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Abstract: Alkali activated materials (AAMs) were considered as economical and environmentally
friendly that have attracted incrementally attention as green coating materials. However, alkali
activated materials were inclined to be infiltrated and ruined by harmful ions in water due to
their hydrophilicity. And the ordinary ways of construct superhydrophobic coatings were costly,
complex and need fluorine material. The superhydrophobic surfaces were fragile owing to the super-
hydrophobicity of materials were controlled to surface merely. In this work, a facile, convenient and
economical strategy to synthesize alkali activated slag materials (AAS) superhydrophobic coatings
with excellent water repellence was developed. Herein, the hydrolysis and polymerization of
triethoxy (octyl)silane (TTOS) were applied for generating micro/nanostructures to construct a
three-dimensional overall superhydrophobic alkali activated slag materials coating. The water
contact angle (CA) about surfaces and bottoms of superhydrophobic alkali activated slag materials
coatings were 150.2◦, 152◦ and the water rolling angle (SA) of surfaces and bottoms were 5◦, 4◦

respectively. Besides, the superhydrophobic alkali activated slag materials coatings demonstrated
excellent mechanical abrasion effect that still maintain super-hydrophobicity after sandpaper abrasion
stand. Super-hydrophobicity of coatings could be regenerated by simple sandpaper rubbing when
they were attacked chemically. Concisely, the superhydrophobic alkali activated slag materials
coatings were show the benefit of affordable and feasibility so that they have the potential for
expandable industrial promotion.

Keywords: alkali activated slag materials; superhydrophobic; coating; stability

1. Introduction

In 1996, Onda [1] proposed the term of “superhydrophobicity” to describe the abnor-
mally grand water contact angle that has not been observed on the surface of hydrophobic
materials. The superhydrophobic was defined that the contact angle (CA) is greater than
150◦ and aka roll angles was not exceeding 10◦ [2]. There were two noteworthy aspects
closely related to the synthesis of superhydrophobic coating [3–5]: the construction of
micro/nano surface roughness and modification with low surface free energy materials.
Virous techniques have been proposed for constructing surface roughness, including high-
temperature induction [6], electrodeposition [7], electroplating [8], chemical etching [9]
and sol-gel [10]. A variety of low surface energy materials have been discovered, mainly
polymer [11], organo-silane [9,10,12–14], and fatty acid materials [15]. Nonetheless, the
conventional procedure for preparing superhydrophobic coatings were usually complex
and costly.

Alkali-activated materials (AAMs) is an inorganic polymer produced by mixing alumi-
nosilicate precursors (e.g., granulated blast furnace slag, metakaolin, fly ash) with alkaline
activators (e.g., water glass, sodium hydroxide, potassium hydroxide) [16,17]. Noorina [18]
proved that sintered kaolin-GGBS geopolymer that underwent the curing process at the
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temperature of 60 ◦C featured the high strength value of 8.90 MPa. Lv [19] prepared a
geopolymer-based drying powder decorative coating that that has excellent properties of
high strength, artificial aging resistance, high temperature resistance, good workability, etc.
Given all of that, alkali activated materials display outstanding acid resistance, sulfate resis-
tance, heat resistance, low permeability and creep, high early strength and environmental
friendliness properties as a results of special three-dimensional network structure [18,19].
Owing to the excellent nature, alkali activated materials were widely used as film-forming
substances in inorganic water-based coatings [19–21], those coatings were named alkali
activated materials-based inorganic coatings [22]. Lv [23] reported a novel strategy of a
protective coating for reinforced concrete by alkali-activated slag by compositing potassium
methyl silicate, which decreased the corrosion rate of reinforced rebar by 97%. Nicoleta [24]
prepared and tested fireproof inorganic coatings based on sodium silicate solution with
intumescent additions, which sensibly reduced the rate of temperature increase (up to 75%)
in the steel substrate. Salar Lashkari [25] found AAMs have shown better performance com-
pared to cement-based mortars by evaluating the durability characteristics and mechanical
properties of AAMs and cement-based coating mortars in the harsh environment of the
Persian Gulf. Thus, the utilize of alkali activated materials coatings would minimize the
accumulation of solid waste, those were defined as a sustainable material depend on eco-
nomical and environmentally friendly [20–22]. To date, alkali activated materials coatings
have been widely researched and applied like architectural coatings, marine anti-corrosion
coatings, heat-resistant anti-corrosion coatings, inorganic metal heat treatment protective
coatings, inorganic lubricating wear-resistant coatings, and wood coatings [26]. However,
the alkali activated materials are super-hydrophilic due to they take abundant hydroxyl
groups, so harmful ions such as sulfate and chloride ions in water can destroy the structure
along with water intrusion [26,27]. Superhydrophobic modification can elevate the imper-
meability and durability of coatings via preventing water intrusion [28]. Qing [29] used
calcium stearate as modification for AAS cement to reduce water absorption rate. So far,
most hydrophobic modification agents used for alkali activated materials are alkyl silane or
silane derivatives [28], but the traditional modification method is not only restricted by the
usage of multitudinous of silane that resulting in low economic benefit but it is also limited
to the surface [29]. Consequently, their hydrophobic stability and mechanical performance
are often inadequate [30]. When the surface is destroyed by stripping and rubbing, the
hydrophobic effect is fall [31,32].

