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Abstract: Nickel–titanium orthodontic wires (NTWs) play an essential role in orthodontic treatment.
However, their corrosion and aesthetic properties limit their applications. To improve the aesthetic
effects of nickel–titanium orthodontic archwires, we prepared aluminium–silicon dioxide (Al–SiO2) as
a biocompatible layer coated onto the NTWs. The Al–SiO2 coating was first fabricated using physical
vapor deposition magnetron sputtering, and its physicochemical and biocompatibility properties
were investigated. Al–SiO2 layers were well coated on the NTWs. The corrosion currents in the
nickel–titanium (NiTi) control, Al–SiO2-coated NiTi experimental, stainless steel (SS) control and
Al–SiO2-coated SS experimental groups were 23.72 µA cm−2, 1.21 µA cm−2, 0.22 µA cm−2 and
0.06 µA cm−2, respectively. Al–SiO2-coated NTWs with reduced corrosion current density indicated
that the preparation of Al–SiO2 coating on the surface of NiTi and SS could reduce the tendency
of electrochemical corrosion. The friction coefficients of orthodontic wires in the NiTi control, NiTi
experimental, SS control, and SS experimental groups were 0.68, 0.46, 0.58 and 0.45, respectively. A
low friction coefficient was observed in the Al–SiO2-coated NTWs, and the reduced friction coefficient
improved the efficiency of orthodontics. Furthermore, the excellent biocompatibility of the NTWs
and SS coated with Al–SiO2 indicates that Al–SiO2 as a novel aesthetic layer could improve the
physicochemical properties of NTW and SS without causing cytotoxicity, which has considerable
potential for modification of NTW and SS surfaces.

Keywords: aluminum–silicon dioxide; surface modification; corrosion; archwire; aesthetic

1. Introduction

Brackets and archwires are two major parts of fixed appliances. In detail, brackets can
align teeth under continuous forces exacted by the archwires. Although several aesthetic
appliances have been utilized in orthodontic treatment, stainless steel (SS) brackets and
nickel-titanium wires (NTWs) are still the most commonly used in clinical treatment [1].

Metal materials are vulnerable to corrosion when exposed to air or water [2], let
alone the oral cavity, which is an extremely complex environment and easily affected by
saliva, bacterial flora, food, temperature fluctuations and mechanical forces. Corrosion
can increase the surface roughness of the metal surface, resulting in increased friction
forces between the archwire and the bracket and subsequently hindering teeth movement.
Additionally, the increased friction can accelerate the corrosion process under continuously
increasing stress [3,4].

There are many kinds of commercially available aesthetic coatings. For example,
rhodium coating, epoxy coating, polytetrafluoride coating, platinum and silver coating, and
polymer coating [5–8] have inherent limitations and are therefore not widely used in clinical
practice. Alsanea et al. [5] investigated the color stability of rhodium, epoxy resin, and
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polytetrafluoroethylene nickel titanium aesthetic coatings. They found that the archwires
of polytetrafluoron coating, epoxy resin coating and rhodium aesthetic coating all changed
after being immersed in a dyeing solution for 4 weeks, among which the polytetrafluoron
coating changed most markedly. Pezzato et al. [9] evaluated the tribocorrosion behavior of
plasma electrolytic oxide-coated AZ91 samples. Magnesium alloys are characterized by low
wear resistance and poor corrosion resistance. After plasma electrolytic oxidation, the tribo-
corrosion performance was markedly improved, indicating that the addition of the coating
to the alloy surface can obviously improve the material properties. Rachele et al. [10]
examined that wear and corrosion-caused metal ion release shortens the lifespan of a
prosthesis. Cryogenic machining weakens the corrosion and fretting corrosion performance
of the additive Ti6Al4V. Polyether ether ketone is a high-temperature thermoplastic polymer
composed of aromatic main chain molecules connecting ketone and ether functional groups
and has been used in the development of orthodontic archwire coating. Although it is
cosmetically appealing, more studies are needed to determine its physical properties [6].
Researchers and clinicians have found that the current clinical aesthetic archwire coating
is prone to damage under the masticatory force and oral salivary enzymes, along with
color changes over time. Moreover, the archwire coating cracks and detaches during the
force application, thus exposing the inner metal, increasing the surface roughness and
further affecting the correction process [7,8]. Hence, development of archwires with stable
coating properties and a certain level of corrosion or friction resistance is gaining interest in
orthodontic treatment.

