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Abstract: Two-dimensional transition metal carbides/carbonitrides (MXenes) have broad application
prospects in the field of energy storage due to their abundant surface functional groups, tunable
interlayer spacing, and excellent electrical conductivity. However, the kinetics of Li-ion interca-
lation/deintercalation between MXene layers is slow, and the stacking between nanosheets due
to long cycling reduces the structural stability and battery safety. Herein, we prepare and tune
surface-termination groups of Ti3C2Tx MXene by chemical exfoliation and low-temperature anneal-
ing methods. The types of functional groups on the surface of the material are optimized by the
substitution of oxygen to some -F functional groups on the surface. The optimized Ti3C2Tx MXene
material exhibits a reversible lithium-ion-storage specific capacity of 444.1 mAh g−1 after 200 cycles
at a current density of 0.1 A g−1. The increased of -O functional groups can increase the diffusion
rate of Li+, promote the transport of electrons, and accelerate the kinetics of the electrode reaction,
thereby improving the performance of lithium-ion storage.

Keywords: Ti3C2Tx MXene; chemical exfoliation; lithium-ion storage

1. Introduction

With the rapid development of the global economy, fuel consumption, and increas-
ingly serious environmental problems, there is an urgent need to develop clean, efficient,
and sustainable energy-storage and -conversion technologies [1,2]. Based on the work-
ing principle of electrochemical energy conversion and storage, alkali metal-ion batteries
are considered as the most promising next-generation energy-storage devices, which can
effectively promote the development of sustainable energy and reduce environmental
pollution [3]. At present, the demand for high-energy-density and high-power-density elec-
trochemical energy-storage devices is increasing, and the demand for long-cycle stability
and low-cost electrode materials is particularly urgent. Among the numerous nanomateri-
als, two-dimensional (2D) materials have broad application prospects in alkali metal-ion
batteries due to their unique layered structure [4]. The layered structure can provide
abundant channels for ion diffusion, accelerate the ion-diffusion process, and facilitate
the realization of fast electron transport within the atomic layer. In addition, the layered
structure can buffer the volume change during charging and discharging and improve the
contact stability of the material [5].

As a new type of 2D layered transition metal carbides, MXenes have received ex-
tensive attention since the successful acquisition of MXenes in the MAX phase [6–12].
The general formula is Mn+1XnTx (n = 1–3), where M represents an early transition metal
(Ti, V, Cr, Nb, etc.), X is C or N, and T is the surface terminus [8,13–17]. MXenes have
abundant surface functional groups and have been widely studied as electrodes for
Li/Na-ion batteries [18–20] and supercapacitors [21–24] due to their good electrical and
ionic conductivity.
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Since Gogotsi et al. [9] obtained 2D Ti3C2Tx materials by selective HF etching of
Ti3AlC2 compounds in 2011, the family of 2D transition metal carbides, nitrides, and
carbonitrides (MXenes) has gradually expanded. After more than ten years of research,
dozens of MXenes materials have been successfully prepared. Pure-phase MXenes exhibit
similar metallicity to their precursor MAX, but theory predicts that they could also be
semiconductors [25] or topological insulators [26]. In general, the electronic structure
of MXene is affected by the following three aspects: chemical composition (elemental
species of M, X, T), crystal structure, and location of functional groups. Therefore, surface-
controlled functionalization modification has become a common method to improve the
physicochemical properties of MXene and endow its composites with new functions. In
addition, MXene not only has the performance of traditional two-dimensional materials,
but also has energy storage, good electrical conductivity, and self-lubricating properties,
etc., showing great application potential in many fields such as energy storage, catalysis,
and tribology. However, the current understanding of the structure and properties of
MXene is still limited, and a lot of research work is still needed to fully understand the
various properties of MXene.

