
Citation: Ramanavicius, S.; Jagminas,

A.; Ramanavicius, A. Gas Sensors

Based on Titanium Oxides (Review).

Coatings 2022, 12, 699. https://

doi.org/10.3390/coatings12050699

Academic Editor: María

Dolores Fernández Ramos

Received: 9 November 2021

Accepted: 16 May 2022

Published: 19 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

coatings

Review

Gas Sensors Based on Titanium Oxides (Review)
Simonas Ramanavicius 1,2 , Arunas Jagminas 1 and Arunas Ramanavicius 2,*

1 Department of Electrochemical Material Science, Center for Physical Sciences and Technology (FTMC),
Sauletekio Avenue 3, LT-10257 Vilnius, Lithuania; simonas.ramanavicius@ftmc.lt (S.R.);
arunas.jagminas@ftmc.lt (A.J.)

2 Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry,
Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania

* Correspondence: arunas.ramanavicius@chf.vu.lt; Tel.: +370-60032332

Abstract: Nanostructured titanium compounds have recently been applied in the design of gas
sensors. Among titanium compounds, titanium oxides (TiO2) are the most frequently used in gas
sensing devices. Therefore, in this review, we are paying significant attention to the variety of
allotropic modifications of titanium oxides, which include anatase, rutile, brukite. Very recently, the
applicability of non-stoichiometric titanium oxide (TiO2−x)-based layers for the design of gas sensors
was demonstrated. For this reason, in this review, we are addressing some research related to the
formation of non-stoichiometric titanium oxide (TiO2−x) and Magnéli phase (TinO2n−1)-based layers
suitable for sensor design. The most promising titanium compounds and hetero- and nano-structures
based on these compounds are discussed. It is also outlined that during the past decade, many
new strategies for the synthesis of TiO2 and conducting polymer-based composite materials were
developed, which have found some specific application areas. Therefore, in this review, we are
highlighting how specific formation methods, which can be used for the formation of TiO2 and
conducting polymer composites, can be applied to tune composite characteristics that are leading
towards advanced applications in these specific technological fields. The possibility to tune the
sensitivity and selectivity of titanium compound-based sensing layers is addressed. In this review,
some other recent reviews related to the development of sensors based on titanium oxides are
overviewed. Some designs of titanium-based nanomaterials used for the development of sensors
are outlined.

Keywords: titanium dioxide (TiO2); non-stoichiometric titanium oxide (TiOn or TiO2−x); magneli
phases (TinO2n−1); gas and volatile organic compounds (VOCs) sensors; nanostructures; MXenes;
anatase; rutile; brukite

1. Introduction

Sensors for the determination of gasses and volatile organic compounds (VOCs) (gas-
sensors) find applications in many different areas. Most of these gas sensors are based on
semiconducting layers, which change their electrical resistance in the presence of gases
and VOCs [1–7]. These semiconducting layers are mostly based on semiconductors such as
WO3, MoS2, ZnO, SnO2, and TiO2 TiOn [2–8], while Al2O3 and SiO2 are the most common
dielectric substrates used for the formation of gas sensors. Some new titanium-based
compounds, such as MXenes [9], and non-stoichiometric titanium oxides (TiOn) [1,2,10,11]
have also been recently used in the design of gas sensors. The stoichiometric TiO2 semicon-
ductor of n-type, which appears in three major phases (rutile, anatase, and brookite) can
be rather easily converted between these phases by thermal procedures, which paves the
way to tune analytical characteristics of gas sensors [11]. These phases are sensitive and
could be used for the detection of oxygen alone [12–14] or in heterostructures with ZrO2 to
improve sensing characteristics [15–17]. Besides stoichiometric TiO2 forms, very recently, a
non-stoichiometric (TiOn) that is sometimes indicated as TiO2−x has also been applied in
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sensor design [1]. Titanium oxide structures based on specific Magnéli phases (TinO2n−1)
are very promising [10]. Many gas sensors are very sensitive, but mostly they are not
very selective and consume a lot of electrical energy, which is required for the powering
of the heater that is essential for the efficient operation of most gas sensors. In order to
reduce the lastly mentioned disadvantage, the ‘self-heating’ strategy was developed, which
enables the exploitation of the sensing layer as a heater of the analytical system [1,2,18].
Recently, some scientists haveattempted to advance the selectivity of gas-sensors by the
design of specific morphology of semiconducting structures [19,20], application of core-
shell semiconducting nano-composites [21–23] and/or quantum dots [24,25]. Various
aspects of titanium-based material are overviewed in recent reviews, addressing the prop-
erties, synthesis and modifications of TiO2-based nanostructures [10,11,26]; application
of titanium-based nanomaterials for energetics and environmental purposes [27]; the de-
sign of photo-catalysts [28]; the applicability of titanium oxides [1,2] and MXenes [9] in
sensor design.