Aluminum (Al), the most abundant metal element on the planet, is widely used
in biomedical materials. Silicon dioxide (SiO2) is a common modification layer given
its superior physicochemical stability and biocompatibility. Importantly, the oxide layer
may obstruct ion movement and release, improving metal mechanical properties and
stability [11].

Magnetron sputtering can produce a uniform, smooth coating on the substrate surface.
SiO2 is applied in many fields due to its rich properties, low cost, good chemical stability,
and strong physical properties such as biocompatibility, high mechanical strength, wear
resistance, corrosion resistance, hydrophobicity and high optical transparency [12–14]. The
oxide layer can inhibit the outward movement of ions, thus becoming a barrier to ion
release and playing a protective role against material decomposition [15–17]. SiO2 is widely
used in metal protective coatings on metals and in biomedical and biotechnological appli-
cations while showing great potential in enzymes and metal catalysis, drugs, genes, protein
transport, biological imaging, pollution repair, chromatography, and vector or carrier plat-
forms for sensors and structural templates [14,18]. There are various methods for film
preparation, such as micro-arc oxidation, physical vapor deposition magnetron sputtering
(PVDMS), plasma spray, chemical vapor deposition, solvent-gel coating, ion beam-assisted
deposition, and pulsed laser deposition [15,19–25]. Among them, magnetron sputtering
is widely used to prepare SiO2 thin films, and the silica thin films produced through this
process are transparent. Magnetron sputtering has many advantages: (i) strong binding
force of coating and substrate; (ii) good metal surface uniformity; (iii) high deposition rate;
(iv) high purity film; (v) easy to automate and high reproducibility; (vi) easy to sputter
many metals and alloys; (vii) controllable film thickness; and (viii) low cost [5,17,26].

Considering the advantages of Al and SiO2, we prepared a novel modified layer
based on the Al-SiO2 composite and explored its potential application in fixed appliances.
In detail, the Al-SiO2 coating layer was first fabricated by PVDMS. Its physicochemical
properties were evaluated utilizing scanning electron microscopy (SEM), energy dispersive
spectroscopy (EDS), electrochemical corrosion and friction analysis [15,16,27,28]. Mouse
fibroblasts were used to investigate the biocompatibility of Al-SiO2-coated samples.

Herein, we demonstrated the newly developed Al–SiO2 coated NiTi and SS archwires
using PVDMS. The morphology of the Al–SiO2 coating was systematically characterized
and its corrosion resistance was electrochemically assessed. Meanwhile, the wear and
scratch tests were performed to confirm the friction coefficient and bonding strength. The
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biocompatibility properties were also investigated. This work aimed to confirm that the
Al–SiO2 aesthetic composite coating was prepared based on the aesthetic appearance of Al
coating and the corrosion resistance, low friction and wear resistance of silica to realize the
combination of aesthetics with function.

2. Materials and Methods
2.1. Preparation and Characterization of Al–SiO2-Coated Samples

Commercial orthodontic SS archwires and NiTi archwires (NTA) were selected as
substrates (Shanghai Emundi, 0.016 × 0.022 inch, Shanghai, China). Nearly equiatomic NTA
consists of Ni (55 wt.%) and Ti. It is a special shape memory alloy that can automatically
restore its own plastic deformation to its original shape at a specific temperature [29].
Moreover, 2 × 2 × 0.2 cm3 SS archwire and NTA samples were prepared for further
research. Before delivery, the cross-sections were ground using 600-, 1000-, 1500- and
2000-grit silicon carbide (SiC) paper to remove the oxide layer. As it was mechanically
polished, only 2.5 µm diamond grinding paste is used for further polishing. They were
ultrasonically cleaned with acetone and alcohol for 15–20 min and blow-dried with argon.

