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Abstract: Herein, a nano calcium sulfate hemihydrate suspension in an alcohol solvent was prepared
and explored as a novel protectant for fragile oracle bones. The consolidation method involved first
introducing the suspension and then adding water into the bones. Through this method, cohesive
calcium sulfate dihydrate formed in the bones and can act as a reinforcing material. The protective
effect was studied by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy
(EDX), Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), hardness, poros-
ity, and color difference determination. The results showed that such consolidation increased the
strength of the bone samples significantly, and only slightly changed the appearance and porosity of
the bone samples, indicating a good prospect for applying nano calcium sulfate hemihydrate in the
conservation of indoor fragile bone relics.

Keywords: consolidating agent; bone relics; nano suspension; calcium sulfate hemihydrate

1. Introduction

Oracle bones are animal bones that were used in the divination events of ancient
China [1]. This type of bone divination dated back to as early as the late-Neolithic Age
and flourished in the Shang Dynasty [2,3]. Inscriptions on the bones are believed to be
the earliest Chinese characters and thus oracle bones are important for study on the early
civilization of ancient China [4]. Unfortunately, the excavated oracle bones are often fragile
as a result of the special processing procedure in divination and the long burial time of
the bones [5]. Calcination is necessary in the preparation of oracle bones, the process
in which the organic materials including collagen and fat in the bones are burnt out [6].
Additionally, some inorganic minerals such as calcium carbonate and carboxyapatite are
partly dissolved during the long burial time [7]. The loss of the total organic matter and
part of the inorganic minerals as described above leads to the decreased bulk density
and mechanic strength of the oracle bones. Consolidation treatment on the bones is thus
necessary for their preservation.

For a long time, organic materials such as paraffine, acrylic, and silicone resins have
been the most widely used consolidating agents. They can work as glues and confer
strength to weak bones once again. However, these organic consolidants are not sufficient
in terms of weatherability and are apt to aging under photo damage, atmospheric oxidation,
and microbial erosion [8]. After aging, their protective function decreases sharply, and
negative consequences such as yellowing, embrittlement, and shrinkage occur, leading to
the “preservation damage” of bone objects [9].
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Due to their good weatherability, inorganic protective materials have been tested as
alternatives. Calcium hydroxide was studied as a reinforcement material in archeological
bones by Natali I. et al. [10]. After its introduction into the bone sample, it can react with
carbon dioxide in the air and produce an adhesive aragonite. North A. et al. [11] studied
the effect of ammonium hydrogen phosphate, which can react with calcite in the bone
matrix and produce hydroxyapatite, thereby increasing the cohesiveness of the friable
bones. Hydroxyapatite colloid was used directly as a consolidating agent of archeological
ivories by Gong W. et al. [12] as it can be deposited on the surface of the ivories and form
a strengthening layer. Recently, Liu Y. et al. [13] successively introduced a nano calcium
hydroxide suspension and a solution of ammonium sulfate into bones, which could form
calcium sulfate dihydrate and consolidate bone relics. Calcium sulfate dihydrate, also
known as gypsum, has long been widely used in the repair of museum collections such as in
pottery, porcelain, bones, and even metal wares [14–16]. It is stable enough and can hardly
be aged in the museum environment. Calcium sulfate dihydrate can even be selectively
cleared away by the scavenging agent of barium carbonate [17], making it a potential
reversible protective material. However, the strategy of using calcium hydroxide and
ammonium sulfate as the precursors of calcium sulfate dihydrate in a previous study [13]
is challenging in practical applications. First, the distribution of calcium hydroxide and
ammonium sulfate in the bone substrate is not uniform, which is also the case of the
resulting gypsum product and its consolidation effect. Second, the irritant ammonia gas
will be generated during the treatment process, which is an undesirable by-product during
the reaction between calcium hydroxide and ammonium sulfate.

