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Abstract: The present work deals with hierarchical composites in three dimensions, whose con-
stituents behave as non-aging linear viscoelastic materials. We model the influence that imperfect
viscoelastic interfaces have on the macroscopic effective response of these structures. As an ini-
tial approach, the problem of two bodies in adhesion is studied and in particular the case of soft
viscoelastic interface at zero-order is considered. We deduce the integral form of the viscoelastic
interface by applying the matched asymptotic expansion method, the correspondence principle,
and the Laplace–Carson transform. Then, by adapting the integral form previously obtained, we
address a heterogeneous problem for periodic structures. Here, theoretical results obtained for perfect
interfaces are extended to the formal viscoelastic counterpart of the spring-type imperfect interface
model. Finally, we show the potential of the proposed approach by performing calculations of
effective properties in heterogeneous structures with two- and three-scale geometrical configurations
and imperfect viscoelastic interfaces.

Keywords: imperfect viscoelasticity interfaces; hierarchical structure; composite materials; three-scale
asymptotic homogenization method; soft interphase

1. Introduction

The modeling of imperfect interfaces in composite materials plays an essential role
in mechanical and civil engineering applications. The physical phenomena commonly
studied are, for instance, adhesion, non-conforming contact, microcracks, friction, unilateral
contact, among others. It is worth mentioning that conventional adhesives such as water-
based polymers generally exhibit viscoelastic properties (see [1,2]), hence the importance
of studying the viscoelastic response in imperfect interfaces models. In this regard, recent
studies address the influence of viscoelastic imperfect interfaces in composite materials
(see, e.g., [3–7]).

Several interface models based on micromechanical approaches have been proposed.
One of the first definitions of imperfect interfaces is certainly to be found in the works
of [8–11]. In particular, in [9], the author defines the imperfect interface in terms of the
spring-type model, relating the displacement jumps at the interface to tractions. In addition,
the author assumes that the discontinuity in terms of displacements is allowed and linearly
proportional to the traction vector; however, the continuity in terms of stresses, according
to local equilibrium, is preserved (see [12] for more details). This approach, adapted to the
homogenization of composites materials with periodic microstructure, has been widely
used in recent contributions (see, e.g., [13–16]).
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Another treatment for bonded regions has been recently proposed by [17]. In this
regard, the authors model the asymptotic behavior of a thin interphase at higher orders
for two cases, i.e., soft and hard interface materials, by means of a unified approach.
Specifically, the adhesive is replaced by an elastic interface that retains in the memory the
main mechanical characteristics of this material (see [18]). A classical theory for obtaining
this material interface is the method of matched asymptotic expansions (see [19]). It is
worth noticing that, when considering up to zero order of the asymptotic expansion, if the
adhesive is soft, then the proposed approach covers the models based on the classical
law of the spring-type interface, and additionally, if the adhesive is hard, it returns the
classical model of perfect interface, where both the traction and displacement vector fields
are continuous across the interface. This methodology has been addressed in several
contributions, see, e.g., [20–25].

In the present work, the influence that imperfect viscoelastic interfaces have on the
macroscopic effective response of heterogeneous structures is studied. Several studies
have been carried out to model thin layers and interfaces using viscoelastic models such
as Maxwell and Kelvin–Voigt (see, e.g., [26]). In this regard, the main novelty of the
work lies in considering the integral representation of the imperfect viscoelastic interface
for displacement-type discontinuity conditions. Moreover, this imperfect viscoelastic
interface is integrated into the model addressed in [27], which is devoted to hierarchical
viscoelastic composites.

In summary, the work is divided into two stages. In the first stage, the viscoelastic
law of the imperfect interface is derived by studying the two-body bonding problem via
matched asymptotic expansions (see [19]), where the adhesive and some of the adherents
behave as linear viscoelastic materials (refer to Section 2). In the second stage, a problem
for hierarchical heterogeneous structures with non-aging linear viscoelastic constituents
and imperfect contact conditions is modeled by means of the three-scale Asymptotic Ho-
mogenization Method (AHM) (see Section 3). Additionally, in Section 4, a methodology is
presented to solve analytically the local problem in the case of laminated composites with
imperfect interfaces. Finally, in Sections 5 and 6, we show the potential of the proposed ap-
proach by performing several calculations in the case of two- and three-scale configurations
of heterogeneous structures with imperfect viscoelastic interfaces.

2. The Problem of Two Bodies in Adhesion

In this section, an assembly of two bodies is considered where the adhesive layer,
also called interphase, is characterized by a low thickness. Because of this, it becomes
problematic to address the heterogeneous problem by means of a finite element analysis.
Therefore, the introduction of a scaling parameter and the use of asymptotic techniques
arise as a suitable alternative for the solution of the problem (see, e.g., [28,29]). In general,
the methodology consists of replacing the problem of the thin adhesive by a homogeneous
problem wherein the small parameter is geometrically vanished in the limit theory and
the mechanical properties of the new imperfect interfaces are derived from the mechanical
and geometrical behavior of the original interphase (see more details in [12]). We recall
that the purpose of this section is to generalize the theoretical framework developed in [17]
by considering that the adhesive and some of the adherents behave as linear viscoelastic
materials. In this regard, initial ideas for modeling thin layers and interfaces in viscoelastic
Maxwell and Kelvin–Voigt models are reported in [26].

