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Abstract: To fully utilize the fault information and improve the diagnosis accuracy of rolling bearings,
a multisensor feature fusion method is proposed. The method contains two steps. First, the intrinsic
mode function (IMF) of each sensor vibration signal is calculated by variational mode decomposition
(VMD), and the redundant information such as noise is eliminated. Then, the time-domain, frequency-
domain and multiscale entropy features are extracted based on the preferred IMF and fused into
one multidomain feature dataset. In the second step, the deep autoencoder network (DAEN) is
constructed and the multisensor fusion features of the first step are used as input of the DAEN, and
the multisensor fusion features are further extracted and classified. The experimental results show
that the proposed model has a higher classification accuracy compared with the existing methods.

Keywords: fault diagnosis; autoencoder network; multisensor; feature fusion; rolling bearing

1. Introduction

As a critical component of rotating machine, rolling bearings have the advantages
of high efficiency, low friction resistance and convenient assembly. Furthermore, their
performance directly affects the operation of all the equipment. Therefore, knowing how to
fully exploit the fault features from the complex vibration signals and carry out pattern
recognition is of great significance [1,2].

The mainstream methods of fault diagnosis only focus on the application of a single
sensor [3–5]. The commonly used sensor is the vibration acceleration sensor, which can
measure the relationship between the vibration amplitude and time. However, more and
more studies have shown that, for a complex mechanical system, the fault information con-
tained in a single sensor is limited, and accurate condition monitoring and fault diagnosis
cannot be performed [6–8]. The application of multiple sensor technologies in fault diag-
nosis makes it possible to study fault diagnosis based on multiple sensors. Wang et al. [9]
proposed a mixture of Gaussians and variational auto-encoders (Mix-VAEs) fault diagno-
sis method, which can fully utilize the redundancy and complementarity of multisensor
information. Chen et al. [10] proposed an stack auto-encoder and deep belief network
(SAE-DBN) based multisensor fusion method, and verified the effectiveness through a
bearing fault experiment. Shi et al. [11] proposed a two-stage multisensor fusion method to
achieve accurate diagnosis of hydraulic directional valve faults. The above studies show
that compared with a single sensor, multisensor information fusion technology can further
improve the accuracy and reliability of diagnosis.

Multisensor information fusion technology includes data-level fusion, feature-level
fusion and decision-level fusion, which have their own advantages and limitations [12–14].
The advantage of data-level fusion is that the raw signals of multiple sensors can be
directly fused. Unfortunately, the raw data usually contains a lot of redundant information,
and the data-level fusion method cannot take full advantage of the complementarity
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between the information of multiple sensors. Furthermore, the interpretability of the data
is poor. Jing et al. [15] directly fused data from multisensors to construct a deep network
for planetary gearbox fault diagnosis. Huang et al. [16] proposed a multisensor data fusion
method to solve the problem of multisource remote sensing data fusion.

In order to make up for the deficiencies of data-level fusion methods and eliminate
redundant information from multiple sensors, data-level fusion methods can be combined
with feature extraction methods. First, the data from each sensor is transformed into
a high-dimensional feature representation, and then, fusion is performed at the feature
level, and this fusion method is called feature-level fusion [17,18]. Li et al. [19] proposed a
fault diagnosis method based on a feature fusion covariance matrix and Riemann kernel
ridge regression. Wang et al. [20] proposed a multisource sensor feature fusion method
based on a convolutional neural network for mechanical fault diagnosis. Jiang et al. [21]
extracted various entropy values of vibration signals using information entropy theory,
and established a feature-level fusion model to classify faults. One of the advantages of
feature fusion is that it can flexibly choose where to fuse, but it cannot eliminate the effect
of high correlations between different sensor features.