In this article, we are overviewing mainly the advances in the development of gas and
volatile organic compounds (VOCs) sensors based on titanium-based oxides.

2. Structural Features and Physicochemical Properties of Stoichiometric and
Non-Stoichiometric Titanium Oxides

TiO2 belongs to n-type semiconducting materials [29,30]. Many TiO2-based het-
erostructures are used in the design of sensors [11,31–34] and biosensors [35,36]. However,
all the most popular forms of titanium oxides are characterized by specific bandgaps, which
are as follows: (i) anatase by 3.02 eV (ii) rutile by 3.23 eV; (iii) brookite by 2.96 eV [37]. The
annealing procedure is mostly used for the conversion of one titanium oxide phase into an-
other one. Besides stoichiometric titanium oxide, plenty of non-stoichiometric forms were
identified, among them very attractive conducting/semiconducting characteristics and
gas-sensing properties [1]. They have Magnéli phases, which are described by TinO2n−1
stoichiometry, where n = 4, . . . , 10. Their Magnéli phase neighbor is titanium pentox-
ide (Ti3O5), where n = 3 with a stoichiometry of TinO2n−1, which appears in a variety of
different forms (that are indicated as α−, β−, γ−, δ−, and λ−) [38–42]. Stoichiometry
of titanium pentoxide corresponds to that of the Magnéli phases (TinO2n−1). Titanium
pentoxide forms monoclinic crystals with the following lattice constants: a = 9.9701 Å,
b = 5.0747 Å, c = 7.1810 Å, β = 109.865◦. Moreover, titanium pentoxide, as well as some
other Magnéli phases (e.g., Ti4O7), exhibit superconductivity when cooled down below 7 K
temperature [43].

The most significant difference between titanium pentoxide and the Magnéli phases
is determined by their different crystal structures. Magnéli phases contains shear planes
based on TiO2(rutile) [44,45], while in titanium pentoxide, such planes are absent [1,43]. A
temperature of 400 ◦C is optimal for the appearance of TiO2(anatase) intergrowths within
Ti3O5 crystals based on TiO2−x/TiO2-based heterostructures [46,47]. The incorporation of
intergrowths based on TiO2(anatase) in the structure of titanium pentoxide (Ti3O5) improves
their conductivity (Figure 1) and some photoluminescence-related characteristics [1]. It
should be noted that such non-stoichiometric titanium oxides can be spontaneously oxi-
dized for this reason and significant attention should be paid to the stabilization of these
structures during their usage in the development of gas sensors. It should be noted that at
different oxidation states, titanium oxides have different crystal structures [48], which starts
from rutile for TiO2 and anatase for Ti10O19 and then it turns into the triclinic structure for
many stoichiometries, ranging from Ti9O17 until Ti4O7, monoclinic for γTi3O5, tetragonal
for Ti2O3 and hexagonal for TiO, Ti2O and metallic titanium.
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Figure 1. Temperature dependence of electrical resistance (R(T)) for the TiO2−x/TiO2(400 °C)-based 
hetero-structure. Temperature was changed in two ways (indicated by black and red arrows): (i) 
black cycles shows points measured by cooling down, (ii) red squares shows points by increasing 
temperature. Measurements were performed in vacuum using helium cryostat. Figure adapted 
from [1]. 

The electrical conductivity of most non-stoichiometric titanium oxides is significantly 
higher than the conductivity of any allotropic form of stoichiometric titanium oxides 
(TiO2). The most significant increase in sensitivity is observed for titanium oxides with 
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the above-mentioned stoichiometry form Magnéli phases, which are characterized by me-
tallic conductivity and even by superconductivity [50,51]. 