2.1. Model Description

Let us consider a composite body B(h) ⊂ R3 made by three deformable and homoge-
neous solids, bonded together, and that behave as non-aging linear viscoelastic materials
(see Figure 1a). In particular, two adherents denoted by B

(h)
+ and B

(h)
− are joined by an

adhesive (thin layer) D (h) with uniform small thickness h� 1. The cross-section of D (h) is
referred to as I , and represents an open bounded set in R2 with a smooth boundary ∂I .
Thus, D (h) and I are known as interphase and interface, respectively. Additionally, I

(h)
±
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stands for the plane interfaces between the interphase and the adherents. The above leads
to B(h) = B

(h)
± ∪I

(h)
± ∪D (h), whose domains and surfaces can be defined as follows:

B
(h)
± =

{
(x1, x2, x3) ∈ B(h) : ±x3 >

h
2

}
, (1)

D (h) =

{
(x1, x2, x3) ∈ B(h) : −h

2
< x3 <

h
2

}
, (2)

I
(h)
± =

{
(x1, x2, x3) ∈ B(h) : x3 = ±h

2

}
, (3)

I =
{
(x1, x2, x3) ∈ B(h) : x3 = 0

}
. (4)

Furthermore, the relaxation modulus for the adherents and the interphase are symmet-
ric tensors, with the minor and major symmetries properties, and positive definite. They
are denoted by BBB(h)

± and DDD(h), respectively.

The adherents are subjected to a body force density f : B
(h)
± → R3, which is negligible

in the adhesive. In addition, a surface force density S : ∂B
(h)
n → R3 and homogeneous

boundary conditions on ∂B
(h)
d are considered. It is worth mentioning that ∂B

(h)
n and ∂B

(h)
d

are assumed to be located far from the interphase and the fields of the external forces are
sufficiently regular to ensure the existence of an equilibrium configuration (see [17,21]).

Figure 1. (a) Reference configuration for the viscoelastic composite material with the h-thick interphase;
(b) rescaled configuration; and (c) final configuration or limit interface problem (zero-thick interphase).

Then, the equilibrium equation for the composite material reads

∇ · σσσ(h)(x, t) + f (x, t) = 0 in B
(h)
± ×R (5)

∇ · σ(h)(x, t) = 0 in D (h) ×R (6)

u(h)(x, t) = 0 on ∂B
(h)
d ×R (7)

σ(h)(x, t) · n = S on ∂B
(h)
n ×R (8)

r
u(h)(x, t)

z
= 0,

r
σ(h)(x, t) · i3

z
= 0 on I

(h)
± ×R, (9)

Initial condition in B(h) × {0},

u(h)(x, t) = u(h)
e (x), (10)

where (O, i1, i2, i3) is an orthonormal Cartesian basis.
As observed in (9), within the original interface problem, the adhesive D (h) and

the adherents B
(h)
± are assumed to be perfectly bonded and thus the continuity of the

displacement and traction across I
(h)
± ×R is guaranteed.
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2.2. Matched Asymptotic Expansion Method

In this section, the main goal is to derive the viscoelastic imperfect interfaces from
the viscoelastic behavior of the thin interphase. Since the thickness of the interphase is
very small, it is natural to search for an approximate solution of problem (5)–(10) when the
small parameter h vanishes (limit configuration). This is done by means of the matched
asymptotic expansion method (see [17,19,30–33]). The approach relies on domain rescaling
and employs series expansions of power of h for the rescaled fields. In what follows,
the symbol ( ˘ ) represents the rescaled fields in the adhesive, whereas ( ¯ ) stands for the
rescaled fields in the adherents.

2.2.1. Rescaling

The classical procedure starts with a change of variables in the adhesive and adherents,
respectively (see [34]). In particular, at the adhesive, we have

p̆ : (x1, x2, x3) ∈ D (h) 7→ (z1, z2, z3) ∈ D (11)

z1 = x1, z2 = x2, z3 =
x3

h
, (12)

which gives

∂

∂z1
=

∂

∂x1
,

∂

∂z2
=

∂

∂x2
,

∂

∂z3
= h

∂

∂x3
. (13)

In addition, at the adherents is performed

p̄ : (x1, x2, x3) ∈ B
(h)
± 7→ (z1, z2, z3) ∈ B± (14)

z1 = x1, z2 = x2, z3 = x3 ±
1
2
(1− h), (15)

where, similarly, the following is fulfilled:

∂

∂z1
=

∂

∂x1
,

∂

∂z2
=

∂

∂x2
,

∂

∂z3
=

∂

∂x3
. (16)

After these transformations, the structure shown in Figure 1b is reached, and geomet-
rically we observe the following

B± =

{
(z1, z2, z3) ∈ R3 : ±z3 >

1
2

}
, (17)

D =

{
(z1, z2, z3) ∈ R3 : −1

2
< z3 <

1
2

}
, (18)

I± =

{
(z1, z2, z3) ∈ R3 : z3 = ±1

2

}
. (19)

Moreover, the physical quantities involved in the problem (5)–(10) satisfy the corre-
sponding transformation for all t ∈ R, namely

σ̄(h) := σ(h) ◦ p̄−1, σ̆(h) := σ(h) ◦ p̆−1. (20)

ū(h) := u(h) ◦ p̄−1, ŭ(h) := u(h) ◦ p̆−1. (21)

f̄ := f ◦ p̄−1, S̄ := S ◦ p̄−1, (22)

where, in Equations (20) and (21), the stress and displacement fields from the rescaled
adhesive and adherents are respectively presented, whereas, in Equation (22), we have
the rescaled external forces. Notice that the symbol “◦” in (20)–(22) denotes the function
composition operator.
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2.2.2. Asymptotic Expansions

Based on the rescaled configuration of Section 2.2.1, the asymptotic expansions for the
displacement fields are proposed as follows (see, e.g., [12,24]):

u(h)(x, t) = u(0)(x, t) + hu(1)(x, t) + h2u(2)(x, t) + O(h2), (23)

ŭ(h)(z, t) = ŭ(0)(z, t) + hŭ(1)(z, t) + h2ŭ(2)(z, t) + O(h2), (24)

ū(h)(z, t) = ū(0)(z, t) + hū(1)(z, t) + h2ū(2)(z, t) + O(h2). (25)

In addition, by following the same idea for the stress fields, we have

σ(h)(x, t) = σ(0)(x, t) + hσ(1)(x, t) + O(h1), (26)

σ̆(h)(z, t) = σ̆(0)(z, t) + hσ̆(1)(z, t) + O(h1), (27)