In decision-level fusion, the basic learning model is first trained with different sensor
signals, and then the output results of multiple models are fused through decision strate-
gies. The errors of fusion models come from different basic learning models, which are
often ir-relevant and do not affect each other, and will not cause further accumulation of
errors. Therefore, the decision-level fusion method is favored. Common decision fusion
methods [22,23] include the voting method and D-S evidence theory. Li et al. [24] pro-
posed an enhanced weighted voting combination strategy with specific category threshold
to realize multisensor decision fusion. Basir et al. [25] constructed a multisensor-based
model according to D-S evidence theory to solve the problem of engine fault diagnosis.
Zhao et al. [26] proposed a new distributed distance measurement method to measure the
conflict between evidence based on an improved evidence theory algorithm. The decision-
level fusion method is very sensitive to the selection of voting fusion rules, which directly
determines the fusion result.

For the fault diagnosis of multisensor fusion, a unified and effective fusion model
and algorithm has not yet been established, and various proposed models are still in the
exploratory stage. From the above discussion, it can be seen that feature-level fusion is
more flexible and convenient, not only to select information that can characterize fault
features, but also to fuse at multiple locations. Furthermore, deep learning has the ability
to learn features directly from raw signals, which largely overcomes the loss of effective
information in feature-level fusion. Therefore, this paper proposes a multisensor feature
fusion method combined with feature-level fusion and the deep learning method, and
applies them to the fault diagnosis of rolling bearings under different working conditions.
The proposed feature fusion method provides a more effective means for the deep mining
of fault signals. The main contributions of this paper are as follows:

(1) A multisensor signals-based feature fusion method is proposed for one-dimensional
vibration signals.

(2) The vibration signal of each sensor is preprocessed with VMD, and the time domain,
frequency domain and multiscale entropy features of the signal are extracted and
fused into one multidomain feature dataset.

(3) To promote further fusion of features, a novel deep autoencoder network is proposed
for feature extraction and classification.

The rest of the paper is organized as follows. Section 2 reviews the AE. In Section 3, the
proposed model is described in detail. Section 4 gives a detailed analysis and discussion of
the experimental diagnosis results of rolling bearings. Section 5 presents the conclusions
and possible future research directions.
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2. Theoretical Basis
Autoencoder

Autoencoders (AE) can minimize the reconstruction error of input and output and
are unsupervised neural networks. The structure of AE is shown in Figure 1. It consists of
an input layer, a hidden layer and an output layer. The input layer and the hidden layer
constitute the encoder, and the hidden layer and the output layer constitute the decoder.
The encoder converts the high-dimensional input data into a low-dimensional feature
representation, and the decoder converts the feature representation into a reconstructed
form of the input data.
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The encoder maps raw input signal X to the hidden layer feature H. The process is as
follows:

H = r f (WX + b) (1)

The decoder reconstructs the hidden layer feature H to obtain the output vector X̂.
The process is as follows:

X̂ = rg(W′X + b′) (2)

where W and W′ are the weight matrix, b and b′ are the bias matrix r f and rg are the
activation function.

The reconstruction error of AE is:

L(X, X̂) =
1
2
‖X− X̂‖2 (3)

where ‖•‖ represents the norm.
Therefore, the total loss function for S sample is:

J(W, b) =
1
S

S

∑
n=1

L(X, X̂) (4)

3. Proposed Method

In this section, a feature fusion model based on multisensor signals is proposed and
applied to rolling bearing fault diagnosis.

3.1. Fusion Model Architecture for Multisensor Signals

The proposed method consists of two steps. The first step is multisensor feature
fusion, where the IMF of each sensor vibration signal is calculated by VMD [27]. Then,
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time-domain, frequency-domain and multiscale entropy features are extracted based on
the preferred IMF and fused into a multidomain feature dataset. In the second step, the
DAEN is constructed and the multisensor fusion features of the first step are used as inputs
of the DAEN. Then, the multisensor fusion features are further extracted and classified.