Herein, we propose a facile impregnation process for superhydrophobic modification
to prepare an AAS coating with overall superhydrophobic properties. Compared with
traditional methods of constructing superhydrophobic AAS, the improved method can
not only greatly reduce the dosage of silane but also simplify the preparation process,
which is a solution to the difficulty of reducing cost in industrial applications. Besides,
the mechanism of triethoxyoctylsilane (TTOS) modified AAS was summarized through
microscopic analysis. Especially, the prepared superhydrophobic coating has superlative
wear resistance, and the CA of the coating increases gradually with the lengthen of wear
distance. The work does not require additional reagents and is expected to introduce an
effective way to prepare durable, environmentally friendly and practical superhydrophobic
AAS coatings. This study provides a new idea for the superhydrophobic modification of
AAS and the practical application of superhydrophobic alkali activated slag materials.

2. Materials and Methods
2.1. Materials

Ground granulated blast furnace slag (GGBS) with irregular sheets and a mean size
of approximately 10 µm were provided by Beihai Chengde Steel Company. The chemical
compositions of slag were CaO, 43.40%; SiO2, 27.28%; Al2O3, 3.22%; MgO, 9.95%; SO3,
1.75%; TiO2, 1.17%; K2O, 0.60%; Na2O, 0.54%; Fe2O3, 0.29%; MnO, 0.13% and 0.01% LOI,
which were determined by X-ray fluorescence (XRF). TTOS (C14H32O3Si > 97%, AR) were
applied by Macklin Biochemical Technology Co., Ltd. (Shanghai, China). Dry powder
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water glass (modulus M = 2.8 (SiO2/K2O molar ratio)) were produced by the Zhongfa water
Glass Factory. (Foshan, China). Q235 steel (Fe > 99%) and glass slides were acquired from
Guantai Metallic Materials Co., Ltd. and Fangyuan Technology Co., LTD. (Guangdong,
China). Quartz sands (200 mesh) were provided by Ming Hai Environmental Protection
company. Deionized waters were prepared in the laboratory. All the raw materials were
used directly without any further purification.

2.2. Fabrication of Superhydrophobic Alkali Activated Materials Coating

The procedure for preparing the superhydrophobic alkali activated materials coating
is shown in Figure 1. The experiment procedure includes three steps.
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Figure 1. Schematic diagram of the preparation of GP-SHC.

Firstly, the preparation method of the original alkali activated materials (AAS) coatings
referred to our previous works. Quartz sands were addicted to improve the cracking
resistance and roughness of the coating. The mass ratio of slag, dry water glass, quartz sand
was 10:3:20. Then, the composite alkali activated material slurry was prepared by adding
deionized water into a plastic beaker containing the original slurry to adjust the liquid to
solid ratio of the slurry to 35 wt.%, and then stirring the slurry at a speed of 800 r/min
for 5 min in a high-speed magnetic agitator. The fresh paste was coated on the Q235 steel
substrate or the glass plate by a spatula and then cured under a room temperature of 25 ◦C
and 80% humidity without sealed conditions. The substrate was cleaned with acetone and
polished with sandpaper before use. The obtained original AAMs coatings were referred to
as GPs.

Then the TTOS mixture composition (TTOS: deionized = water was 1.6 g:165 g) was
ultrasonic for 1 h to prepare the modified fluid.

Finally, the abovementioned GPs were immersed in modified composition fluid for
1 h at room temperature of 25 ◦C and 80% humidity and then dried at same condition,
those superhydrophobic AAMs coatings named GP-SHCs.