An unbalanced magnetron sputtering coating system was employed. Figure 1 presents
the schematic diagram of PVDMS process. The distance between the target materials and
the specimen was 7 cm. Argon gas could be passed into the vacuum chamber when the
pressure value in the vacuum was lower than 3 × 10−3 Pa. This sequentially initiated the
process of pre-sputtering of the target with the following parameters: pressure, 0.5 Pa;
pre-sputtering time, 15 min; time required for Al deposition, 10 min; SiO2 deposition time,
150 min; pulse voltage, 350 V; duty cycle, 15%; substrate voltage, 340 V; and deposition
temperature, 250 ◦C.
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Figure 1. The schematic diagram of the physical vapor deposition magnetron sputtering process.

SEM characterized specimens’ microstructure and surface morphology after gold
spraying under vacuum pressure for 90 s. Additionally, the elemental composition of the
coated layer was analyzed using EDS.

2.2. Cytotoxicity Tests

The cells used in this study were mouse fibroblasts NIH3T3. The experiment was
divided into two groups: In the blank control group, uncoated SS archwires and Al–SiO2
aesthetic SS archwires were used; in the blank control group, uncoated NiTi archwires and
Al–SiO2 aesthetic NiTi archwires were used. Mouse fibroblasts NIH3T3 were cultured at a
density of 2 × 104 per sample for 1, 3, 5, and 7 days. Cell viability was evaluated using the
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Cell Counting Kit-8 (CCK-8, Beyotime, Shanghai, China). The samples were washed twice
with phosphate-buffered saline at each time point. Fresh culture medium (200 µL) was
mixed with 20 µL of CCK-8 reagent and the mixture was added to each sample. Then, the
culture was incubated at 37 ◦C for 2 h. Subsequently, 100 µL of the medium was transferred
to a 96-well plate and absorbance was measured at 450 nm.

2.3. Electrochemical Corrosion Experiments

The electrochemical work station CHI760D (Reference 600, Gamry company, Warmin-
ster, PA, USA) was used to investigate the electrochemical performance of the coated layer.
A conventional three-electrode setup was used for electrochemical measurement, with Pt
as a counter electrode, standard Ag/AgCl as the control, and the anodized specimen as the
working electrode. To simulate the human oral environment, artificial saliva was prepared
and included the following components: 0.4 g/L NaCl, 0.4 g/L KCl, 0.906 g/L CaCl2·H2O,
0.69 g/L NaH2PO4·2H2O, 0.005 g/L Na2S·9H2O, and 1 g/L urea. Electrochemical tests
were performed on the specimens in artificial saliva [30]. NiTi control, Al–SiO2-coated NiTi
experimental, SS control and Al–SiO2-coated SS experimental groups were used. Uncoated
surface was sealed with nail polish at room temperature. Dynamic polarization curves were
recorded when open circuit potential was stable. Scanning speed was 0.33 mV·s−1, and
scanning range was from −0.1 V to 1.5 V. Ecorr and its current density, icorr were defined
from collected Tafel quantitative data.

2.4. Wear Test

A rotary friction and wear machine (Lanzhou Institute of Chemical Physics, Chinese
Academy of Sciences) was used to investigate the friction and wear performance of the
coated layers. The test conditions are presented in Table 1. The counterpart for the
friction test was an Al2O3 ball with a diameter of 4 mm. The test was performed at room
temperature in the NiTi control, Al–SiO2-coated NiTi experimental, SS control and Al–SiO2-
coated SS experimental groups. The friction and wear of the coating were generally divided
into three phases, namely the running-in phase, stable phase, and failure phase. Then, the
average value of the friction coefficient in the stable phase was recorded as the friction
coefficient of the coating.

Table 1. Process parameters for the wear test.