3.2. Implementation Process
3.2.1. Multisensor Feature Fusion

The proposed feature fusion method is as follows:

(1) The vibration signal X1
l×1, X2

l×1, · · · , Xl×1
n is collected from n sensors of different

directions, where l is the sample length.
(2) Take the data length i as a sample and divide X1

l×1, X2
l×1, · · · , Xl×1

n into X1
m×i,

X2
m×i, · · · , Xn

m×i, where m is the number of samples.
(3) Using the VMD to decompose X1

m×i, X2
m×i, · · · , Xn

m×i, a number of IMF components
of each sensor are obtained, and base on the decomposition results, the first few compo-
nents already contain the main information of the raw signal [28], so in this paper, we
take the modal number k = 3 and decompose it to obtain X1

m×3×1024, X2
m×3×1024, · · · ,

Xn
m×3×1024.

(4) Feature extraction is performed for IMF components, and 12 time-domain features and
five frequency-domain features [29] are extracted for each IMF component. To further
reflect the degree of self-similarity and complexity of vibration signals under different
scale factors of the same time series, five multiscale entropy values are extracted for
each IMF component, denoted as X1

m×3×22, X2
m×3×22, · · · , Xn

m×3×22.
(5) The raw feature multidomain set is formed by fusing the proposed features, denoted

as X1
m×66, X2

m×66, · · · , Xn
m×66, and further fusing the raw feature multidomain set of

sensors in each direction to obtain X̃ =
[
X1

m×66, X2
m×66, · · · , Xn

m×66

]
, X̃ ∈ Rm×66×n.

3.2.2. Deep Feature Learning and Classification

To enhance the performance of multisensor feature fusion, the DAEN model is pro-
posed for deep feature learning and classification in this section. The proposed DAEN
model is a multilayer neural network, which is composed of multiple stacked AE and a
Softmax classification layer. The structure of DAEN is shown in Figure 2.
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DAEN uses the Sigmoid activation function for nonlinear mapping [30]. The Sigmoid
activation function is defined as follows:

Sigmoid(x) =
1

1 + e−x (5)



Coatings 2022, 12, 866 5 of 12

The output of DAEN hidden layer is:

hi =
1

1 + e
−(

N
∑

j=1
wijxj+bj)

(6)

where wij is the connection weight between node i at layer L and node j at layer L + 1, and
bj is the bias of the hidden layer node j.

The most commonly used loss function of AE is the mean square error [31], which is
defined as:

L(x, x̂) =
S

∑
i=1

(x− x̂)2 (7)

Then the loss function of the proposed DAEN model can be expressed as:

J(w, b) =
S

∑
i=1

(
xi − x̂i

)2
+ rR(w, b) (8)

where the first term is the mean square error loss, the second term is the penalty term and r
is the sparse penalty factor.

The training process of DAEN consists of unsupervised training and fine-tuning. The
process is as follows:

(1) The first stage fused feature X̃ is used as the input of the DAEN;
(2) Forward propagation. The hidden layer features of the first AE h1 is used as the input

of the second AE for unsupervised training until all hidden layers are trained;
(3) The backpropagation (BP) algorithm [32] is used for supervised fine-tuning to further

optimize all the weights and biases;
(4) The last hidden layer feature, hn, of the DAEN is fed into the Softmax classifier;
(5) The classification result is obtained.

3.3. Rolling Bearing Fault Diagnosis Process Based on the Proposed Method

Based on the proposed method, the process of the rolling bearing fault diagnosis
method is as follows:

(1) Acquisition of rolling bearing vibration data from multiple sensors;
(2) The vibration signal of each sensor is preprocessed with VMD, and the 22 features of

the signal are extracted based on the preferred IMF;
(3) The extracted feature is fused into multidomain feature dataset;
(4) The multidomain feature dataset is divided into either a training dataset or a testing

dataset, according to the set ratio;
(5) The DAEN model is constructed. The parameters of the DAEN model are initialized,

the training dataset is taken as the input to the model and the model loss function is
minimized;

(6) The test dataset is fed into the trained DAEN model to obtain the test accuracy.