Non-stoichiometric titanium oxide-based layers based on Magnéli phases have well 
conducting intergrowths based on TinO2n−1 planar moieties that penetrate the TiO2-based 
matrix [1,52]. Non-stoichiometric titanium oxides, such as Ti2O3 and/or Ti3O5, which do 
not form real Magnéli phases anyway, are much better at conducting in comparison to 
stoichiometric TiO2 [1,43]. These n-type semiconducting titanium oxides have a high con-
centration of ‘oxygen vacancies’, which are responsible for the mobility of electrons 
through their structure [53] and baseline resistance [54]. It should be outlined that these 
‘oxygen vacancies’ are also responsible for the sensitivity towards both oxidizing and re-
ducing gases [1]. During the design of the sensing layer, initially formed stoichiometric 
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oxide (TiO2−x) and/or Magnéli phases [2]. Magnéli phases are observed when the oxygen 
concentration in TiO2−x structure is decreased and ‘x’ value is between 0.1 and 0.34 
[1,55,56]. Non-stoichiometric titanium oxide structures containing Magnéli phases are 
chemically stable and rather well conducting. For these reasons, they are often applied in 
wastewater treatment and the design of batteries and fuel cells [57,58] ; the same charac-
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approaches, namely plasma-treatment [59], laser irradiation-based modification [60], re-
duction by metallic zinc [61], bombardment by high-energy particles [62] and thermo-

Figure 1. Temperature dependence of electrical resistance (R(T)) for the TiO2−x/TiO2(400 ◦C)-based
hetero-structure. Temperature was changed in two ways (indicated by black and red arrows):
(i) black cycles shows points measured by cooling down, (ii) red squares shows points by increasing
temperature. Measurements were performed in vacuum using helium cryostat. Figure adapted
from [1].

The electrical conductivity of most non-stoichiometric titanium oxides is significantly
higher than the conductivity of any allotropic form of stoichiometric titanium oxides (TiO2).
The most significant increase in sensitivity is observed for titanium oxides with TinO2n−1
stoichiometry, when index ‘n’ is in the range of 4–10 [49]. Some compounds with the
above-mentioned stoichiometry form Magnéli phases, which are characterized by metallic
conductivity and even by superconductivity [50,51].

Non-stoichiometric titanium oxide-based layers based on Magnéli phases have well
conducting intergrowths based on TinO2n−1 planar moieties that penetrate the TiO2-based
matrix [1,52]. Non-stoichiometric titanium oxides, such as Ti2O3 and/or Ti3O5, which
do not form real Magnéli phases anyway, are much better at conducting in comparison
to stoichiometric TiO2 [1,43]. These n-type semiconducting titanium oxides have a high
concentration of ‘oxygen vacancies’, which are responsible for the mobility of electrons
through their structure [53] and baseline resistance [54]. It should be outlined that these
‘oxygen vacancies’ are also responsible for the sensitivity towards both oxidizing and
reducing gases [1]. During the design of the sensing layer, initially formed stoichiometric
titanium oxide-based layers can be chemically reduced into non-stoichiometric titanium
oxide (TiO2−x) and/or Magnéli phases [2]. Magnéli phases are observed when the oxygen
concentration in TiO2−x structure is decreased and ‘x’ value is between 0.1 and 0.34 [1,55,56].
Non-stoichiometric titanium oxide structures containing Magnéli phases are chemically
stable and rather well conducting. For these reasons, they are often applied in wastewater
treatment and the design of batteries and fuel cells [57,58]; the same characteristics are
required for gas sensors.

Non-stoichiometric titanium oxide-based structures can be developed using several
approaches, namely plasma-treatment [59], laser irradiation-based modification [60], reduc-
tion by metallic zinc [61], bombardment by high-energy particles [62] and thermo-chemical
approaches [63]. However, the formation of large Ti3O5 monocrystals is rather challenging
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because titanium oxides are polymorphic [43]. In some cases, stoichiometric titanium oxide
can be easily turned into a non-stoichiometric one by suitable doping and/or reduction.