σ̄(h)(z, t) = σ̄(0)(z, t) + hσ̄(1)(z, t) + O(h1). (28)

At this point, the second-order strain tensor determined by the formula,

ξ(u(x, t)) =
1
2

(
∇u(x, t) + (∇u(x, t))T

)
, (29)

is applied to the rescaled displacement field at the interphase (see Equation (24)). So then,
the strain tensor in the adhesive is obtained as follows:

ξ
(

ŭ(h)(z, t)
)
= h−1ξ̆

(−1)
+ ξ̆

(0)
+ hξ̆

(1)
+ O(h2), (30)

with

ξ̆
(−1)

=

 0
1
2

∂ŭ(0)
α

∂z3

1
2

∂ŭ(0)
α

∂z3

∂ŭ(0)
3

∂z3

, (31)

ξ̆
(k)

=


Sym

(
∂ŭ(k)

α

∂zβ

)
1
2

(
∂ŭ(k)

3
∂zα

+
∂ŭ(k+1)

α

∂z3

)
1
2

(
∂ŭ(k)

3
∂zα

+
∂ŭ(k+1)

α

∂z3

)
∂ŭ(k+1)

3
∂z3

, (32)

where α, β = 1, 2, k = 0, 1 and the notation Sym(·) represent the symmetric part of the
enclosed tensor.

Similarly, by means of Equations (29) and (25), the strain tensor in the adherents reads

ξ
(

ū(h)(z, t)
)
= h−1ξ̄

(−1)
+ ξ̄

(0)
+ hξ̄

(1)
+ O(h2), (33)

with

ξ̄
(−1)

= 0, (34)

ξ̄
(k)

=


Sym

(
∂ū(k)

α

∂zβ

)
1
2

(
∂ū(k)

3
∂zα

+
∂ū(k)

α

∂z3

)
1
2

(
∂ū(k)

3
∂zα

+
∂ū(k)

α

∂z3

)
∂ū(k)

3
∂z3

. (35)
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Now, by substituting Equations (13) and (27) into the equilibrium equation of the
adhesive (6), we derive

∂σ̆
(0)
i3

∂z3
= 0, (36)

∂σ̆
(0)
i1

∂z1
+

∂σ̆
(0)
i2

∂z2
+

∂σ̆
(1)
i3

∂z3
= 0, (37)

where i = 1, 2, 3.
With regard to Equation (36), it shows that, σ̆

(0)
i3 is constant in relation to z3 within the

adhesive, and so then, it can be rewritten as follows:[
σ̆
(0)
i3

]
= 0, (38)

where [·] denotes the jump between z3 = 1
2 and z3 = − 1

2 , i.e., [Φ] := Φ(z1, z2,+ 1
2
+

, t)−
Φ(z1, z2,− 1

2
−

, t) for any physical quantity Φ.
In addition, using Equation (38), we obtain that, for i = 3, Equation (37) can be

transformed as follows:

[
σ̆
(1)
33

]
= −

∂σ̆
(0)
13

∂z1
−

∂σ̆
(0)
23

∂z2
. (39)

Furthermore, by considering Equation (28), the equilibrium Equation (5) in the adher-
ents leads to

∂σ̄
(0)
ij

∂zj
+ fi = 0, (40)

∂σ̄
(1)
ij

∂zj
= 0. (41)

2.2.3. Matching External and Internal Expansions

The matching relations between external and internal expansions are based on the
continuity conditions of the traction and displacement vector fields (σ(h) · i3, u(h)) at the
interfaces I

(h)
± in the initial configuration problem (5)–(10) (see [17,32,35]). In particular,

the continuity of displacements yields

u(0)(x1, x2, 0±, t) = ŭ(0)(z1, z2,±1
2

, t) = ū(0)(z1, z2,±1
2

, t), (42)

u(1)(x1, x2, 0±, t)± 1
2

∂u(0)(x1, x2, 0±, t)
∂z3

= ŭ(1)(z1, z2,±1
2

, t) = ū(1)(z1, z2,±1
2

, t), (43)

whereas the continuity of the stress vector gives the following conditions:

σ
(0)
i3 (x1, x2, 0±, t) = σ̆

(0)
i3 (z1, z2,±1

2
, t) = σ̄

(0)
i3 (z1, z2,±1

2
, t) (44)

σ
(1)
i3 (x1, x2, 0±, t)± 1

2
∂σ

(0)
i3 (x1, x2, 0±, t)

∂z3
= σ̆

(1)
i3 (z1, z2,±1

2
, t) = σ̄

(1)
i3 (z1, z2,±1

2
, t), (45)

for i = 1, 2, 3.
As observed, the matching relations in Equations (42)–(45) are stated in terms of

the stress and displacement vector fields defined on the limit configuration. So then,
the matching conditions provide a link between the fields evaluated at x3 = 0± and the
rescaled fields evaluated at z3 = (±1/2)± (see [23]).
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Finally, notice that all equations written so far are general in the sense that they are
independent of the constitutive behavior of the materials.

2.2.4. Soft Interphase Analysis under Viscoelastic Effects

The aim of this section is to derive the soft viscoelastic interface at zero-order which
correspond exactly with the counterpart of the classical spring-type imperfect interface in
the elastic case.

To start with, the linear viscoelastic constitutive laws for the interphase and the
adherents are introduced as follows:

σ̆(h)(z, t) =
t∫

0

DDD(h)(z, t− τ) :
∂ξ(ŭ(h)(z, τ))

∂τ
dτ, (46)

σ̄(h)(z, t) =
t∫

0

BBB±(z, t− τ) :
∂ξ(ū(h)(z, τ))

∂τ
dτ. (47)

Assuming that the interphase is soft, the relaxation modulus DDD(h) can be defined by
means of the expression, (see [12,21,24])

DDD(h) := hDDD, (48)

where the viscoelastic tensor DDD does not depend on h.
In addition, the matrices Kjl (with j, l = 1, 2, 3) are introduced, whose components are

defined by the relation

Kjl
ik := Dijkl . (49)

Then, by combining Equations (27), (30), and (48) into the viscoelastic constitutive
law (46), and, by means of the correspondence principle and the Laplace–Carson space,
the following expression is derived:

σ̆(0) + hσ̆(1) = DDD : (ξ̆
(−1)

+ hξ̆
(0)

) + O(h). (50)

In what follows, the procedure is developed in the Laplace–Carson domain, and the
results correspond with the elastic formulation reported, for instance, in [17,35].