4. Experiment
4.1. Rolling Bearing Test Bench

To verify the superiority of the proposed method, the experimental data are obtained
from the self-made rolling bearing fault test bench belonging to Anhui University of
Technology, as shown in Figure 3. The experimental bearing is 6206-2RS1 SKF. Different
depth faults are manufactured on the inner ring, outer ring and rolling ball for the rolling
bearing by electric sparkline cutting technology. Figure 4 presents four different health
states for rolling bearing.
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4.2. Rolling Bearing Multisensor Signals

The sampling frequency is set to 8192 Hz. When the load is 5 KN and the motor
speed is 300 r/min, the signals of the rolling bearings in different health states are collected.
Figure 5 shows the time-domain vibration signals of rolling bearings from three different
directional sensors. The signals collected from each directional sensor contain six health
states, including two types of inner ring faults with the fault depth of 0.3 and 0.4 mm, two
types of outer ring faults with the fault depth of 0.2 and 0.3 mm, and one type of rolling
bearing normal state.

Coatings 2022, 12, x FOR PEER REVIEW 7 of 12 
 

 

 

Figure 5. Time-domain vibration signals of rolling bearing from three different sensors. 

4.3. Dataset Construction 

Under the same fault type, 1024 data points are taken as one sample, and 100 samples 

are taken for each fault type randomly, which comes to 600 samples in total in this exper-

iment. Three IMF components were obtained by decomposing each sample with VMD, 

and 17 time-domain and frequency-domain features were extracted for each IMF compo-

nent, as well as five multiscale entropy values. After feature extraction, a sample of 1024 

data points is changed into a sample of 66 data points as the input of the proposed model 

and the comparison model. 90% of them are randomly divided into the training set and 

10% into the testing set, as shown in Table 1. That is, each category obtained a training 

sample of faults with a data dimension of 90 × 66 and a test sample of 10 × 66. After fusion 

at the one-dimensional feature level, each type of fault of the multisensor signal obtained 

a training sample of 90 × 198 and a test sample of 10 × 198. 

Table 1. Bearing dataset information. 

Fault Type Fault Depth/mm Size of Training Dataset Size of Testing Dataset Label 

Inner race fault 1 0.3 90 10 1 

Inner race fault 2 0.4 90 10 2 

Outer race fault 1 0.2 90 10 3 

Outer race fault 2 0.3 90 10 4 

Rolling ball fault 0.2 90 10 5 

Normal 0 90 10 6 

4.4. Comparative Experiments and Analysis of Results 

4.4.1. The Feasibility and Effectiveness of Multisensor Collaborative Diagnosis 

In order to prove the feasibility and effectiveness of multisensor collaborative diag-

nosis, the vibration signals in three directions of sensor and multisensor fusion signals are 

input into DAEN for comparison according to the dataset construction method in Section 

4.3. Through many experiments, the structure of DAEN based on a single sensor signal is 

set as [66 50 30 10 6], and the structure of DAEN based on multisensor signals is set as [198 

50 30 10 6], i.e., one input layer, three hidden layers and one output layer [30]. The initial 

learning rate of DAEN is 0.01, the maximum number of iterations is 100, the sparse pa-

Figure 5. Time-domain vibration signals of rolling bearing from three different sensors.



Coatings 2022, 12, 866 7 of 12

4.3. Dataset Construction

Under the same fault type, 1024 data points are taken as one sample, and 100 samples
are taken for each fault type randomly, which comes to 600 samples in total in this experi-
ment. Three IMF components were obtained by decomposing each sample with VMD, and
17 time-domain and frequency-domain features were extracted for each IMF component,
as well as five multiscale entropy values. After feature extraction, a sample of 1024 data
points is changed into a sample of 66 data points as the input of the proposed model and
the comparison model. 90% of them are randomly divided into the training set and 10%
into the testing set, as shown in Table 1. That is, each category obtained a training sample
of faults with a data dimension of 90 × 66 and a test sample of 10 × 66. After fusion at
the one-dimensional feature level, each type of fault of the multisensor signal obtained a
training sample of 90 × 198 and a test sample of 10 × 198.