Hence, in this paper, a suspension of nano calcium sulfate hemihydrate in an alcohol
solvent was prepared and explored as a novel consolidating agent for oracle bones under
an indoor environment. The suspension liquid was introduced into the bone samples by
surface permeability and then hydrated into an adhesive calcium sulfate dihydrate, which
is illustrated in Figure 1. Due to the formation of the calcium sulfate dihydrate, the pores
and cracks in the weathering bone samples were filled and the integrity of the samples
was reestablished. The consolidation effect was evaluated by scanning electron microscopy
(SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffractometry (XRD), hardness,
porosity, and color difference determination.
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Figure 1. The schematic representation of the consolidation mechanism.

2. Experimental

Analytical grade reagents of calcium chloride (CaCl2), 2-propanol (C3H8O), and sulfu-
ric acid (H2SO4) were purchased from Sinopharm Group Co. Ltd., Shanghai, China. The
suspension of nano calcium sulfate hemihydrate (CSH) in an alcohol solvent was prepared
as follows. Anhydrous calcium chloride and sulfuric acid (90%) were first dissolved in
ethylene glycol to yield a solution at concentration of 0.5 mol/L, respectively. Then, these
two solutions were mixed equally to prepare the precipitate of CSH. After centrifugation
and washing, the precipitate was re-dispersed in 2-propanol to produce a suspension with
a concentration of 10 g/L.

The artificial oracle bones were prepared according to one of our previous studies [13].
The cow bones (1.0 cm × 1.0 cm × 2.0 cm) were calcined at 650 ◦C, soaked in a 4.5%
solution of hydrochloric acid, washed with pure water, and finally dried naturally. Due
to the loss of all of the organic collagens and part of the inorganic minerals, the artificially
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weathered bones are extremely similar to the archeological bones in terms of their chemical
composition and physical properties.

The consolidation process of the bone samples is as follows. First, the suspension liquid
of nano CSH was introduced into the bone samples by surface permeability. Then, the nano
CSH was hydrated into calcium sulfate dihydrate (CSD) under a constant humidity of 85%.
With the formation of CSD, additional cohesion was obtained and the weak bones were
strengthened. The porosity and bulk density of the samples were determined by Picnometer
Accupyc II 1240-Micromeritics (Centro di Geotecnologie, University of Siena, Siena, Italy).
The mechanical strength of the samples was evaluated by a micro-hardness tester (HD-
3000L, Shenzhen Wallok Testing Equipment Technology Co., Ltd., Shenzhen, China). The
appearance change (∆E) of the samples was evaluated by a reflectance spectrophotometer
(WSC-S, D65 illuminant, 8◦/d optical geometry, XiangYi Instrument (Xiangtan) Co., Ltd.,
Xiangtan City, China). The addition amount of nano CSH was 5–10% of the mass of the
bone samples.

Scanning electron microscopy (SEM, FEI SIRION-100, 5.0 kV of accelerating voltage
and 8.0 mm of working distance, Hillsboro, OR, USA) with energy-dispersive X-ray spec-
troscopy (EDX), Fourier transform infrared spectroscopy (FTIR, Nicolet 560, 4000–450 cm−1

range), and X-ray diffractometry (XRD, AXS D8 ADVANCE, Cu Ka radiation, scan range
2θ = 10–80◦, Bruker, Billerica, MA, USA) were used to analyze the structure and composi-
tion of the samples. These analyses were performed on samples treated with 7% nano CSH.

The kinetic stability of the suspension liquid of nano CSH was evaluated by the
absorbance measure at 300 nm using an ultraviolet/visible spectrophotometer (Varian Cary
100, SpectraLab Scientific Inc., Markham, ON, Canada).