During the formation of TiO2−x/TiO2-based heterostructures, the ratio between sto-
ichiometric titanium oxide and non-stoichiometric titanium oxide can be significantly
increased by thermal treatment in reducing the gas atmosphere [64]. In several works,
the transition between the insulator state and metallic state of Ti3O5 (β and λ forms of
Ti3O5, respectively) was performed by pulses of visible light [41] and by thermal treatment,
which induced the conversion of α form into β form at 450 K [38] and the conversion of δ
form into γ form at 240 K [39–42]. The phase transition of Ti3O5 at 240–450 K is the most
important for the adjustment of conductivity of this semiconducting material-based layers,
e.g., the switching between metal and insulator states was observed at 350 K [43].

In some cases, non-stoichiometric titanium oxide can be formed by the partial oxida-
tion of metallic titanium layers, which is followed by thermal treatment and annealing [1].
Sensors based on such structures, which are differently thermally treated and annealed, can
be used in the formation of sensors with very different selectivity and sensitivity, which are
suitable for the development of sensor arrays. Non-stoichiometric titanium oxide-based
sensors. despite some significant advantages related to better catalytic activity and conduc-
tivity, have some disadvantages in comparison to those based on stoichiometric titanium
oxides related to their insufficient stability at ambient conditions. In addition, it should be
noted that the selectivity of these sensors is not superior.

3. Pristine Titanium Oxide-Based Gas Sensors and Their Sensing Mechanisms

Stoichiometric TiO2-based gas sensors show high sensitivity to different gases. It
should be noted that TiO2-based gas sensors can rely on several different sensing mech-
anisms, which differ the most significantly for the determination of reducing gaseous
compounds, such as H2, H2S, NH3, CO, CH3OH, C2H5OH, etc. and for oxidizing gaseous
compounds, such as O2, NO2, CO2 [28,63,65] (Table 1). The changes in electrical resis-
tivity of the TiO2-based layer are mostly used for the determination of analytical signals;
therefore, the assessment of analytical signals generated by such sensors is rather simple.
In some cases, measurement protocols were advanced by the determination of photolu-
minescence signals [1,2,8], which are generated by semiconducting TiO2 structures [66].
Some above-mentioned photocatalytic and photovoltaic properties can be improved by
laser-based treatment [67]. However, the main disadvantage of TiO2-based sensors is poor
selectivity towards gaseous materials, which significantly complicates the application of
these analytical devices. Therefore, in order to improve selectivity, various heterostructures
containing TiO2 hybridized with many other semiconductors have been developed, e.g.,
our research group has developed a TiO2−x/TiO2-based self-heating heterostructure for
the determination of NH3, CH3OH and C2H5OH [1].

Table 1. Characteristics of titanium oxide-based sensors.

Sensing
Material

Working
Temperature

Gas
Concentration

Response Value
(Ra/Rg) or ((∆R/Rg)

× 100%)
Response Time Recovery Time Reference

TiO2 (rutile),
Ti8O15 and

Ti9O17 mixture
210 ◦C 12.5–100 ppm

(NH3) 1–7% 2 min 8 min [68]

TiOx-NiO 250–350 ◦C
100 ppm (H2)

100 ppm (NO2)
100 ppm (NH3)

17 for H2 (250 ◦C)
16 for NO2 (250 ◦C)
4 for NH3 (250 ◦C)

2 min 2, 3 min [69]

β-Ti3O5 150 ◦C 50 ppm (H2) 11% - - [70]
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Table 1. Cont.

Sensing
Material

Working
Temperature

Gas
Concentration

Response Value
(Ra/Rg) or ((∆R/Rg)

× 100%)
Response Time Recovery Time Reference

Ti3O5-TiO2
mixture 25–180 ◦C

105 ppm (H2O)
118 ppm

(methanol)
53 ppm

(ethanol)
18 ppm

n-propanol
220 ppm
(acetone)

0.5–18% - 4–35 s [1]

TiO2-Ti6O 150–450 ◦C

2000 pm (H2)
20 ppm (NO2)
500 ppb (O3)

1.6 ppm
(acetone)

80 ppm (NOx)

2.9–348 8–21 s 20–32 s [34]

Ti3+-TiO2 RT 100 ppm (CO) 39% 10 s 30 s [71]

TiO2 150 ◦C 100 ppm
(ethanol) 75.4% 155 s 779 s [72]