Table 1. Bearing dataset information.

Fault Type Fault
Depth/mm

Size of Training
Dataset

Size of Testing
Dataset Label

Inner race fault 1 0.3 90 10 1
Inner race fault 2 0.4 90 10 2
Outer race fault 1 0.2 90 10 3
Outer race fault 2 0.3 90 10 4
Rolling ball fault 0.2 90 10 5

Normal 0 90 10 6

4.4. Comparative Experiments and Analysis of Results
4.4.1. The Feasibility and Effectiveness of Multisensor Collaborative Diagnosis

In order to prove the feasibility and effectiveness of multisensor collaborative diag-
nosis, the vibration signals in three directions of sensor and multisensor fusion signals
are input into DAEN for comparison according to the dataset construction method in
Section 4.3. Through many experiments, the structure of DAEN based on a single sensor
signal is set as [66 50 30 10 6], and the structure of DAEN based on multisensor signals is
set as [198 50 30 10 6], i.e., one input layer, three hidden layers and one output layer [30].
The initial learning rate of DAEN is 0.01, the maximum number of iterations is 100, the
sparse parameter r is 0.01 and the sparse penalty coefficient is 0.13. In order to eliminate the
influence of random errors, 10 experiments were conducted for each method, and the mean
and standard deviation of the 10 experimental results were used as the evaluation index of
the method. A total of 10 experimental results were compared, as shown in Figure 6, and
the mean accuracy and standard deviation of the 10 experiments are shown in Table 2.

As can be seen from Table 2, compared with single sensor 1~sensor 3, the diagnosis
accuracy based on multisensor fusion is improved by 4.43%, 10.10% and 6.27%, respectively.
The above results show that the diagnosis effect based on multisensor fusion signal is sig-
nificantly better than that of the single sensor fusion signal, which proves that multisensor
signal co-operative diagnosis is feasible and effective. At the same time, we can see from
Table 2 that the diagnostic accuracy of different sensors is very different, indicating that the
fault information contained in different sensor signals is different. When different sensors
co-operate in a diagnosis, more accurate and reliable results can be provided.

4.4.2. Verification of the Superiority of the Proposed Method

To verify the performance of the proposed model, we compared stacked sparse au-
toencoder (SSAE), traditional machine learning method random forest (RF) and support
vector machine (SVM). For fair comparison, the network structure of SSAE is the same as
the proposed method, and the sparse parameter in SSAE is set to 0.2 and the sparse penalty
coefficient is set to 0.15. The maximum depth of RF is set to 2, which contains 200 trees.
The kernel function of SVM adopts RBF function. The penalty factor and kernel function
parameters are set to 10 and 0.01, respectively.
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Figure 6. Comparison of 10 experiment results for different sensors’ datasets.

Table 2. The diagnostic result of different sensor dataset.

Method Average Test Accuracy (%) Standard Deviation

Multisensor fusion
(The proposed method) 97.55 0.485

Senor 1 93.12 0.589

Senor 2 87.45 1.418

Senor 3 91.28 1.803

In order to eliminate the influence of random errors, 10 experiments were conducted
for each method, and the mean and standard deviation of the 10 experimental results were
used as the evaluation index of the method. 10 experimental results were compared, as
shown in Figure 7, and the mean accuracy and standard deviation of the 10 experiments
are shown in Table 3.
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Table 3. The average accuracy and standard deviation.