From Equation (50), the following relation is deduced:

σ̆(0) = DDD : (ξ̆
(−1)

). (51)

In addition, Equation (49) is substituted into (51) and, by using (31), we derive

σ̆(0)ij = KKK3j ∂ŭ(0)

∂z3
, (52)

for j = 1, 2, 3. In particular, for j = 3, this expression can be transformed by integrating
with respect to z3, which leads to

σ̆(0) · i3 = KKK33
[
ŭ(0)

]
. (53)

Equation (53) represents the classical law for a soft viscoelastic interface at the zero-
order in the Laplace–Carson domain. However, this equation has to be formulated in their
final form, i.e., in terms of the stress and displacement fields in the limit configuration
problem (see Figure 1c). For this purpose, we employ the matching relations (42) and (44),
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and then the final expression for the soft viscoelastic interface law at zero-order in the
Laplace–Carson domain is written as follows:

σ(0) · i3 = KKK33
r

u(0)
z

, on I × [0,+∞[. (54)

Finally, by applying the inversion of the Laplace–Carson transform, we obtain the soft
viscoelastic interface law at zero-order in the time domain,

σ(0)(x, t) · i3 =

t∫
0

KKK33(t− τ)
∂
r

u(0)(x, τ)
z

∂τ
dτ, on I ×R. (55)

It is worth noticing that this expression is equivalent to the one reported in Equation (8)
of [10] and generalizes the work of [26].

3. The Problem for Heterogeneous Structures with Imperfect Interfaces

In this section, most of the results presented in [27] are generalized to the case of imper-
fect interfaces. In particular, we consider a similar hierarchical composite material but with
the novelty that we impose discontinuity conditions for displacement on (I (ε1) ∪I (ε2))×R.
The three-dimensional problem studied in [27] is now equipped with an adapted version of
the imperfect viscoelastic interface condition given in Equation (55), namely

σ(ε)(x, t) · n(α) =

t∫
0

KKKjl(α)(t− τ)
∂
r

u(ε)(x, t)
z

∂τ
dτ, (α = y, z) (56)

where no preferred directions are considered. Here, Kjl(y)
ik and Kjl(z)

ik are the components
of a matrix KKKjl(α) (α = y, z), which characterize the imperfect interface conditions at the
different structural levels. In addition, it is worth mentioning that this condition can be
directly assumed from the expression of the corresponding spring-type imperfect interface
in the elastic problem (see, e.g., [15]) via the correspondence principle and the Laplace–
Carson transform (see [10]).

For the sake of simplicity, we neglect inertia and external volume forces in the model,
and impose continuity conditions for tractions on the interfaces I (ε1) ∪I (ε2). Therefore,
the balance of linear momentum in B together with the interface conditions read

∇ · σ(ε)(x, t) = 0, in B \ (I (ε1) ∪I (ε2))×R, (57)

σ(ε)(x, t) · n(α) =

t∫
0

KKKjl(α)(t− τ)
∂
r

u(ε)(x, t)
z

∂τ
dτ, on (I (ε1) ∪I (ε2))×R, (58)

r
σ(ε)(x, t) · n(α)

z
= 0, (α = y, z) on (I (ε1) ∪I (ε2))×R. (59)

Boundary conditions

u(ε)(x, t) = ū, on ∂Bd ×R, (60)

σ(ε)(x, t) · n = S̄, on ∂Bn ×R. (61)

Initial condition

u(ε)(x, t) = u(ε)
e (x), in B × {0}. (62)



Coatings 2022, 12, 705 9 of 20

In the framework, the composite behaves as a non-aging viscoelastic material so
that [36]

σ(ε)(x, t) =
t∫

0

RRR(ε)(x, t− τ) :
∂ξ(u(ε)(x, τ))

∂τ
dτ. (63)

Finally, the system (57)–(62) written in the Laplace–Carson domain is given by

∇ ·
(
RRR(ε)(x, p) : ξ(u(ε)(x, τ))

)
= 0, in B \ (I (ε1) ∪I (ε2))× [0,+∞[, (64)

RRR(ε)(x, p) : ξ
(

u(ε)(x, p)
)
· n(α) = KKKjl(α)(p)

r
u(ε)(x, p)

z
, on (I (ε1) ∪I (ε2))× [0,+∞[, (65)

r
RRR(ε)(x, p) : ξ

(
u(ε)(x, p)

)
· n(α)

z
= 0, (α = y, z) on (I (ε1) ∪I (ε2))× [0,+∞[. (66)

Boundary conditions

u(ε)(x, p) = ū, on ∂Bd × [0,+∞[, (67)

RRR(ε)(x, p) : ξ
(

u(ε)(x, p)
)
· n = S̄, on ∂Bn × [0,+∞[. (68)

Initial condition

u(ε)(x, p) = u(ε)
e (x, p), in B × {0}. (69)

Main Results of AHM

Now, we present the results that are added as a consequence of using the imperfect
viscoelastic interface. Then, we write, at each level of organization, the local problems and
the expression for the effective coefficients resulting from the application of the AHM to
the problem (64)–(69). It is worth recalling that, in what follows, the scheme is developed
in the Laplace–Carson space.