2.3. Characterizations

A contact angle meter (KRUSS, Germany, drop volume is approximately 3 µL) was
used to determine the hydrophobicity and super-hydrophobicity of the resultant coatings.
The Hitachi SU822 (Tokyo, Japan) field emission scanning electron microscope (FESEM)
system was used to analyze the structure of the coating at an accelerated voltage of 10.0 kV.
X-ray diffraction (XRD) analysis was performed using Rigaku MinFlex 600 instrument
(Tokyo, Japan) with Cu Kα radiation (λ = 0.15419 nm) over 2θ ranging from 5 to 90◦ and
a step length of 0.02◦. The chemical structure of the coating was measured by Fourier
transform infrared spectroscopy (FT-IR IRTracer-100, Tokyo, Japan and FT-IR Nicolet iS50,
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Tokyo, Japan). The elemental states of the coatings were determined by using X-ray
photoelectron spectroscopy (XPS, Thermo ESCALAB 250XI).

The robustness test by abrasion resistance that was taking 100-grit sandpapers used
as the abrasive material. The detailed test strategy was that coatings were loaded with a
200-g stainless steel weight and were pushed 20 cm under the pushing force of 1 m/min.
One cycle was coatings were pushed 20 cm for 50 times. The water resistance exam of
GP-SHC coatings were that samples were immersed in artificial seawater for 14 day (d).
The chemical stability of GP-SHCs were measured by immerse the coatings into hydrochlo-
ric acid solution of pH = 1 and sodium hydroxide solution of pH = 14 for 48 h. Then
their reproducibility of superhydrophobic was satisfied by rubbing with sandpaper. All
experiments and test have been repeated for many times.

3. Results and Discussion
3.1. Wettability

The non-wettability characteristics of the coatings were assessed by images of water
droplets, CA and SA. Images of water droplets on the GP’s surface, GP-SHC’s surface
and GP-SHC’s bottom are shown in Figure 2a–c. The GPs were hydrophilic, its’ surface
containing many hydroxyl groups, that make water droplets fall into the coating quickly,
and the CA is only 16.8◦ after water droplets touching the surface for 15 s (Figure 2a). As
expressed in Figure 2b,c,e,f, it was surprising to note an extreme increase in CA values after
TTOS modification. The CA of GP-SHC ‘s surface and bottom were 150.2◦, 156◦ and the
SA of GP-SHC ‘s surface and bottom were merely 5◦ and 4◦ respectively, those achieve
the goal of superhydrophobic standard. In addition, the shape of water droplets of actual
photographs on the surfaces of the GP-SHC exposed regular spheres. Similarly, the shape of
water droplets of actual photographs on the bottom of GP-SHC also present regular spheres
but the sphere was more perfectly as shown in Figure 2d,f. Therefore, it confirms that the
GP-SHC coatings displayed awesome super-hydrophobicity and super-hydrophobicity not
restrict in surface like conventional superhydrophobic coatings.
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Figure 2. Coating contact angle: (a) surface of GP, (b) surface of GP-SHC, (c) bottom of GP-SHC;
(d) water droplet contact diagram of GP-SHC’s surface, (e) roll angle of GP-SHC’s surface; (f) water
droplet contact diagram of GP-SHC’s bottom.

3.2. Surface Structure Characterization

In this paper, the original AAMs that named GP was an inorganic polymer produced
by mixing and reacting aluminosilicate precursors of GGBS particles and alkaline activators
of water glass. When these particles were mixed with water, alkaline-source particles first
dissolved to form an alkaline solution. Then, GGBS were leached into molecules, and the
alkali activator broke Si-O and Al-O bonds and releases monomers, gradually forming
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four-coordinated [AlO4]− and [SiO4]−, after which it grows into a gel phase [18,19]. Finally,
the gel was eventually converted to a solid coating after nucleation and condensation.

The surface microstructures of the GP were investigated by SEM, as proved in
Figure 3a–c. The GP film was smooth, compact and featureless without any protrusions.
The GP-SHC surfaces could generate various protrusions with about 1µm and connected
with to each other as seen in the Figure 3d,e. Figure 3f presents that the strips with uniform
shape and size on the surface when further enlargement of the protrusions. The GP-SHC
surface exhibited excellent superhydrophobic properties due to the double-layer rough
structure. The cross-section and the bottom structure of GP-SHCs were also observed in
order to verified GP-SHCs acted overall super-hydrophobicity. It was appeared that the
cross-section also had similar protrusions but protuberant structures were more obvious
arrangement. More or less, the shape and size of the objects arranged on the protrusion
structure were relatively regular spheres that slightly contrast with facial protrusion struc-
ture as behold in Figure 3g,h. And the existences of bottom nanostructures were similar to
the body of the surface nanostructures, but it led to more closely oriented nanostructures
(Figure 3i) his result is consistent with the above finding that the CA of GP -SHC bottoms
were only slightly increased according to surfaces (Figure 2b,c).
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3.3. Crystalline Phases and Chemical Composition Analysis

The crystalline phases of samples were determined by XRD. The peaks indicating
quartz from raw materials in accordance with silica’s standard card PDF#87-2096 as exhibit
in Figure 4a [18]. The position and intensity of the peaks were similar, which indicates that
no new crystalline phase was formed in samples with the addition of TTOS.

