degraded. [27,28]. From the relationship between the light
absorption threshold of the semiconductor and the bandgap, K = 1240/Eg(eV). Most of
the thresholds for wide-bandgap semiconductors commonly used in daily life are in the
UV region.

The degradation study of dyes by ZnO was further explored in the experiment. As a
photocatalyst, when irradiated at a certain wavelength, the valence band electrons of the
semiconductor are energized and undergo inter-band leap, which is a leap from the valence
band to the conduction band, resulting in an equal amount of photogenerated electrons
(E−) and an equal amount of holes (H+) [29]. At this time, the dissolved oxygen adsorbed
on the surface of nanomaterials in solution can easily capture electrons and combine to
form superoxide anions. At the same time, the holes have a certain oxidation ability, and
the hydroxyl ions (OH−) adsorbed on the surface of the catalyst and water are oxidized
to form hydroxyl radical (OH·). Superoxide anions (O2−) and hydroxyl radicals (OH·)
have strong oxidizing properties, which can oxidize most organic substances to produce
inorganic products CO2 and H2O, and even some inorganic substances can be completely
oxidized and decomposed [30,31]. The corresponding chemical equation of the reaction is
as follows, and the photocatalytic mechanism is illustrated in Figure 6.

ZnO + HV→ h+ + e− (1)

h+ + OH− → OH· (2)

h+ + H2O→ OH· + H+ (3)
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e− + O2 → O2
− (4)

O2
− + e− + 2H→ H2O2 (5)

O2
− + H+ → H2O (6)

2HO2·→ O2 + H2O2 (7)

H2O2 + e−→ ·OH + OH− (8)

H2O2 + O2
− → ·OH + OH− + O2 (9)

O2
−/·OH + org→ degraded + products (10)
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To compare which dyes had a better degradation effect under the same dye concentra-
tion and light conditions, the degradation rate curve was made at the same time for 40 min,
as shown in Figure 7a. It could be seen that MB was the fastest, MO was the second fastest,
and RhB was the slowest: RhB (42%) < MO (81%) < MB (98.5%). We further explored
the degradation efficiency of the material after mixing three dyes: MO, MB and RhB. The
results are shown in Figure 7b, which illustrates that the degradation effect is satisfactory,
reaching 97.7%.
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To further investigate whether the synthesized material has recyclable properties, each
decomposition-catalyzed sample was recycled, reused and decomposed again and the
dye MB was periodically decomposed. A total of 20 cycles were tested, with the same
test conditions and initial dye decomposition process. The results show that the material
degrading dyes are relatively stable with 99% degradation efficiency, as shown in Figure 8.
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Table 1. Comparison of catalytic performance.

Material Dye Degradation
Efficiency Cycle Stability Ref

ZnO NPS DBT 95% (190 min) 93% (5 cycles) [32]
ZnO NPS R-250 93% (180 min) [33]

TiO2 -Fe2O3 Titan Yellow 92.98% (60 min) [34]
FeCo2O4 Crystal Violet 94.19% (160 min) 92.06% (5 cycles) [35]
SrTiO3 MB 92% (120 min) [36]

Fe3O4/ZnO/Si3N4 MO 96% (80 min) 90% (6 cycles) [37]
Fe3O4/ZnO/Si3N4 Sunset Yellow 90% (80 min) 90% (6 cycles) [37]

ZnO/TiO2 RhB 90.8% (120 min) [38]
ZnO MB 99% (40 min) 99% (20 cycles) this paper
ZnO MO 97.7% (90 min) this paper

TiO2/ZnO RhB 96.8% (120 min) this paper

There is a significant synergistic effect between multiple metal oxides, which can effec-
tively improve the electrochromic properties of materials. In the experiment, ZnO/FTO
composites were prepared by using ZnO as the conductive layer. Titanium dioxide
was deposited on the surface of TiO2/ZnO/FTO by electrodeposition, so as to obtain
TiO2/ZnO/FTO composite. We tested changes in light transmittance and cycling stability.
Figure 9a shows the transmittance modulation of the ZnO/TiO2/FTO thin film. The color
can be reversibly switched between transparent (bleached state) and blue (colored state)
over a potential range of −1.1 V to 0 V. The corresponding photo is shown in the upper left
corner of Figure 9a. Light modulation exhibits wavelength-dependent changing properties.
The longer the wavelength, the larger its volume, reaching a maximum (55%) at 1000 nm
wavelength in the near-infrared region. In addition, the film has excellent durability, and
the CV curve and photobiological modulation are not significantly reduced at different
wavelengths.
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photographs of 1 × 4 cm2 TiO2/ZnO/FTO electrodes; (b) 200 cycles of TiO2/ZnO/FTO films at
550 nm and 1000 nm, respectively.

After 200 cycles, the stability at 550 nm under visible light is 45%, and the high color
contrast in the near-infrared region reaches 96.6% at 1000 nm, as shown in Figure 9b.
Tables 1 and 2 show a comparison of the electrochromic performance of each catalyst and
the reference.
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Table 2. Comparison of electrochromic performance.

Material Wavelength
(nm) Transmittance Retention References

NiO@C 1200 35% [39]
TiO2 980 45% 93% (100 cycles) [40]
NiO 650 41.08% 86% (100 cycles) [13]
WO3 1600 46% 96% (1000 cycles) [41]

TiO2-WO3 1200 55% Over 90% (1200 cycles) [42]
TiO2 900 28% [43]

TiO2/ZnO/FTO 1000 55% 96.6% (200 cycles) this paper

4. Conclusions

We successfully prepared porous ZnO nanosheets by a low-temperature hydrothermal
method. Through photocatalytic tests, this structured material showed suitable decompo-
sition efficiency for MO, MB and RhB, their degradation rates reaching 97.5%, 99% and
96.8%, respectively. The degradation efficiency was as high as 97.7% after mixing the three
dyes. The cycling stability of this structured material is also suitable, with almost no decay
in the retention of MB degradation up to 99% after 20 cycles. TiO2/ZnO composite film was
prepared on FTO by the hydrothermal method and the electrodeposition method. After
electrochromic performance tests, the transmittance of the composite film in visible and
near-infrared bands was 55%. The cyclic stability at 550 nm band and 1000 nm band reached
45% and 96.6%, respectively. The above data indicate that ZnO nanosheets have wide
application prospects in the field of photocatalysis and TiO2/ZnO/FTO composite films in
the field of electrochromism. This study will contribute to the realization of multifunctional
applications of materials, which will provide a new way to solve the problems of energy
shortage and environmental pollution.
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