Thus, following the standard procedure in asymptotic homogenization, after substitu-
tion of the series expansion,

u(ε)(x, p) = ũ(0)(x, y, z, p) +
+∞

∑
i=1

ũ(i)(x, y, z, p)εi
2, (70)

where ũ(0) is defined as

ũ(0)(x, y, z, p) = u(0)(x, y, z, p) +
+∞

∑
i=1

u(i)(x, y, z, p)εi
1, (71)

in Equation (65), it is obtained that the imperfect interface conditions is given by the
expression

Rijkl

[
ε−1

2

(
ξkl

(
ũ(0)

)
+ ε−1

1 ξ
(y)
kl

(
ũ(0)

)
+ ξ

(z)
kl

(
ũ(1)

))
+ ε−2

2 ξ
(z)
kl

(
ũ(0)

)]
n(z)

j + ... = Krs(z)
ij

r
ε−2

2 ũ(0)
j + ε−1

2 ũ(1)
j + ...

z
. (72)

First level of organization
Regarding the results obtained in [27] for the first structural level, we only summarize
here the added information, i.e., the imperfect interface conditions.

Problem for ε−2
2

For this problem, we have

Rijklξ
(z)
kl

(
ũ(0)

)
n(z)

j = Krs(z)
ij

r
ũ(0)

j

z
, on IZ × [0,+∞[. (73)
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Problem for ε−1
2

Similarly, for the problem ε−1
2 , we derive the following condition:

Rijkl

[
ξ
(z)
kl (ũ(1)) + ξkl(ũ

(0))

+ ε−1
1 ξ

(y)
kl (ũ(0))

]
n(z)

j = Krs(z)
ij Jũ(1)

i K, in IZ × [0,+∞[. (74)

Then, the ε2-local problem arises as follows:

∂ρ
(z)
m

∂xj

∂

∂zm

(
Rijkl +Rijpqξ

(z)
pq (χ̃kl)

)
= 0, in (Z \IZ )× [0,+∞[, (75)(

Rijkl +Rijpqξ
(z)
pq (χ̃kl)

)
n(z)

j = Krs(z)
ij Jχ̃klmK, on IZ × [0,+∞[, (76)

r(
Rijkl +Rijpqξ

(z)
pq (χ̃kl)

)
n(z)

j

z
= 0, on IZ × [0,+∞[, (77)

χ̃kl = χ̃kle, in Z × {0}. (78)

The uniqueness of the solution of the local problem (75)–(78) is guaranteed by enforc-
ing either the condition 〈χ̃klm〉z = 0 or by fixing the value of χ̃klm at one point of the
reference periodic cell Z (see [37,38]).

Second level of organization
Here, after substitution of the series expansion (71) in Equation (65), we derive the
corresponding imperfect interface conditions:

Řijkl

(
ε−1

1 ξkl

(
u(0) +

+∞

∑
i=1

u(i)εi
1

)
+ ε−2

1 ξ
(y)
kl

(
u(0) +

+∞

∑
i=1

u(i)εi
1

))
n(y)

j + ...

= Krs(y)
ij

r
u(0)

m + u(1)
m ε1 + u(2)

m ε2
1 + ...

z
on IY × [0,+∞[. (79)

Problem for ε−2
1

Following the same procedure, we have

Řijklξ
(y)
kl

(
u(0)

)
n(y)

j = Krs(y)
ij

r
u(0)

m

z
, on IY × [0,+∞[. (80)

Problem for ε−1
1

Here, we obtain

Řijkl

(
ξ
(y)
kl

(
u(1)

)
+ ξkl

(
u(0)

))
n(y)

j = Krs(y)
ij

r
u(1)

m

z
, on IY × [0,+∞[. (81)

Finally, the ε1-local problem reads as follows:

∂ρ
(y)
m

∂xj

∂

∂ym

(
Řijkl + Řijpqξ

(y)
pq (χkl)

)
= 0, in (Y \IY )× [0,+∞[, (82)(

Řijkl + Řijpqξ
(y)
pq (χkl)

)
n(y)

j = Krs(y)
ij JχklmK, on IY × [0,+∞[, (83)

r(
Řijkl + Řijpqξ

(y)
pq (χkl)

)
n(y)

j

z
= 0, on IY × [0,+∞[, (84)

χkl = χkle, in Y × {0}. (85)

Analogous to the ε2-local problem, a further condition is required to obtain uniqueness
of the solution of the local problem (82)–(85).
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4. Calculation of the Effective Properties
4.1. Rectangular Laminated Composites

In this section, a methodology is applied to solve analytically the local problems and
calculate the effective properties in the case of rectangular laminated composites with
imperfect viscoelastic interfaces and hierarchical structure. The ideas outlined in [39] for
an elastic framework are adapted for our purposes. Since the approach can be applied
in a similar way for the local problem at both structural levels, here, we only present the
scheme for the ε1-local problem.

In particular, it is a two-phase composite with laminated structure, where the cells are
periodically distributed along the x3-axis (see Figure 2). In this case, the stratified function
becomes ρ(y) : R3 → R with ρ(y)(x1, x2, x3) = x3. Then, a simplification for the ε1-local
problem (82)–(85) emerges as follows:

∂

∂y

[
Ři3p3(y, p)

∂χklp(y, p)
∂y

+ Ři3kl(y, p)
]
= 0, (86)

Ři3p3(y, p)
∂χklp(y, p)

∂y
+ Ři3kl(y, p) = (−1)α+1K33(y)

im (p)Jχklm(y, p)K, (87)
t

Ři3p3(y, p)
∂χklp(y, p)

∂y
+ Ři3kl(y, p)

|

= 0. (88)

Initial condition in Y× {0},
χkl(y, p) = χkle(y). (89)

Assuming that the two constituents have isotropic behavior, the effective relaxation
modulus Řijkl(y, p) can be rewritten as

Řijkl(y, p) = λ(y, p)gijgkl + µ(y, p)
(

gikgjl + gil gjk

)
, (90)

where [gij] is the metric tensor, and due to the homogeneity,

λ(y, p) =
{

λ1(p), y ∈ Y+

λ2(p), y ∈ Y−
, µ(y, p) =

{
µ1(p), y ∈ Y+

µ2(p), y ∈ Y−
. (91)