It must be admitted that low surface energy is an indispensable factor for preparing
superhydrophobic coatings. FT-IR was used to analyze the chemical composition, as shown
in Figure 4b. GP-SHC exhibited new peaks at 2926 cm−1 and 2856 cm−1, which were
attributed to C-H tensile vibration peaks and were provided by TTOS when compared with
the GP and GP-SHC [27]. The results demonstrated that methyl groups successfully ad-
hered to the surface of the alkali activated materials coating after TTOS modification, which
reduced the surface energy of the GP-SHC. Additionally, a band located at approximately
1456 cm−1 was related to the stretching vibration of O-C-O bonds. The specific frequency
is the characteristic of CO3

2− bonds [33]. The intensity of peak at 1456 cm−1 and 872 cm−1
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increased after TTOS modification, it might be due to water ingress into the coating during
modification leads to enhanced carbonation [23,34]. The high intensity broad band between
1200 cm−1 and 900 cm−1 (Figure 4b) corresponds to asymmetric stretching of Si-O-T bonds
(where T corresponds to a tetrahedron of Si or Al) [35]. The Si-O-T peaks of the coating
shift to higher wavenumbers after TTOS modification, which is attributed to silicate being
replaced by aluminate (theoretically, the vibration mode of Si-O is higher than that of Al-O
because Si-O-Si is stronger than Si-O-Al and Al-O-Al bonds) [35]. This indicates that TTOS
was helpful to the development of a crystallized state because silicate was replaced by
aluminate due to the development of a crystalline state at the early stage of alkali activated
materials curing.
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To further explore the formation mechanism of super-hydrophobicity, XPS charac-
terization analysis was carried out. The binding of each element accurately reflects the
chemical properties of its constituent subunits. It is vital to determine the reaction by
observing the element position changes of carbon, oxygen, silicon and aluminum. As
shown in Figure 4c, the major elements such as carbon, silicon, oxygen and aluminum in
all coatings are labeled. In the GPs, the content of O atoms is higher than that of C and
Si because of the hydrophilic property [36]. After TTOS modification, the C 1s peak was
obviously enhanced, and the C atom content of GP-SHC increased from 30.41% to 46.98%,
indicating that the content of C was increased. This is an evidence of the attachment of
long-chain hydrocarbons to the surface of the AAS coating successfully [37].

Figure 5 shows the high-resolution Si 2p and O 1s spectra of the GP and GP-SHC. The
binding energy of Si 2p is mainly composed of the four binding energies of Si-O-H, Si-O-T
(T is Al or Si), Si-O-Si and O-Si-C [38]. After modification, the contribution of the Si-O-H
binding energy about GP-SHCs decreased, while the combined contribution of Si-O-T
and Si-O-Si increased. This result suggests that the surface hydroxyl groups underwent
a dehydration condensation reaction with the silanol group formed by the hydrolysis of
the silane agent [39]. Furthermore, the O 1s peak of high binding was provided by Si-O-H
and the low binding energy peak was attributed to Si-O-Al and Si-O-Si [40]. Similarly,
the contribution of the high binding energy peak (Si-O-H) of surfaces decreased while the
contribution of the low binding energy peak (Si-O-Al and Si-O-Si) of surfaces increased
after coatings were treated with TTOS [41]. The results are consistent with the Si 2p peak,
which further confirms that the TTOS molecule and the AAS substrate formed Si-O-Si or
Si-O-T groups, resulting in the formation of chemical bonds [42].
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Based on the above discussion, the mechanism of silane modification of the AAMs
is proposed and illustrated in Figure 6 When the TTOS agent is added to water and
ultrasonicated, the three ethoxy groups of a TTOS molecule are transformed into hydroxyl
groups by the energy provided by ultrasound, which can produce silanol. And at the
same time, some self-condensation phenomena may occur to form nanoparticles containing
hydroxyl groups, which can a pre-growth effect on nanoparticles [37]. When the coating was
soaked in aqueous solution, triethoxyoctyl silanol and deionized water are quickly absorbed
into the pores of the coating due to the super hydrophilic effect of the coating. Then, a
water-silanol mixed film layer was formed on the surface. When drying, water evaporates
and breaks through the silanol coating to form tiny cracks, exposing the hydroxyl groups
on the coating surface to form growth points. Moreover, the catalytic action of alkaline
substances can be stimulated because the coating is rich in alkaline groups. Finally, the
triethoxyoctylsilanol was self-polycondensation and condensation with Si–OH/Al–OH
of the alkali activated materials surface form nanostructures. The extension of the carbon
chains leads to super-hydrophobicity. For different structures, particles tend to grow
dispersed on the substrate due to strong hydrogen bonding. This growth results in a
small structure with dense and continuous granular layers (GP-SHC). Substrates with
relatively few hydroxyl groups exhibit stronger IM (including hydrogen bonding and van
der Waals forces) forces than substrate surfaces. In the presence of a strong IM force, the
pre-self-condensing nanoparticles that grow along with the connected particles lead to
large coral-shaped particle clusters [38–41].
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Figure 6. Mechanism of slag-based alkali activated materials coating formation (R = n-octyl).