Method Average Test Accuracy(%) Standard Deviation

The proposed method 97.55 0.485
SSAE 90.67 1.792

RF 85.83 1.801
SVM 84.16 2.255

As can be seen from Figure 7 and Table 3, among the four methods, as traditional
machine learning methods, the diagnostic results of RF and SVM in 10 experiments are
lower than the other two autoencoder networks. This shows that the traditional machine
learning method has a weak feature extraction ability and a low generalization ability when
dealing with complex signals, and it is difficult to obtain a good diagnosis effect. Among
the two autoencoder networks, the diagnostic accuracy of SSAE is 6.88% lower than that
of DAEN, and the standard deviation is increased by 71.26%, which indicates that SSAE
has a weaker feature extraction ability. The proposed method has the highest diagnostic
accuracy and the lowest standard deviation in 10 experiments, indicating that the proposed
method can mine fault-sensitive features effectively, make more, full use of multisensor
information and improve the diagnostic effect and stability.

Figure 8 shows the confusion matrix of the first trial of the proposed method. The
horizontal co-ordinates of the confusion matrix plot are the true labels, the vertical co-
ordinates are the predicted labels and the numbers on the diagonal lines indicate the
classification accuracy of the proposed method for each type of sample. From Figure 8, it
can be seen that the proposed method can identify 100% of the five conditions of inner ring
fault 2, outer ring fault 1, outer ring fault 2, rolling ball failure and normal condition for the
rolling bearing dataset of six health conditions. The only misclassification occurred in the
inner ring fault 1 sample.

Coatings 2022, 12, x FOR PEER REVIEW 10 of 12 
 

 

 

Figure 8. Confusion matrix of the first trial of the proposed method. 

The t-distribution neighborhood embedding (t-SNE) algorithm [33] is adopted for 

feature visualization. T-SNE method is used to draw scatter plots of the raw data, respec-

tively. The output of the features from the Softmax layer of the proposed method is shown 

in Figure 9. From Figure 9, it can be seen that the raw time-domain signal contains too 

much redundant information, and the features of all categories are difficult to distinguish. 

In contrast, the features extracted by the proposed method in the Softmax layer are easier 

to distinguish and show a better classification effect, i.e., the same fault features are clus-

tered according to the same center and different fault features are distinguished, which 

proves the better performance of the proposed method. 

  
(a) (b) 

Figure 9. Feature visualization. (a) Feature visualization of raw signal; (b) Feature visualization of 

Softmax layer. 

5. Conclusions 

In order to improve the fault diagnosis accuracy of rolling bearings, a novel multi-

sensor feature fusion method is proposed in this paper. VMD is used to decompose mul-

tiple sensor signals, which reduces the redundant information contained in the raw sig-

nals. The multidomain features of each single sensor are fused at the feature-level, and the 

Figure 8. Confusion matrix of the first trial of the proposed method.

The t-distribution neighborhood embedding (t-SNE) algorithm [33] is adopted for fea-
ture visualization. T-SNE method is used to draw scatter plots of the raw data, respectively.
The output of the features from the Softmax layer of the proposed method is shown in
Figure 9. From Figure 9, it can be seen that the raw time-domain signal contains too much
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redundant information, and the features of all categories are difficult to distinguish. In
contrast, the features extracted by the proposed method in the Softmax layer are easier to
distinguish and show a better classification effect, i.e., the same fault features are clustered
according to the same center and different fault features are distinguished, which proves
the better performance of the proposed method.
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5. Conclusions

In order to improve the fault diagnosis accuracy of rolling bearings, a novel multisensor
feature fusion method is proposed in this paper. VMD is used to decompose multiple
sensor signals, which reduces the redundant information contained in the raw signals.
The multidomain features of each single sensor are fused at the feature-level, and the
complementary information among multiple sensors is effectively utilized. The depth
features of multisensor are further learned and fused with the constructed DAEN. The
diagnosis effect of the proposed method is better than that of a single sensor, showing
better robustness and providing a more effective means for fault signal deep mining and
multisensor information fusion.
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