Friction Pairs Load (N) Turning Radius
(mm)

Speed
(r/min)

Test Time
(min)

Alumina ball (Ø = 4 mm) 1 3 200 30

2.5. Scratch Test

The bonding strength of the coating layers was tested using an MFT-4000 scratch
tester (Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, China).
Test parameters were depicted as follows: radius, 0.2 ± 0.01 mm; scratch length, 5 mm;
loading speed, 30 N·min−1; end load: 70 N. Scratch test was performed in the NiTi control,
Al–SiO2-coated NiTi experimental, SS control and Al–SiO2-coated SS experimental groups.

2.6. Statistical Analysis

Statistical analysis was performed using SPSS 21.0 software (IBM Corporation, Ar-
monk, NY, USA). All data are represented as mean ± standard deviation. One-way analysis
of variance (ANOVA) was used to evaluate the statistical significance among the four
groups. A paired t-test was used to evaluate the differences between the two groups. A
p-value of <0.05 was considered statistically significant. All experiments were performed
in triplicate to ensure reproducibility.
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3. Results
3.1. Coating Morphology Analysis

The cross-section and surface morphologies of the coating layers are shown in Figure 2.
As shown in Figure 2a, the thickness of the coated layers was 1.8 µm. SEM findings
regarding surface morphologies of Al–SiO2-coated SS and Al–SiO2-coated NiTi are shown
in Figure 2b,c. All samples displayed uniform and dense layers securely attached to the
substrate without any interfacial defects. Figure 2d shows the Al–SiO2 coating, and its
surface revealed a clear, smooth spherical structure. Al–SiO2 coated on the SS and NiTi
archwires is shown in Figure 2e,f, respectively. The color of the prepared aesthetic archwire
was similar to that of the teeth, and the aesthetic effect was achieved.
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Figure 2. SEM observation of Al–SiO2 coating and the macroscopic observation of archwire. Thick-
ness of Al–SiO2 coating layer (a); cross-section of the Al–SiO2-coated SS (b); cross-section of the
Al–SiO2-coated NiTi (c); SEM findings regarding surface morphology of Al–SiO2-coated layer (d);
the macroscopic observation of NiTi archwire (e); the macroscopic observation of SS archwire (f).

3.2. EDS Analysis

Figure 3 shows the EDS findings of the particle distribution of the coatings. Uniform
distribution of Al, O and Si elements was observed across the whole layer in the samples,
which demonstrated that the Al–SiO2 layers were well coated on the samples.
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3.3. Cytotoxicity

The cytotoxic level of the archwires was measured using a CCK-8 kit at 1, 3, 5, and
7 days (Figure 4). Statistical results showed that there was no significant difference in
cytotoxic levels among the blank control, uncoated NiTi, and Al–SiO2-coated NiTi groups.
The three groups’ optical density (OD) values increased with the increase in culture time,
indicating that the cells grew well and preserved proliferation ability. Similarly, there
was no significant difference in OD values among the other blank control, uncoated SS
and Al–SiO2-coated SS groups at 1, 3, 5, and 7 days and OD values in each of the three
groups also increased with culture time. According to the cytotoxicity assessment, the OD
values of the coated layer archwire in the experimental group were lower than those in the
control group. The above results indicated no cytotoxicity of the coated archwire in the
experimental group.
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3.4. Electrochemical Corrosion Experiment

The results of the electrochemical experiments are shown in Figure 5. The corrosion
currents in the NiTi control, NiTi experimental, SS control, and SS experimental groups
were 23.72 µA cm−2, 1.21 µA cm−2, 0.22 µA cm−2 and 0.06 µA cm−2, respectively. The icorr
values decreased considerably from 23.72 µA cm−2 to 1.21 µA cm−2 while coating with
Al–SiO2 on the NiTi sample. Meanwhile, the icorr value for Al–SiO2 coated SS sample as
0.06 µA cm−2 was lower than the SS sample of 0.22 µA cm−2. The polarization current
shows that the preparation of the Al–SiO2 coating on the surface of NiTi and SS could
reduce the tendency of electrochemical corrosion. Therefore, Tafel extrapolation results
demonstrate that the Al–SiO2 coating improved the corrosion resistance of the archwires.
A summary of the electrochemical test quantitative data is shown in Table 2.
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Table 2. Corrosion parameters from the polarization curves.