TiO2 270 ◦C 500 ppm
(acetone) 9.19 10 s 9 s [73]

TiO2 350 ◦C 400 ppm
(ethanol) 22.9 5 s 7 s [74]

TiO2 RT 200 ppm (NH3) 64 28 s 24 s [75]

α-Fe2O3-TiO2 325 ◦C 100 ppm
(ethanol) 4 46 s 16 s [76]

It was also reported that TiO2 combined with La0.8Sr0.2Co0.5Ni0.5O3 perovskite was
applied for the determination of CO [77], TiO2/V2O5-based heterostructure for ozone [78],
TiO2/SnO2-based heterostructure for NO2 and CO [79,80]; TiO2/graphene (TiO2/GO)-
based heterostructure for toluene determination at 298 K [81]. The action of TiO2/GO-based
heterostructures based on the formed n-n hetero-junction is enhanced by UV irradiation [82]
and is addressed in the band diagram presented in Figure 2a,b. The bandgap of the hetero-
junction in the TiO2/GO-based heterostructure is 4.7 eV [83] which is higher than that of
4.4 eV and is usually observed for GO-based structures [84]; the formed hetero-structure
has both accumulation and depletion layers [85] (Figure 2b). In this structure, a Schottky
barrier is formed; therefore, the depletion layer in TiO2 is thicker, and the number of
electrons in the GO interface increases. The interaction of the adsorbed gases with the
oxidized functional groups of GO induces variation in the resistance of the TiO2/GO-based
heterostructure, which forms a sensing layer. In this heterostructure, TiO2 is contributing
by increasing the number of active sites suitable for the adsorption of gas molecules [86,87].
In some particular cases, activation energy can be lowered by adsorbed gas molecules,
which increases the catalytic activity of the TiO2 layer [88]. This property increases the
sensitivity towards some reducing gases, such as ammonia, etc.; however, the active
sites of GO are very sensitive towards moisture that increases electrical resistance, due to
the interaction of water molecules with oxygen-based (carboxyl, carbonyl and hydroxyl)
functional groups [89]. UV irradiation enables to solve this disadvantage by the increase in
the depletion layer in TiO2 and enhancement of the accumulation layer in GO (Figure 2c).
Due to this reason, the electrons are shifted towards GO and reduced carboxyl, carbonyl
and hydroxyl groups, which become unsuitable for the adsorption of water molecules [90].
This reduced GO establishes a p-n junction with TiO2, which at the interface is characterized
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by decreased junction width (Figure 2d). UV irradiation of TiO2 induces the ‘injection’ of
electrons into GO and in such a way that electron–hole pair recombination is prevented [91].
The surface concentration of adsorbed oxygen molecules decreases, which also reduces
water sorption to this heterostructure [92]. The number of carboxyl, carbonyl and hydroxyl
groups in GO structure can be partly restored by the UV irradiation-induced action of
TiO2 [82].
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The heterostructure based on TiO2/SnO2 is also very interesting because the depletion
of energetic layers in the molecular orbitals of TiO2 electrons is induced when TiO2 is
connected to SnO2 [79]. It should be noted that nanoparticle-based structures are preferable
for the development of gas sensors [23] because the radius of nanoparticles based on some
semiconducting materials that are used in the design of gas-sensors are in the same range
as the Exciton Bohr radius; for this reason, such particles are very suitable for the design of
gas sensors [25].

SnO2 has great charge-carrier mobility, which is the most important factor for gas
sensors based on resistivity measurements [80,93]. SnO2-based gas-sensing layers are
cheap and stable at ambient conditions [94] however, it should be taken into account
that sensors based on stoichiometric TiO2 and SnO2 operate at a rather high temperature,
which exceeds several hundred degrees [25]. However, such sensors consume a lot of
energy for the heating of the sensing layer; therefore, due to energy saving related issues,
sensing layers capable to operate at low temperatures are under very special interest, e.g.,
sensing layers based on Au/SnO2 core-shell structures can operate in the temperature
interval of 25–80 ◦C [95]. Our investigations of non-stoichiometric titanium oxide-based
sensors shows that these sensors can operate even at room temperature [1,2]. It is expected
that heterostructures based on SnO2/TiO2 can be applied in low temperature gas sensors;
therefore, some nanostructures were designed, which are as follows: TiO2 nanobelts
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covered by SnO2 [96], TiO2/SnO2-based core-shell nanofibers [97], SnO2 layers doped by
TiO2 [98], structures based on SnO2/TiO2 laminates [99], SnO2 nanoparticles wrapped
within TiO2-based nanofibers [79], SnO2-based quantum dots formed on a surface of TiO2
layer were reported to be sensitive towards NO2 and CO [100]. Atomic layer deposition
(ALD) was used to deposit thin TiO2 layers and it was demonstrated that tuning of the
selectivity can be performed by the adjustment of TiO2 layer thickness [101].