Then, from Equations (86) and (90), the local functions have the general expressions
(see [39] for more details),

χklm(y, p) =


A(1)

klm(p)y + B(1)
klm(p), y ∈ Y+,

A(2)
klm(p)y + B(2)

klm(p), y ∈ Y−.
(92)

Finally, the effective relaxation modulus for a two-layer laminated composite material
with imperfect interfaces is obtained as follows:

R̂ijkl(p) =
〈
Řijkl(y, p)

〉
y
+ V(Y1)

f Ř(1)
ijm3(p)

∂χklm(y, p)
∂y

+ V(Y2)
f Ř(2)

ijm3(p)
∂χklm(y, p)

∂y
. (93)

4.2. Laminated Composites: General Case

We take inspiration from [14], and we develop an approach for solving the local
problems (75)–(78) and (82)–(85) in the Laplace–Carson space, in which the stratified
functions and the imperfect interfaces are considered.
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Thus, then, by considering the general case when the stratified functions are given by
ρ(α) : R3 → R i.e., ρ(α) ≡ ρ(α)(x1, x2, x3) with α = y, z, the local problem (75) can be trans-
formed into the following partial differential equations system by using the Voigt’s notation

Ãik
∂2χ̃jk

∂z2 = 0, (94)

where i, k = 1, 2, 3, j = 1, 2, . . . , 6 and the expressions for the components are

Ãik =
∂ρ(z)

∂xj
Rijkl

∂ρ(z)

∂xl
. (95)

Analogously, the local problem (82) becomes

Aik
∂2χjk

∂y2 = 0, (96)

where

Aik =
∂ρ(y)

∂xj
Řijkl

∂ρ(y)

∂xl
. (97)

For each of the problems (94)–(97), a respective solution is proposed similar to the one
given in Equation (92). Then, the imperfect interface conditions in Equations (76) and (83)
are rewritten by considering these proposed solution and the definition of the stratified
functions. Thus, then, we reach to a 6× 6 system of partial differential equations for each
level of organization. We refer to Appendix A of [14] for more details about the components
of the system, which are given for a particular case of two-scale and elastic materials.
The last step in the approach is the calculation of the effective viscoelastic properties, which
can be done by means of equations (see [27])

Řij =

〈
Rij +

(
Ri1

∂ρ(z)

∂x1
+Ri6

∂ρ(z)

∂x2
+Ri5

∂ρ(z)

∂x3

)
∂χ̃j1

∂z
+

(
Ri6

∂ρ(z)

∂x1
+Ri2

∂ρ(z)

∂x2

+Ri4
∂ρ(z)

∂x3

)
∂χ̃j2

∂z
+

(
Ri5

∂ρ(z)

∂x1
+Ri4

∂ρ(z)

∂x2
+Ri3

∂ρ(z)

∂x3

)
∂χ̃j3

∂z

〉
z

, (98)

R̂ij =

〈
Řij +

(
Ři1

∂ρ(y)

∂x1
+ Ři6

∂ρ(y)

∂x2
+ Ři5

∂ρ(y)

∂x3

)
∂χj1

∂y
+
(
Ři6

∂ρ(y)

∂x1
+ Ři2

∂ρ(y)

∂x2

+Ři4
∂ρ(y)

∂x3

)
∂χj2

∂y
+
(
Ři5

∂ρ(y)

∂x1
+ Ři4

∂ρ(y)

∂x2
+ Ři3

∂ρ(y)

∂x3

)
∂χj3

∂y

〉
y

, (99)

for i, j = 1, 2, . . . , 6.
To conclude, note that the expressions to the local problems (94)–(97) are obtained for

anisotropic materials.

5. Numerical Results for Two-Scale Structures

As observed in Section 4.1, the methodology allows to determine the effective prop-
erties for a rectangular two-layered viscoelastic medium with isotropic constituents and
imperfect interfaces. It should be noted that, in the case of hierarchical structures, if the
imperfection is located for instance at the ε1-structural level (intermediate scale), and the
calculation at the ε2-structural level (lower scale) yields effective properties that no longer
have an isotropic behavior, then the approach shown in Section 4.1 cannot be used. To avoid
this, here a two-scale framework is considered (see Figure 2).
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Thus, the main aim of the section is to show the influence that viscoelastic interfaces
have on the effective behavior of a rectangular two-layered composite material. For this
purpose, we consider Burger’s and Maxwell’s models to describe the viscoelastic interface
in Section 5.1, whereas Dischinger’s model is employed in Section 5.2. These models are
widely used in the literature as descriptors of viscoelastic materials (see [40,41]), providing
information about the viscoelastic behavior and having well characterized parameters.

Unit periodic cell 

Imperfect interface 

(a) (b) (c)

Figure 2. (a) Macroscale, (b) ε1-structural level, (c) Microscale. Viscoelastic composite material with a
rectangular geometrical configuration and imperfect interfaces.

5.1. Influence of Viscoelastic Interface on Elastic Composites

In this first example, the composite under study is assumed to have two elastic layers
and we aim to variate the interfaces in order to study the influence of the viscoelastic
effects. In the case of perfect contact conditions at the interfaces, we expect the occurrence
of constant effective properties over the time. The same behavior must be observed in
the case of elastic spring-type imperfect interfaces (see, e.g., [13,15]) in which no time is
involved. The aforementioned cases are denoted by (1) and (2), respectively (see Figure 3).
In addition, two further cases are analyzed, namely cases (3) and (4), corresponding to
imperfect viscoelastic interfaces that consider a Burger’s model and a Maxwell’s model to
respectively describe the viscoelastic behavior (see Figure 3).