Sample Ecorr/V vs. SCE icorr/µA cm−2

Uncoated NiTi −0.18 ± 0.02 23.72 ± 4.99
Al–SiO2-coated NiTi −0.60 ± 0.08 1.21 ± 0.48

Uncoated SS −0.20 ± 0.03 0.22 ± 0.09
Al–SiO2-coated SS −0.61 ± 0.10 0.06 ± 0.01

3.5. Friction and Wear Properties

The friction coefficient curve of the coated layers is shown in Figure 6. The recorded
friction process was divided into two phases. In phase I, the friction coefficient changed
over time, which was in the unstable running-in phase. In phase II, the friction coefficient
tended to be stable. The mean value of the friction coefficient in the stable phase was
recorded as the friction coefficient of the coating. NiTi control and experimental groups
showed a steady-state friction coefficient after an initial 12 min of sliding, which indicated
a transmission from phase I to phase II. The SS control and experimental groups showed a
steady-state friction coefficient after an initial 9 min of sliding. The friction coefficients of
the NiTi control and experimental groups, SS control and experimental groups were 0.68,
0.46, 0.58 and 0.45, respectively.
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3.6. Bonding Strength

The critical load (Lc) is at the peak of the curve, as shown in Figure 7. The posi-
tion of the inflection point coincided with the location of the first acoustic signal, which
corresponded to the Lc. The Al–SiO2-coated NiTi archwire’s and SS archwire’s mean Lc
values were 15.07 N and 8.3 N, respectively. High-vacuum plasma ion titanium sputtering
was carried out on the NiTi archwires with a titanium disc (>99.9%) as the sputtering
target material, according to the experiment by Anuradha et al. [31]. The coatings were
found to be relatively stable in a linear scratch test when the Lc was >8 N. Therefore, 8 N
was used as a control group to evaluate the binding force of the Al–SiO2 coating. The
Al–SiO2 coatings were found to be relatively stable in the linear scratch test and could meet
clinical requirements.
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4. Discussion

For the development of esthetic dental appliances, orthodontic archwires must meet
certain requirements before being used clinically; these include high strength, low friction,
corrosion resistance, friction resistance, and biocompatibility [32]. Various coatings were
developed to modify the surface of orthodontic archwires to improve their physicochemical
and biological properties. In this study, Al–SiO2-coated layers were used to create esthetic
orthodontic archwires with good biocompatibility and physical properties.

The CCK-8 (cell counting kit-8) was tested at various time intervals (1, 3, 5, and 7 days)
as shown in Figures 3 and 4. There was no significant difference in cytotoxicity between
the Al–SiO2 samples and the control group. Therefore, Al–SiO2-coated layers could be
considered safe and useful for clinical application.

Various substances in the mouth can cause electrochemical corrosion reactions on
the surface of the archwires [33]. Since different metallic elements are present in the
mouth, it may lead to electro-galvanic cell formation, which can contribute to corrosion.
Microorganisms such as sulfate-reducing bacteria may also be present in the metabolic
flora of the oral cavity, which can cause biological corrosion. Therefore, the presence
of microorganisms can change the state of the biomaterial surface and accelerate the
biological corrosion process [34]. The formation of biofilms leads to changes in oral cavity
parameters including pH, electrolytic concentration and oxygen levels. Furthermore, there
are three types of corrosive cells in the oral environment: cells with varying degrees of
oxygenation, cells containing different concentrations of metal ions and active–passive
cells [34–36]. Currently, the corrosion resistance of aesthetic archwires in clinical practice
needs further improvement. The rhodium coating is aesthetically pleasing but has low
corrosion resistance, which may be due to galvanic coupling between the noble coating and
the base alloy [37]. Previous literature has investigated polymer coatings such as epoxy
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resins, which reduce the corrosion resistance of archwires compared to uncoated NiTi and
SS archwires [38]. Therefore, it is urgent to produce orthodontic archwires with a high level
of corrosion resistance. The current findings demonstrated that Al–SiO2 coatings could
reduce the corrosion rates of NiTi and SS archwires in artificial saliva through polarization
curves, which were achieved from corrosion tests. The microstructures and compositions of
the Al–SiO2 coatings with a smooth surface are uniform and could well protect the surface
of the archwires.