Significant energy consumptions for the heating of the sensing layer reduce the appli-
cability of most gas sensors. Therefore, there is a demand for gas-sensing structures that
can operate at low temperatures [102]. The miniaturization of sensing elements is another
suitable strategy to reduce energy consumption. Low-temperature sensors based on tita-
nium oxide-based layers were reported for O2 [99], ozone [78], formaldehyde [103,104],
CO [77], ethanol [96,98,105], C7H8 [81], H2 [106,107] and other gases [108].

The ‘self-heating’ of the sensing layer can be achieved when it has rather low resistance
and part of electrical energy, which passes through this layer and is converted into thermal
energy [1,2]. However, stoichiometric titanium oxide-based layers are characterised by
a high band gap; therefore, the conductivity of these layers is not sufficient for ‘self-
heating’ because rather high voltages are required to achieve some effect. On the contrary,
this operation mode is very suitable for non-stoichiometric titanium oxide-based sensors,
because these layers are good at conducting at low temperatures and in the temperature
interval of 72–180 ◦C, these layers reach very good sensitivity towards some gases [1,2].
The semiconducting properties and chemical activity of titanium oxide enable sufficient
catalytic and photocatalytic activities under UV irradiation to turn into a ‘water splitting’
ability [67,109], which eventually can be exploited for sensing purposes. It should be noted
that at room temperature (298 K), sensing layers are sensitive to humidity. Therefore,
analytical signals generated by adsorbed water molecules interfere with an analytical signal
generated by target gases.

4. The Action of Sensing Layers Based on TiO2 Heterostructures and Assessment of
Analytical Signals by Titanium Oxide-Based Sensors

The action of TiO2-based heterostructures relies on many parallel processes, where
the most important are the adsorption of gas molecules to the surface of the sensing layer
and the simultaneous desorption of gas, which was initially adsorbed to the same layer.
Both adsorption and desorption events and/or the establishment of new chemical bonds
between sensing TiO2 layer and adsorbed gas molecules electrostatically affect the upper
layer of the semiconducting TiO2 layer and due to the depletion and/or enrichment of this
layer by charge carriers, the conductivity of this layer changes correspondingly. The typical
analytical signal determined by the adsorption and desorption of analyte gas is represented
in Figure 3.