The preparation of MXenes is usually performed by etching the MAX phase by the
HF or LiF/HCl system. After etching, -O, -F and -OH functional groups will be introduced
on the surface of the material. The Li ions penetrate and store the inner MXene sheet with
a theoretical capacity of 447.8 mAh g−1 [27]. However, the -F termination groups usually
reduce the initial discharge capacity and cycling stability due to poor electrode/electrolyte
interface. The introduction of fluorine end-groups also increases the interface resistance
between the electrode and the electrolyte. This further reduces the lithium-storage perfor-
mance and cycle stability of the electrode [12,28,29]. In addition, MXenes bulks have many
problems such as easy stacking of sheets, poor mechanical strength, and easy oxidation
during the preparation process, which lead to the blockage of electron-/ion-transport
channels and the collapse of the microstructure. Therefore, it is necessary to improve
MXenes-based energy-storage materials from the perspective of surface functional groups
and bulk microstructure. In terms of bulk microstructure, Lian et al. used KOH solu-
tion to exfoliate Ti3C2Tx nanosheets, and the interlayer spacing of the exfoliated Ti3C2Tx
nanosheets expanded, thereby accelerating ion transport [30]. In terms of surface functional
groups, Ahmed et al. used H2O2 to treat Ti2CTx material to realize the surface -O functional
group modification of MXene, and used it as a negative electrode material in LIB [31]. Due
to the increase in -O functional groups, the proportion of active sites increases, which in
turn promotes the adsorption of Li+ and improves the lithium-storage performance of
electrode materials.

Herein, chemical exfoliation and low-temperature annealing methods were used
to control the surface termination groups’ surface end-capping groups of a few-layer
Ti3C2Tx nanosheet, which exhibited a reversible lithium-ion-storage specific capacity of
444.1 mAh g−1. The increase in -O functional groups could increase the diffusion rate of Li+,
promote the transport of electrons, and accelerated the kinetics of the electrode reaction,
thereby improving the performance of lithium-ion storage.

2. Materials and Methods

Preparation of Ti3C2Tx-F: The MAX phase (Ti3AlC2) was etched and stripped with HF
solution to obtain two-dimensional layered Ti3C2Tx. A total of 0.83 g of Ti3AlC2 powder
was slowly added to a polytetrafluoroethylene (PTFE) beaker filled with 20 mL of HF
(40%) aqueous solution and stirred in a constant-temperature water bath at 60 ◦C for 2 h,
centrifuged at 8000 rpm for 10 min, and washed multiple times with deionized water until
the pH of the supernatant was 6–7. The washed production was put into a vacuum oven
and dried at 80 ◦C for 24 h.

Preparation of Ti3C2Tx-T: a total of 0.5 g of Ti3C2Tx-F was dispersed in 5 mL of
TMAOH solution and sonicated for 30 min, followed by magnetic stirring at 50 ◦C for
2 h and further ultrasonic treatment for 1 h to obtain the Ti3C2Tx-T material. The above
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suspension was transferred to a dialysis bag (MD 44 mm), put into a beaker containing
deionized water for dialysis treatment for 7 days, and the deionized water was changed
regularly until the suspension in the dialysis bag became neutral. The resulting suspension
was snap-frozen in liquid nitrogen and freeze-dried to obtain few-layer Ti3C2Tx.

Preparation of Ti3C2Tx-T(O): The surface modification of the few-layer Ti3C2Tx-T
material was carried out by low-temperature annealing. In brief, 0.5 g of Ti3C2Tx-T material
was heated to 280 ◦C for 2 h with a heating rate of 5 min−1 in tube furnace to obtain
Ti3C2Tx-T(O). The schematic illustration for the preparation of Ti3C2Tx-T(O) is described
in Scheme 1.
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Scheme 1. The schematic illustration for the preparation of Ti3C2Tx-T(O).

The surface morphologies and microstructures of the samples were observed by
SEM (Quanta FEG, USA), TEM and HRTEM (FEI Talos F200X, USA). XRD (ARL Equinox
3000 using Cu Kα1 radiation, USA) was used to measure the components and crystal
structure. Raman (HORIBA JOBIN YVON S.A.S., France) spectroscopy was used to analyze
the defect types and crystallinity of samples. Elemental chemical environment of the
sample surface was analyzed by XPS (Thermo Scientific, ESCALAB 250 Xi, USA). FTIR
spectra were recorded on PerkinElmer TL9000 (Canada) using KBr disks. The galvanostatic
intermittent titration technique (GITT) was performed at a current density of 0.05 A g−1.
The specific surface area and pore-size distribution were measured by nitrogen absorption
and desorption method on Microtrac BEL (Japan).