3. Results and Discussion

The prepared calcium sulfate hemihydrate (CSH) suspension in 2-propanol is shown
in Figure 2, which has a kind of milky liquid appearance. The micro-morphology and
elemental composition of the CSH particles in the suspension are shown in Figure 3. The
particles were stumpy and the size distribution roughly fits a Gaussian distribution with a
range of 80–600 nm and the center distribution was about 200 nm (Figure 3b inset). This
size scale is smaller compared to some of the previous studies, in which the particle sizes
were usually bigger than 400 nm [18,19], and this smaller particle size is beneficial for
good permeability. The particles are composed of O, S, and Ca elements from the EDX
results. The phase composition of these particles was further confirmed by the XRD results
in Figure 4. In the past, α-CSH and β-CSH were believed to be hardly distinguished by
XRD spectra. However, according to recently published research [20], the peak position
around 2θ = 30◦ shows a slight difference for the two kinds of CSH phases: the one for
α-CSH is located at around 2θ = 29.80◦, while this peak position for β-CSH is around
2θ = 29.70◦. Therefore, the nano CSH particles presented here can be identified as the α

type of the CSH from the aforementioned peak position located at 2θ = 29.81◦. Additionally,
the morphology of the CSH particles was also highly similar to that of the α-CSH observed
by other researchers [21].

Coatings 2021, 11, x FOR PEER REVIEW 4 of 10 
 

 

 
Figure 2. The CSH suspension in 2-propanol. 

 
Figure 3. The SEM images of the CSH particles in the suspension liquid. (a) ×5000, (b) ×50,000. 

 
Figure 4. The XRD results of the CSH particles. 

The suspension stability of CSH in 2-propanol was evaluated by absorbance meas-
urements and the results are shown in Table 1. The absorbance was nearly constant during 
the test time, indicating a high kinetic stability of the suspension, which is due to both the 
small size of the CSH particles and the high steric hindrance of 2-propanol. As shown in 
Figure 2, 2-propanol absorbs on the surface of the CSH particles and forms an organic 
shield, which prevents agglomeration of the particles and setting of the suspension liquid 
[22]. This high stability of the nano materials in organic solvents has also been confirmed 
by previous studies, which is much better than in water (absorbance decreased to about 
25% after 6 h) [23,24]. Stability is critical for a CSH suspension in practical applications, 
since it contributes to a deeper penetration of CSH into the open pores and cracks of the 
weathering bones to be consolidated. 

Figure 2. The CSH suspension in 2-propanol.



Coatings 2022, 12, 860 4 of 11

Coatings 2021, 11, x FOR PEER REVIEW 4 of 10 
 

 

 
Figure 2. The CSH suspension in 2-propanol. 

 
Figure 3. The SEM images of the CSH particles in the suspension liquid. (a) ×5000, (b) ×50,000. 

 
Figure 4. The XRD results of the CSH particles. 

The suspension stability of CSH in 2-propanol was evaluated by absorbance meas-
urements and the results are shown in Table 1. The absorbance was nearly constant during 
the test time, indicating a high kinetic stability of the suspension, which is due to both the 
small size of the CSH particles and the high steric hindrance of 2-propanol. As shown in 
Figure 2, 2-propanol absorbs on the surface of the CSH particles and forms an organic 
shield, which prevents agglomeration of the particles and setting of the suspension liquid 
[22]. This high stability of the nano materials in organic solvents has also been confirmed 
by previous studies, which is much better than in water (absorbance decreased to about 
25% after 6 h) [23,24]. Stability is critical for a CSH suspension in practical applications, 
since it contributes to a deeper penetration of CSH into the open pores and cracks of the 
weathering bones to be consolidated. 

Figure 3. The SEM images of the CSH particles in the suspension liquid. (a) ×5000, (b) ×50,000.

Coatings 2021, 11, x FOR PEER REVIEW 4 of 10 
 

 

 
Figure 2. The CSH suspension in 2-propanol. 

 
Figure 3. The SEM images of the CSH particles in the suspension liquid. (a) ×5000, (b) ×50,000. 

 
Figure 4. The XRD results of the CSH particles. 