The parameters for the two elastic layers (MAT 1 and MAT 2) and for the elastic
interface (MAT 3) are given in Table 1, where E and ν stand for the Young’s modulus and
Poisson’s ratio, respectively. In addition, the volumetric fraction of the layers is assumed to
be 50%. Regarding the viscoelastic interfaces, the expressions for the creep compliance in
Burger’s and Maxwell’s models are given respectively as follows (see [40,42]):

S(t) =
1

E0
+

1
E1

(
1− exp

(
−E1

η1
t
))

+
t

η2
, (100)

and

S(t) =
1

E0
+

t
η0

. (101)

The corresponding input parameters are displayed in Table 2.

Table 1. Parameters for elastic materials.

E (GPa) ν

MAT 1 150 0.3
MAT 2 72.04 0.35
MAT 3 2.5 0.25
MAT 4 34.8 0.443
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Table 2. Input data for the viscoelastic interfaces.

E0 (GPa) E1 (GPa) η0 (GPa·h) η1 (GPa·h) η2 (GPa·h) ν

Maxwell’s model 2.5 - 50 - 0.25
Burger’s model 2.5 1.8 - 300 8000 0.25

Based on Equations (6a), (6b) and (10) of [10], we introduce the relaxation matrix KKK33,
which contains the interface relaxation in normal and tangential directions to the interface,
as follows:

KKK33(t) =
1
r

 µ(t) 0 0
0 µ(t) 0
0 0 λ(t) + 2µ(t)

 (102)

where µ(t) and λ(t) are the time depended material properties of the linear viscoelastic
isotropic interphase, and r is the interphase thickness herein given in meters.

Thus, Figure 3 shows the effective relaxation response of the composite material, given
by the coefficient R̂33 for the four different cases outlined above. Here, we set the thickness
value to r = 10−3, and the variation of the effective properties is studied in the time interval
[0, 600] (hrs).

It is worth mentioning that the data used in the calculation of cases (1) and (2) were
deduced from [39], allowing us to compare the results with those presented in Table 1 of
the same work. Figure 3 provides evidence of the good agreement between our findings.
We point out that, in [39], the authors assume µ(t) + 2λ(t) instead of λ(t) + 2µ(t) (see
Equation (55)); therefore, for the sake of comparison, we follow this scheme.

Additionally, we choose the parameters for cases (3) and (4) in order to obtain the same
instant elastic response along the four studied cases. This means, graphically, having a
common initial point for the graphs at t = 0, which helps us to better visualize the influence
of the imperfect viscoelastic interfaces compared to the elastic ones (see Figure 3).

1

2

3

4

Perfect interface1

2 Elastic interface

3 Viscoelastic interface       Burger model

Viscoelastic interface       Maxwell model4

Imperfect interface 

0 100 200 300 400 500 600

20

40

60

80

100

120

140

160

Figure 3. Calculation of the effective relaxation modulus R̂33 by means of Equation (93). We set the
interphase thickness r = 10−3. Note that cases 2, 3, and 4 refer to imperfect interfaces.
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As observed in Figure 3, regardless of the presence of elastic constituents, the effective
properties show a time-dependent behavior when imperfect viscoelastic interfaces arise
(see cases (3) and (4)). These results confirm that, within the present model, viscoelastic
interfaces have a strong influence on the effective behavior of the composite materials. In ad-
dition, the differences observed depend on the viscoelastic model selected. For example,
when the viscoelastic interface is modeled by the Burgers model, i.e., case (3), the relative
variation of the effective relaxation modulus R̂33 at the fixed time t = 600 hrs, in relation
to the instant elastic response at t = 0 hrs (see Figure 3) is 6.76%, while, in the case of the
Maxwell model, i.e., case (4), we have a variation that reaches 75.38%. One justification for
this behavior is provided by the relaxation representation of the two models, where the
Maxwell model has a strong decrease with time.

5.2. Viscoelastic Composites with Viscoelastic Interfaces

Now, in addition to have imperfect viscoelastic interfaces, some of the constituents
are considered to behave as a viscoelastic material. In particular, we have a two-layered
periodic medium (see Figure 2), where layer 1 presents a linear elastic behavior and layer 2,
a linear viscoelastic one. The viscoelastic response of layer 2 is described by means of the
Dischinger’s model (see [41,43]). This model assumes a time-dependent function, given by
the form

ϕ(τ, t) = exp (−αt)− exp (−ατ), (103)

and thereby the relaxation functions for the viscoelastic constituent are defined for τ ≤ t
as follows,

µ2(τ, t) = µ20 exp

(
µ20

αβ
ϕ(τ, t)

)
, (104)

λ2(τ, t) = K− 2
3

µ2(τ, t), (105)

where K is the bulk elastic modulus and µ20 is a constant. Moreover, α and β are parameters
of the model. Table 3 shows the input values for the Dischinger’s model. In addition,
the correspondent Lame’s constants for the elastic layer 1 are taken by the relations

µ1 = µ20, λ1 = K− 2
3

µ20, (106)

and we employ the Burger’s model used in Section 5.1 to describe the viscoelastic behavior
of the interphase.

In Figure 4, the calculation of the normalized effective relaxation modulus R̂33/R(1)
33

is shown. The results are derived for different values of the interphase thickness r (see
Equation (102)), and for the sake of comparison, we add the findings reported in [43],
which refer to perfect interfaces. As observed, when the thickness approaches zero (see
Equation (102)), the perfect interface condition is reached. This pattern is described in [9]
as a consequence of the infinite values of the interface stiffness, which in our viscoelastic
case corresponds to the interface relaxation given in Equation (102).
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Cruz-González et al. 2018
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Imperfect interface:

Figure 4. Computations of the normalized effective relaxation modulus R̂33/R(1)
33 by means of

Equation (93) for different interphase thickness. The results given in [43] for perfect interfaces
are shown as reference. In the computations, we consider τ = 0, which represents a medium
with non-aging.

Table 3. Parameters of Dischinger’s model.