The samples were tested for electrochemical performance by LIBs. A total of 80 mg
of the prepared material, 10 mg of acetylene black and 10 mg of polyvinylidene fluoride
(PVDF) binder were weighed according to the mass ratio of 8:1:1, and then put into an
agate mortar and fully ground for 30 min to obtain a uniformly dispersed slurry. The
obtained slurry was coated on copper foil, scraped with a 200 µm scraper until the surface
was uniform, transferred to a vacuum oven, and dried at 80 ◦C for 12 h. When the oven
temperature dropped to room temperature, the copper foil was cut into circular electrode
pieces with a diameter of 12 mm using a microtome, and the active material loading was
about 1.15 mg cm−2. In this paper, lithium foil was used as the counter electrode to as-
semble a CR2032 button battery case in a glove box filled with high-purity argon gas,
and its electrochemical performance was tested. The liquid electrolyte was 1.0 M LiPF6
in a mixture of ethylene carbonate (EC)/diethyl carbonate (DEC) with a volume ratio
of 1:1, and the separator was a microporous membrane (Celgard2400). Constant current
charge/discharge performance tests (cycling performance and rate performance) were
performed by an automatic battery-tester system (Land CT2001A, China) at a constant
temperature of 25 ◦C in a voltage range of 0.01 V to 3.0 V. Cyclic voltammetry (CV) tests
were performed on a potential window range of 0 to 3.0 V at scan rates from 0.1 mV s−1 to
2 mV s−1 used a CHI760E (CH Instruments, China) electrochemical workstation. Elec-
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trochemical impedance spectroscopy (EIS) was performed on a CHI760E electrochemical
workstation with a test frequency range of 0.01 Hz to 1 MHz. The galvanostatic intermittent
titration technique (GITT) was performed on an automatic battery-tester system (Land
CT2001A, China) with a voltage range of 0.01 V~3.0 V (vs. Li/Li+), a current density of
50 mA g−1, a pulse of 5 min, and a relaxation of 55 min.

3. Results and Discussion

As shown in Figure 1a, the SEM image showed that Ti3C2Tx-F had a graphene-like
layered structure, and its sheets were arranged in parallel in an accordion shape. As shown
in Figure 1b, the few-layer Ti3C2Tx-T material prepared by exfoliating the layered Ti3C2Tx-
F by TMAOH organic reagent showed the morphology of tightly stacked nanosheets,
indicated that the layered Ti3C2Tx-F material was formed by the TMAOH organic reagent.
It was peeled off into a few layers of Ti3C2Tx-T material, and the surface was relatively
complete. As shown in Figure 1c,d, after low-temperature annealing, the edges of Ti3C2Tx-
T(O) nanosheets were wrinkled and slightly curled to form a 3D network structure. It was
found that the exfoliated MXene sheets maintain the diameter of the pristine MAX sheets
in the size of ~10 µm.
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Figure 1. SEM images of (a) Ti3C2Tx-F; (b) Ti3C2Tx-T; (c) and (d) Ti3C2Tx-T(O).

In order to explore the microstructure on the surface of Ti3C2Tx-T(O) nanosheets,
Ti3C2Tx-T(O) was tested by TEM. As shown in Figure 2a,b, Ti3C2Tx-T(O) nanosheets were
thin and transparent, with wrinkles on the surface and edges, relatively complete morphol-
ogy, no obvious defects, and oxide particles, indicating that the successful preparation had
larger-size nanosheets with fewer defects. The EDS-mapping images showed that C, F, O,
and Ti elements were uniformly distributed in the Ti3C2Tx-T(O) nanosheets.

The crystal phase structures of the above three materials were analyzed and tested by
XRD, as shown in Figure 3a. After HF etching, the characteristic peak at 39◦ of the Ti3AlC2
raw material (JCPDS No 52-0875) almost disappeared, confirming that the Al atomic layer
was removed from Ti3AlC2. The characteristic peaks at 9◦, 18◦, and 27◦ of Ti3C2Tx-F
obtained by HF etching and lift-off corresponded to (002), (004), and (006) crystal planes,
respectively [32]. The intensity of the diffraction peak of the high Miller index crystal plane
of the Ti3C2Tx-T material obtained by TMAOH organic reagent for secondary exfoliation
decreases, indicating that the multilayer Ti3C2Tx-F was fully exfoliated to obtain a few
layers of Ti3C2Tx-T. The (002) characteristic peak intensity of the Ti3C2Tx-T(O) material
obtained by low-temperature annealing treatment was weakened, indicating that the
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material had certain wrinkles and curls, which was consistent with the results observed
in SEM.
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pore-size distribution of Ti3C2Tx-F, Ti3C2Tx-T and Ti3C2Tx-T(O).