The suspension stability of CSH in 2-propanol was evaluated by absorbance meas-
urements and the results are shown in Table 1. The absorbance was nearly constant during 
the test time, indicating a high kinetic stability of the suspension, which is due to both the 
small size of the CSH particles and the high steric hindrance of 2-propanol. As shown in 
Figure 2, 2-propanol absorbs on the surface of the CSH particles and forms an organic 
shield, which prevents agglomeration of the particles and setting of the suspension liquid 
[22]. This high stability of the nano materials in organic solvents has also been confirmed 
by previous studies, which is much better than in water (absorbance decreased to about 
25% after 6 h) [23,24]. Stability is critical for a CSH suspension in practical applications, 
since it contributes to a deeper penetration of CSH into the open pores and cracks of the 
weathering bones to be consolidated. 

Figure 4. The XRD results of the CSH particles.

The suspension stability of CSH in 2-propanol was evaluated by absorbance measure-
ments and the results are shown in Table 1. The absorbance was nearly constant during the
test time, indicating a high kinetic stability of the suspension, which is due to both the small
size of the CSH particles and the high steric hindrance of 2-propanol. As shown in Figure 2,
2-propanol absorbs on the surface of the CSH particles and forms an organic shield, which
prevents agglomeration of the particles and setting of the suspension liquid [22]. This high
stability of the nano materials in organic solvents has also been confirmed by previous
studies, which is much better than in water (absorbance decreased to about 25% after
6 h) [23,24]. Stability is critical for a CSH suspension in practical applications, since it con-
tributes to a deeper penetration of CSH into the open pores and cracks of the weathering
bones to be consolidated.

Table 1. The kinetic stability of the CSH suspension.

Time (Hour) 0 1 2 3 4 5 6

Absorbance (%) 100 98 96.5 95 94.5 94.2 92
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The morphology changes of the bone samples before and after treatment by the CSH
suspension liquid are presented in Figure 5. As displayed in Figure 5a, the artificial oracle
bone was coarse, porous, and loose due to the loss of the organic and inorganic components
during the burning and subsequent burial process [25]. The suspension liquid of the
nano CSH in 2-propanol was introduced into the bone sample by surface impregnation.
After treatment, the open pores and fissures of the sample were patched up and the
micro-structure seemed to be denser and flatter, as shown in Figure 5b. However, the
particles of CSH were completely independent of each other at this time and can only
serve as fillers. After the successive hydration treatment, further changes can be observed
in Figure 5c,d. The separate CSH particles integrated together and a new board-like
continuous structure was formed. This is mainly due to the dissolution–precipitation
mechanism for the hydration of CSH [26]. As the hydration proceeds, the CSH is dissolved
and then reorganizes to crystalline CSD [27]. In general, the typical morphology of the CSD
is needle-like. However, its growth and morphology can be affected by the underlying
matrix [10]. Here, we obtained a CSD with a board-like continuous structure, which may
be related to the hydroxyapatite component of the bone samples.
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To investigate the possible mechanism of the morphology above, the composition
of the bone samples was monitored during the consolidating process by FTIR and XRD
analysis. The PO4

3− bands (1090, 1018, 961, 606, 561 cm−1) and the –OH bands (3555,
1633 cm−1) in a in Figure 6 were from the bone sample, which was mainly composed of
hydroxyapatite [28]. After introduction of nano CSH particles in the bone sample, the
SO4

2− bands (1141 and 666 cm−1) and typical O–H band at 3612 cm−1 appear in b in
Figure 6 and they are assigned to the calcium sulphate hemihydrate [26]. After further
hydration treatment, the typical O–H band of calcium sulfate hemihydrate at 3612 cm−1

disappeared and the typical O–H bands of calcium sulfate dihydrate at 3405 and 1688 cm−1