Several different types of electrical conductivity are observed in the TiO2-layers based
on nano- or micro-particles, which are as follows: (i) intrinsic charge transfer through TiO2-
particles and (ii) limitations of charge transfer through the boundaries between different
particles. For this reason, the volume-concentration of these boundaries and the size/shape
of particles are critical in the development of such sensors [110,111] (Figure 4). The semicon-
ducting characteristics of TiO2-based structures, such as Debay length/radius, also strongly
influence charge transfer in TiO2-based sensors. It should be noted that due to numerous
thermal phase transitions during the annealing-based development of non-stoichiometric
titanium oxide-based sensing structures, they are formed very porous and contain many
different nanostructures and phases that significantly enhance the surface/volume ratio.
Therefore, such structures are very efficient at absorbing gases, which leads to enhanced
sensitivity of non-stoichiometric titanium oxide-based sensors. In order to achieve great sen-
sitivity and selectivity, the discussed properties of non-stoichiometric titanium oxide-based
sensing layers should be well tailored during the design of gas sensors [63,112–116].
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It should be noted that the adsorption of gas molecules with the surface of TiO2-based
layer is a very complex process, which at a high extent is determined by Van der Waals
and/or electrostatic interactions and/or the forming of new chemical bonds. Molecules
of the gas that are present in the measurement cell before the introduction of analyte-gas
containing aliquot are critically important for the establishment of the particular mecha-
nism of sensing, because they are preabsorbing on the semiconducting structure and, in
such a way, are responsible for the initial conductivity of the sensing layer. During the
measurement, analyte gas containing aliquot appears in senor-cell molecules of pread-
sorbed gas, which are replaced by analyte gas molecules (and/or by other gas molecules,
which are part of aliquot). During both stages, adsorbed gas molecules are electrostatically
interacting with the adsorption sites. It should be noted that in TiO2, defects of the crystal
structure are acting as the most efficient adsorption sites. The adsorption ability of gas
molecules very often depends on the ability to accept and/or to donate electrons to active
sites that can be additionally involved in photoluminescence-based light emission [35].
Hence, donor/acceptor interactions change the electrical conductivity and the efficiency of
photoluminescence of TiO2-based structures that can be used for the assessment of analyte
concentration. However, stoichiometric titanium oxide-based structures are characterized
by high resistance, which does not significantly vary in the presence of low concentrations
of gaseous materials; therefore, the dynamic range of sensors based on stoichiometric
titanium oxide is not high. Conducting polymers, especially polyaniline (PANI), are well
suitable for the enhancement of the sensitivity of semiconducting metal oxides towards
gases [117–119] and volatile compounds [120].

In order to increase sensitivity, various heterostructures containing TiO2 are modified
by other semiconducting materials, e.g., by conjugated polymers polyaniline (TiO2/PANI)
and polypyrrole (TiO2/Ppy)), which can be involved in the modification and design of tita-
nium oxide-based sensing structures. The formation of the n/p-junction at TiO2/(conducting
polymer) interphase is the most important factor for the enhancement of sensor sensi-
tivity [121]. TiO2/Ppy-based sensing structures for the determination of NH3 [122,123]
propane/butane [124] and TiO2/PANI-based sensing structures for the detection of
NH3 [123,125–127] were developed. In order to improve sensitivity and selectivity, ti-
tanium oxide-based semiconducting structures can be modified by some metal oxides,
carbides and other materials [1,2,9,113,114,128–131].

During the development of titanium oxide-based sensors, a very important issue is
the elaboration of a suitable analytical signal registration protocol. The registration can be
based on many physical approaches, including the measurement of photoluminescence
response and electrical signals. Electrical signals can be determined from measurements
performed in potentiostatic, galvanostatic and various potentiodynamic modes. If neces-
sary, these modes can be combined with a ‘self-heating’ based approach. The determination
of electrical conductivity measurements is most frequently used in gas sensors based on
semiconducting structures [1,4,5,7,11,20,22–25,33,34,65,98,104,107,112,122,125,131,132]. At
room temperature, stoichiometric titanium oxide-based sensing layers have a rather low
conductivity of ~10−10 S/m; for this reason, up to 200–400 ◦C elevated temperature is
applied in order to reach optimal electrical conductivity and sensing conditions. How-
ever, elevated temperatures increase the consumption of electrical energy required for the
operation of the sensor.