To the best of our knowledge, the presence of friction may have affected the efficiency
of tooth movement during fixed orthodontic treatment. Kusy et al. [39] demonstrated
that friction could reduce 12%–60% of the orthodontic force during orthodontic treatment,
influencing clinical treatment. Previous research has verified that certain aesthetic-coated
archwires can increase the roughness [40]. Moreover, some studies have investigated the
microscopic observations of uncoated archwires and rhodium-coated aesthetic archwires.
The results show that rhodium archwires increase the roughness of NiTi archwires [31,40].
Another study found that the surface roughness of rhodium-coated archwires was similar
to that of uncoated archwires [31]. However, compared to uncoated archwires, Teflon- and
epoxy-coated archwires showed a significant difference in surface roughness. The surface
roughness of the epoxy coating was reported to be higher than that of the Teflon coating [5].
The latter can meet aesthetic requirements; however, the coating’s surface roughness is
unacceptable. The friction coefficients of Al–SiO2-coated SS and NiTi archwires were lower
than those of uncoated groups, according to the wear test results in this study. Therefore,
Al–SiO2-coated layers produced by magnetron sputtering improve the friction resistance of
orthodontic archwires.

The thickness of the coating is an essential factor that is closely related to the expression
of torque. The thickness of the coating achieved by the PVD is thinner than that achieved by
electroplating and electroless plating [41]. Anuradha et al. [42] reported a uniform, dense
titanium coating layer observed by magnetron sputtering, with a thickness ranging from
3–5 µm. Woowa aesthetic archwire has a compound, double-layered coating structure with
a silver and platinum coating on the inside and a special polymer coating on the outside
with a thickness of 10 µm [42]. Alavi and Hosseini [43] found that the thickness of the
epoxy resin coating on G and H1 wire was approximately 0.05 mm. These archwires were
used in clinical applications. The thickness of the Al–SiO2 coating in this experiment is
about 1.8 µm, which is obviously less than the thickness of the current clinical aesthetic
coatings. Therefore, the Al–SiO2 coating has little impact on the size of the archwire, and
the Al–SiO2 coating prepared by magnetron sputtering can be used on the surface of
orthodontic archwires.

Al–SiO2-coated archwires have various advantages, including aesthetics, corrosion
resistance, bonding strength, and biological safety compared with uncoated archwires. The
Al–SiO2 coating can meet the mechanical properties necessary for orthodontics and match
the aesthetics that metal archwires cannot achieve. The newly formed Al–SiO2-coated
layers exhibited a color difference that was nearly identical to that of commercially used
coated wires in the clinic. However, the color of the Al–SiO2-coated layer must be further
optimized and validated through fading experiments to better approximate the natural
color of the teeth. Because this study was conducted under ideal laboratory conditions,
the presence of saliva, plaque, and corrosion in the oral cavity may affect the archwire’s
performance [44]. Further research is needed to simulate orthodontic tooth movement
concerning the clinical scenario for specific evaluation under different situations, focusing
on optimizing the Al–SiO2-coated archwire. Further improvements in the technological
parameters and manufacturing technology are needed to increase the bonding force of
the coating.

5. Conclusions

This work shows that the stable Al–SiO2 coatings with strong binding force were
successfully fabricated on NiTi and SS archwires by PVDMS. Compared with uncoated
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ones, Al–SiO2 coatings provide better surface smoothness and markedly increase the
corrosion resistance of NiTi and SS archwires, which will greatly enhance the efficiency
of orthodontic treatment. The Al–SiO2 coating has no apparent cytotoxicity, indicating
the possession of good biocompatibility, while the physicochemical properties of Al–SiO2
coating markedly improve the aesthetics of the archwires. This Al–SiO2 coating has
excellent potential in orthodontic clinical treatment, which will provide a new idea for the
research and development of multifunctional dental biomaterials.
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