appeared (c in Figure 6), indicating the transformation from calcium sulfate hemihydrate to
calcium sulfate dihydrate [29]. From the results of the XRD in a in Figure 7, hydroxyapatite
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(2θ = 25.9◦, 28.9◦, 31.7◦, 34.1◦, 39.8◦, 46.7◦, 49.5◦, 53.2◦) was the main component of the
artificial weathering bone, which is consistent with that of archeological bones. After
impregnation treatment, both calcium sulfate hemihydrate (2θ = 14.82◦, 25.74◦, 29.81◦, and
31.86◦) and hydroxyapatite were detected in b in Figure 7. The hydroxyapatite came from
the bone sample itself. Calcium sulfate hemihydrate obviously comes from the suspension
liquid of CSH, which is introduced during the impregnation treatment. After further
hydration treatment, the diffraction peaks of calcium sulfate hemihydrate (2θ = 14.82◦,
25.74◦, 29.81◦ and 31.86◦) disappeared and those for calcium sulfate dihydrate (2θ = 11.78◦,
20.86◦, 23.54◦, and 29.26◦) [30] appeared, as shown in c in Figure 7. Therefore, the specific
appearance in Figure 5c is in fact the morphology of calcium sulfate dihydrate, which is
the reaction product between calcium sulfate hemihydrate and water during the hydration
procedure. Overall, the FTIR and the XRD results were in agreement with each other.
Meanwhile, they also showed high consistency with the morphology changes displayed in
Figure 5.
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The sectional structures of the bone samples were also observed by SEM and the
results are shown in Figure 8. Before the consolidation treatment, the bone sample was
rough and loose in appearance (Figure 8a). After the consolidation treatment, the bone
sample became even and compact (Figure 8b). This means that the pores and cracks in
the bone substrate had been filled by the calcium sulfate consolidant, which was proven
further by the elemental distribution results of EDX. Sulfur was found throughout the cross
section of the bone sample in Figure 8b (inset), showing a sufficient permeability of the CSH
suspension. Similarly, the suspension of nano calcium hydroxide in the alcohol solvent also
presented very good properties and was used in the conservation of the bone relics [10].
The small size of the nano inorganic consolidants plays an important role in these cases.
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The porosity, density, strength, and appearance changes were also investigated to
assess the consolidation effect. After treatment, the porosity of the bone samples was
reduced (Figure 9), while its density increased (Figure 10), confirming that the open pores
and cracks of the bone samples were filled and the bone samples became denser. Generally,
reduced porosity and increased density as a result of the reinforcement has been proven
by many studies [31–33]. Surface hardness is adopted in the strength evaluation because
of the inhomogeneity of the bone samples [34]. This index often refers to the deformation
or damage resistance of the surface of an object. According to Figure 11, the hardness of
the samples significantly increased after the consolidation treatment. This is obviously
a result of the formation of CSD. After the hydration treatment, the particles of CSH
were dissolved and furthered integrated together to form a continuous phase of the CSD
phase [35]. Meanwhile, a strong connection was also established between the bone matrix
and the produced CSD phase. Thus, the newly generated CSD phase can work as both
a filling and reinforcing agent of weak bones. The change in appearance is one of the
necessary evaluation indices for protective coating materials or methods used on cultural
heritage [36]. It is commonly conducted by the determination of color difference. Generally,
the threshold of color difference is 5.0 in the conservation of cultural heritage [37]. The color
difference of the bone samples in the present study varied between 2.9 and 3.2 (Figure 12),
which are all below 5.0, so are acceptable [38].
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4. Conclusions

In this paper, nano CSH was successfully prepared by the reaction of calcium chloride
and sulfuric acid in ethylene glycol solution. It was then re-dispersed in an alcohol solvent
to obtain a suspension liquid with high kinetic stability and explored as a protective
material for bone relics. In application, the suspension of CSH was first introduced into
the bone samples, followed by the introduction of water, which hydrated the CSH into
a continuous phase of CSD, filling the open pores, bridging the cracks, and providing
additional strength for the weak bones. After the consolidation treatment, the porosity of
the bone samples reduced, the strength of the bone samples increased, and the appearance
change of the samples was acceptable. However, due to the low durability of gypsum in
the open air, the proposed protective material is appropriate only for indoor porous weak
bone objects and cannot be applied to any unsheltered or semi-sheltered objects.
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