In order to explore the molecular-structure information of the surface of Ti3C2Tx
material before and after modification, Raman spectroscopy was used to explore the
material. As shown in Figure 3b, the characteristic peak I corresponded to the vibration
of Ti–O or Ti–OH bonds (152.6 cm−1), confirming that the surface contains Ti3C2Ox and
Ti3C2(OH)x compounds. The characteristic peaks of II and III corresponded to the stretching
vibrations of Ti–C bonds (401.5 cm−1 and 606.2 cm−1) [33]. There were two characteristic
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peaks, D peak and G peak, at 1313.7 cm−1 and 1567.2 cm−1, respectively. The D peak
was caused by the deformation vibration of amorphous carbon or six-membered ring,
and the G peak was caused by the stacking of graphite hexagonal network planes. After
low-temperature annealing, the intensities of D peak and G peak of Ti3C2Tx-T(O) material
increased, indicating that the carbon content of the material increased. After the micro-
oxidation treatment, the Ti atomic layer in Ti3C2Tx was destroyed, exposing more C atoms,
which resulted in a slightly higher intensity of the G peak than that of the D peak [34].

Figure 3c,d showed the specific surface area and pore-size-distribution curves of the
anode of Ti3C2Tx-F, Ti3C2Tx-T, and Ti3C2Tx-T(O), respectively. As shown in Figure 3c,
the specific surface areas of Ti3C2Tx-F, Ti3C2Tx-T and Ti3C2Tx-T(O) can be calculated by
BET theory to be 7.69 m2 g−1, 41.209 m2 g−1 and 44.165 m2 g−1, respectively. As shown
in Figure 3d, the pore sizes of Ti3C2Tx-F, Ti3C2Tx-T, and Ti3C2Tx-T(O) materials were
calculated using the BJH model to ~0.013 cm3 g−1, ~0.101 cm3 g−1 and ~0.106 cm3 g−1,
respectively. Comparing the obtained data, it can be seen that the specific surface area of
the sample showed a gradual trend of increasing, while the pore size showed a trend of
first being larger and then smaller. The trend of sample porosity was basically consistent
with the trend of the specific surface area of the sample.

To explore the elemental chemical environment on the material surface, XPS analysis
was performed on Ti3C2Tx-F and Ti3C2Tx-T(O) materials. As shown in Figure 4a,d, the
characteristic peaks located at 281.8, 284.8, 286.3, and 288.5 eV in the C 1s XPS spectrum
correspond to C–Ti–O, C–C, C–OH and O–C=O bonds [35]. In the O 1s XPS spectra,
529.8, 531.6 and 533.0 eV correspond to Ti–O, Ti–OH and H2O [36], respectively (shown in
Figure 4b,e). As shown in Figure 4c,f, four pairs of double peaks (Ti 2p3/2 and Ti 2p1/2)
could be obtained by fitting the Ti 2p XPS spectra, and each pair of peaks conforms to a
fixed area ratio (2:1) and a fixed peak spacing (5.7 eV). The peaks at binding energies of
454.8 and 455.8 eV in Ti 2p3/2 correspond to Ti–C and Ti–F bonds, and the peaks at binding
energies of 457.0 and 458.6 eV correspond to Ti–O bonds (Ti3+:TixOy, Ti4+:TiO2). Compared
with Ti 2p in Ti3C2Tx-F, Ti 2p in Ti3C2Tx-T(O) had reduced the characteristic peak intensity
of Ti–C at 454.8 eV and Ti–F at 455.8 eV, and enhanced the Ti–O characteristic peak intensity
at 458.6 eV [37]. The quantitative analysis of the sample surface by XPS indicated that
the proportion of oxygen atoms of Ti3C2Tx-F was 18.04 at.%; the proportion of fluorine
atoms was 12.74 at.%. In addition, the proportion of oxygen atoms of Ti3C2Tx-T(O) was
44.15 at.%, and the proportion of fluorine atoms was 1.72 at.%. The above phenomenon
showed that the relative content of Ti–O on the surface of the material increased and the
relative content of Ti–F decreased after low-temperature annealing treatment. Oxygen sub-
stitution occurred after the Ti–F bond was oxidized, and the content of oxygen-containing
functional groups on the surface of the material increased.
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and Ti3C2Tx-F.