3.4. Abrasion Resistance and Chemical Stability

The micro/nanostructure and low surface energy were two crucial feature which
contribute to the superhydrophobic property. However, these characteristics are highly
susceptible to mechanical abrasion, which could decline the water-repellent performance.
So, anti-wear performance of the as-prepared superhydrophobic AAS coating was evalu-
ated needful. The schematic illustration of abrasion test employed was shown in Figure 7a,
as described in the experimental Section 2.3. The abrasion test results of contact angles
presented in Figure 7b,c. It can be seen that the CAs of GP-SHCs were increased to 155.2◦

after one abrasion cycle as veiled in Figure 7b. After two cycles, part of the coating was
completely lost that exposing part of the substrate (Figure 7c,d) but the CA of GP-SHC
increased to 156.1◦. It was clarity that the CA of GP-SHCs gradually increased with the
wear distance became far, which may be ascribable to the increased roughness and the
exposure of the interior superhydrophobic structure after wear. The abrasion test confirmed
the fabricated GP-SHC act excellent mechanical durability due to the integral coating keep
super-hydrophobicity.
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Figure 7. The wettability of the GP-SHCs after repeated rubbing: (a) the schematic diagram of wear
resistance test, (b)the CA of GP-SHC surfaces after one cycle, (c) the CA of GP-SHC after two cycles,
(d) the actual photo of GP-SHC after two cycles.

The chemical stability of the GP-SHCs was tested through different solutions, and the
regeneration performance about superhydrophobic of the GP-SHCs was explored. The
results are shown in Figure 8. The results proved that the GP-SHCs’ CA were affect by
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artificial seawater hardly that retain 154.13◦ after coatings were immersed in artificial
seawater for 14 d. Moreover, the results professed the GP-SHCs reflected poor corrosion
resistance ability to strong acid and alkali solution, but it withstands acid stronger than
alkali. Even so, the GP-SHCs remained hydrophobic after being immersed in hydrochloric
acid solution of pH = 1 and sodium hydroxide solution of pH = 14 for 48 h and their
CAs were drop to 138.99◦ and 110.14◦ indivisibly. Notably, the GP-SHCs regained their
super-hydrophobicity after simple sandpaper rubbing, which was thanks to exposed new
nanostructures by simple sandpaper rubbing when the facial super-hydrophobicity was
lost. It is clear from this study that the GP-SHCs are suitable for practical used.
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4. Conclusions

In this experiment, a top-down three-dimensional structured superhydrophobic coat-
ings were prepared through two-phase system (TTOS and water) to modify the alkali-
activated slag. The effect of TTOS on the formation of chemical structure of AAS superhy-
drophobic coatings were developed. The main conclusions are as follows:

(1) TTOS were hydrolyzed and then continued to self-polymerize and copolymerize with
the coating surface to grow nanoparticles, which provided excellent superhydrophobic
property to coating surface with a contact angle of 150.2◦ and a roll angle of 5◦.

(2) The superhydrophobic coating expressed high stability against external force damage
due to the overall hydrophobic modification. The results disclose that superhydropho-
bic alkali activated materials coatings still keep super-hydrophobicity after they were
rubbed with 100-grit sandpaper until the substrate is exposed and were immersed
in artificial seawater for a long time. And the coating can be regenerated by simple
sandpaper rubbing after being damaged by chemical corrosion.

(3) The work provides new ideas for the superhydrophobic modification of alkali ac-
tivated materials and novel vote for the practical application of superhydrophobic
alkali activated materials.
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