K µ20 α · β α V (Y1)
f

(MPa) (MPa) (MPa) (day−1) (Dimensionless)

10,000 8571 35,667 0.026 0.5

6. Numerical Results for Hierarchical Composites

In this section, the influence that a hierarchical structure with viscoelastic constituents
and imperfect interfaces has on the macroscopic response of a composite material is studied
(see Figure 5). At the ε1-structural level, we have a wavy laminated composite involving
imperfect viscoelastic interfaces (see Figure 5b). In addition, one of these constituents is at
the same time a spherical reinforced composite material, where perfect contact conditions
are considered between the matrix and the inclusion (see Figure 5c).

Unit periodic cell. Unit periodic cell.

(a) (b) (c)

Figure 5. (a) Macroscale, (b) ε1-structural level/Mesoscale, (c) ε2-structural level/Microscale. Hierar-
chical composite material with imperfect viscoelastic interfaces at the ε1-structural level.
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For this purpose, we compute the effective coefficients at the smallest scale (ε2-
structural level) by means of the numerical approach developed in [44,45]. Then, the theoret-
ical results presented in Section 4.2 are considered to solve analytically the local problems
at the ε1-structural level for a wavy laminate composite with imperfect interfaces and
anisotropic components.

It is worth mentioning that four different constituents are involved in the calculation,
i.e., the spherical inclusions and the matrix which together made up layer 1; in addition,
we have layer 2 and the interphase. Taking this into consideration, we study three dif-
ferent combinations of the parameters (see case (1), (2) and (3) in Table 4). Most of the
material input data are taken from Section 5.1. In contrast, we now consider the relaxation
representation of Burger’s model (a)

Em(t) = G1 exp
(
− t

ησ,1

)
+ G2 exp

(
− t

ησ,2

)
, (107)

whose parameters are given in Table 5.
The volume fractions at the different levels of organization are assumed to be V(inclusion)

f = 0.3,

V(matrix)
f = 0.7 and V(layer2)

f = 0.2. In addition, the stratified function, ρ(y) : R3 → R,
defined as follows:

ρ(y)(x1, x2, x3) = x3 − Hsin(
2πx2

L
), (108)

is employed to describe the wavy effect at the ε1-structural level (see Figure 5b). In particu-
lar, we consider the ratio H/L = 0.25.

Table 4. Cases studied in this section.

MAT 1 MAT 2 MAT 3 MAT 4 Maxwell’s Model Burger’s Model (a)

Case (1) Matrix Layer 2 Interface Inclusion - -
Case (2) Matrix Layer 2 Interface - - Inclusion
Case (3) Matrix Layer 2 - - Interface Inclusion

Table 5. Parameters for the relaxation representation of the Burger’s model.

G1 (GPa) G2 (GPa) ησ,1 (h) ησ,2 (h) ν

Burger’s model (a) 13.4 21.4 7742.22 68.8863 0.443

In Figure 6, we display the results in the calculation of the effective viscoelastic
properties, Ê3, ν̂23, and µ̂12, which represent the Young modulus, Poisson ratio, and shears
modulus, respectively. The findings are derived for the three different combinations of the
parameters given in Table 4. In this regard, case (1) stands for a hierarchical composite
in which all the constituents, as well as the imperfect interface at the ε1-structural level,
behave as elastic materials. Then, as observed in Figure 6, constant graphs are obtained
in this situation. In relation to the remaining cases, Figure 6 shows how the viscoelastic
behavior of the spherical inclusions (case (2)) and spherical inclusions–interface (case (3))
have an influence on the macroscopic effective response of the hierarchical composite,
generating time-dependent graphs. For instance, in case (2), the relative variation of the
effective Young modulus Ê3 at t = 300 hrs in relation to the instant elastic response at t = 0
hrs (see Figure 6a) is given by 7.81%, while, in case (3), we have a variation that reaches
29.04%, providing quantitative evidence of the differences reported in the calculations.
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Figure 6. Computations of the effective (a) Young modulus; (b) Poisson ratio; and (c) shear modulus
for the hierarchical structure shown in Figure 5. The numbers (1–3) in the figure correspond to the
studied cases given in Table 4. We have averaged the results over x2 in [0, 1], and we set the interphase
thickness to r = 10−3.

7. Conclusions

In this work, the first attempt to integrate, on the one hand, the imperfect interface ap-
proach developed in [17] for soft and hard materials, and on the other hand a methodology
for addressing the problem in the case of hierarchical viscoelastic materials with periodic
heterogeneous structures and imperfect interfaces was proposed. In the first part of the
manuscript we generalized some of the results of the problem of two bodies in adhesion
in which the adhesive and some of the adherents exhibit a viscoelastic effect, and soft
viscoelastic interface law are deduced at zero-order in the time domain, corresponding
with the viscoelastic counterpart of the classical spring-type imperfect elastic interface. So
then, the problem for non-aging linear viscoelastic composite material with hierarchical
structure and imperfect viscoelastic interfaces was addressed via a three-scale Asymptotic
Homogenization Method (AHM) accounting for the procedure developed in [27]. Some
of the existing results in the elastic composite with imperfect interfaces are used to solve
the local problems and calculate the effective properties in a two-dimensional framework .
Finally, we showed the potential of the proposed asymptotic homogenization procedure by
modeling the effective properties of laminate structures with rectangular and wavy layers.
In the former, the influence of imperfect interfaces on the effective behavior of the composite
was studied, whereas in the later, we considered a hierarchical structure with spherical
inclusions and calculate the effective properties accounting for the stratified functions.

It should be added as a drawback of the approach taken in Section 6 that the model
does not take into account the hierarchy order between the imperfect interface at the ε1-
structural level and the smallest scale (ε2-structural level), which deserves to be analyzed
in a future work.

In addition, several potential extensions can be done. For instance, we may consider
imperfect viscoelastic interfaces in more general structures than laminated ones and include
the interfaces at both structural levels to study the damage propagation in materials with
periodic microstructure and viscoelastic interphases (see, e.g., [29,46–49]).
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