5. TiO2 and Conducting Polymer-Based Composites for Gas and VOC Sensors

The combination of metal oxide-based structures with conducting polymers led to the
ability to tune precisely some properties of formed composite material in order to adjust it
for specific applications [120]. Therefore, during the past decade, a lot of new strategies for
the synthesis of different morphology TiO2 (Figure 5) and their composites with conducting
polymers were developed.
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Chemical formation is one of the easiest and the most popular methods for the forma-
tion of TiO2-PANI composites. Usually, for chemical formation, acidic solutions (mostly
HCl [137–139] or H2SO4 [140,141]) are used together with reaction initiator
(NH4)2S2O8 [137–140,142]. Procedure protocols in most cases are similar and involve
a few steps, which are as follows: (i) aniline and acid solution in distilled water together
with TiO2 is prepared in one beaker, (ii) in a second beaker, the polymerization initiator is
dissolved in an acidic solution and (iii) both solutions are mixed, cooled to a near 0 ◦C tem-
perature and stored for some time [137,138,143]. A visible sign of aniline polymerization
reaction is a change of solution color into light blue, revealing the starting of PANI forma-
tion through an oxidation reaction. Finally, the reaction solution color becomes green, which
indicates the successful formation of the PANI composite [139]. While varying in the param-
eters of reagent concentrations, it is possible that polymeric composite thickness, surface
morphology and conductivity can be controlled by polymerization time and temperature
depending on technological demand. It is important to mention that during the oxidation
process, conductivity mainly depends on anions and their concentration used in the acid
solution during the PANI polymerization reaction [137–140,143–145]. While wet chemical
synthesis methods are the easiest to perform, electrochemical polymerization is one of the
common methods, which provides relatively good control of the process in comparison to
chemical formation. In this method, it is possible to use various modes for electrochemical
PANI deposition on top of titanium dioxide substrate; however, the most popular modes
are cyclic voltammetry (CV) [146–150] and chronoamperometry (CA) [146,150]. For CA
depositions, a WE electrode potential in between 0.85–0.9 V vs. Ag/AgCl [146], while in
CV mode, a potential in between −0.6–1.3 V vs. Ag/AgCl [146–149,151] and an acidic
electrolyte with dissolved aniline are usually used [150,152].

Particularly, most researchers report that the modification of TiO2-based structures
by conducting the polymer polyaniline (PANI) can increase their sensitivity towards some
gases and/or VOC’s [153,154]. An especially high number of researchers report that the
modification of TiO2-based structures by PANI increases the sensitivity of designed sensors
towards ammonia (NH3) [125,126,143,155–162]. The action mechanism of the sensing layer
is rather simple; the conductivity sensing layer usually increases while oxygen, which is
acting as an oxidizing agent, is physico-sorbed on TiO2/PANI and decreases when NH3,
which is acting as a reducing agent, replaces the adsorbed oxygen [155]. Although all com-
mon PANI forms (including leucoemeraldine and pernigraniline) [163–165] can be used for
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the modification of TiO2-based sensing layers, the most applicable seems to be an emeral-
dine form of PANI [154,157,159]. In addition to the most common TiO2-forms (anatase and
rutile), recently a new trend is based on the application of various nonstoichiometric tita-
nium suboxides, which are modified with conducting polymers including PANI [162,165],
polypyrrole (Ppy) [123,124,166], polythiophene (PTH) [65], etc. Modifications by PANI
are especially effective because PANI increases the sensitivity of titanium oxides towards
NH3 [125,126,143,155–162], H2 [163,167], LPG [168,169] [170], CO2 [169], trimethylamine
(TMA) [160], H2S [160], benzene [138], toluene [169], cyclohexane [169], CO [165] and
ethanol [164]. Analytical signals in most (titanium oxide)/PANI-based sensors are regis-
tered by the measurement of sensing layer resistance. However, there are some reports on
the application of quartz crystal microbalances (QCM) in (titanium oxide)/PANI-based
sensor design. Such TiO2-PANI composite-based QCM sensors were used for the detection
of trimethylamine [170], hydrazine [148] and NH3 [157].

6. Conclusions and Future Trends

A number of stoichiometric titanium oxide-based structures were applied in the design
of gas sensors. However, these sensors still face selectivity-related problems, which can
be solved by the doping of titanium oxide-based layers by dopants or the formation of
hetero-structures based on a combination with some other semiconducting compounds and
the adjustment of sensor-operation temperature. Among many others, sensors based on
composite materials that are based on titanium oxide modified with conducting polymers
are very promising, e.g., PANI. In recent investigations, it was shown that TiO2/TiO2−x-
based heterostructures can be successfully applied in the design of gas sensors; it was
demonstrated that the sensing properties of these sensors can be easily adjusted by changing
the TiO2/TiO2−x-ratio heterostructures. Moreover, TiO2/TiO2−x-based heterostructures are
good conductors; therefore, they can act in ‘self-heating’ mode and can reach temperatures
that are suitable for the determination of some gaseous compounds. It is expected that
TiO2/TiO2−x-based heterostructures will be more frequently applied in the design of gas
sensors, but the main challenge in this research direction is still related to the control of
stoichiometry and morphology of the TiO2/TiO2−x-based structure, which is very critical
for the sensitivity and selectivity of the designed gas sensors.
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