Figure 5a showed the constant current charge–discharge curve of Ti3C2Tx-T(O) nega-
tive electrode in the voltage range of 0.01 V–3.0 V. Under the current density of 0.1 A g−1,
the discharge-specific capacity of the first cycle was 650.41 mAh g−1, the charge-specific
capacity of the first cycle was 406.87 mAh g−1, and the corresponding initial coulomb
efficiency (ICE) was 62.56%. The voltage plateau at 0.8 V in the first cycle of the discharge
curve corresponds to the formation of the SEI (solid electrolyte interface) film in the first
cycle. The charge–discharge curves of the 2nd, 50th, and 100th cycles basically coincide,
which proved that the material had good cycle stability.
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Figure 5. (a) Charge/discharge profiles at 0.1 A g−1 of Ti3C2Tx-T(O) anode; (b) CV curves at a scan
rate of 2 mV s−1.

In order to study the electrochemical kinetic process of Ti3C2Tx-T(O) anode, EIS test
was carried out. The Nyquist curve consisted of a semicircle in the high- to mid-frequency
region and a sloping line in the low-frequency region. The semicircle represented the charge-
transfer resistance (Rct) of the electrode and the electric double-layer capacitance (CPE)
with capacitive properties, and the oblique line corresponds to the diffusion resistance
(Zw) of lithium ions in the electrolyte. The intercept in the high-frequency region on the Z’
axis represented the contact resistance (Rs) between the electrode and the electrolyte [38].
As shown in Figure 6a, the Rct values of Ti3C2Tx-F, Ti3C2Tx-T and Ti3C2Tx-T(O) anodes
were 506.8, 202.5 and 89.1 Ω, respectively, indicating that Ti3C2Tx-T(O) anodes had good
charge-transfer kinetic characteristics and good conductivity.
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As shown in Figure 6b, at the current densities of 0.1, 0.2, 0.5, 1, 2, and 5 A g−1, the
discharge-specific capacities of the Ti3C2Tx-T(O) anode were 285.2, 228.6, 209.2, 188.9, 174.4,
and 151.4 mAh g−1. When the current density returned to a small current density of
0.1 A g−1, the discharge capacity of the Ti3C2Tx-T(O) anode recovered to 265.2 mAh g−1,
indicating that the material had good reversibility. In contrast, the specific discharge
capacities of Ti3C2Tx-F electrodes at current densities of 0.1, 0.2, 0.5, 1, 2, 5, and 0.1 A g−1

were only 193.5, 118.4, 94.5, 75.0, 58.3, 43.1, and 124.9 mAh g−1. Compared with the
Ti3C2Tx-F electrode, the Ti3C2Tx-T(O) electrode had better rate performance, because
the few-layer structure can effectively shorten the ion-diffusion path and improve the
diffusion rate; the specific surface area increased, the oxygen-containing functional groups
on the surface increased, the proportion of active sites increased, and the reaction kinetics
was promoted.
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at 0.1 A g−1 for different anodes of Ti3C2Tx-F, Ti3C2Tx-T and Ti3C2Tx-T(O).

As shown in Figure 6c, the initial discharge-specific capacities of the Ti3C2Tx-F, Ti3C2Tx-
T, and Ti3C2Tx-T(O) anodes were 226.2, 444.9, and 665 mAh g−1, respectively. The ICE
of Ti3C2Tx-T anode was 49.15 %, and the ICE of the Ti3C2Tx-T(O) anode after oxidation
treatment was 53.75 %. The improvement of ICE might be related to the substitution of -F
functional groups on the surface by -O functional groups. After 200 cycles, the Ti3C2Tx-T(O)
anode exhibited a specific discharge capacity of 444.1 mAh g−1 and a capacity retention
rate of 124.05 %. In contrast, the Ti3C2Tx-T anode had a specific discharge capacity of
224.8 mAh g−1 after 200 cycles, and a capacity retention rate of only 92.21 %. According to
the analysis of physicochemical properties/electrochemical lithium-storage performance,
the improved electrochemical cycling stability of Ti3C2Tx-T(O) was closely related to the
substitution of -O functional groups for -F functional groups on the surface of Ti3C2Tx-T,
in which a large number of oxygen-containing functional groups could provide more
energy for Li+ more active sites, thereby improving the lithium-storage performance of
the electrode. The Ti3C2Tx-T(O) negative electrode exhibited a phenomenon of “negative
growth” (capacity first decreases and then increases) during the cycle. It was speculated
that the repeated deintercalation of Li+ between the Ti3C2Tx-T(O) layers during the cycle
causes the interlayer spacing to increase. The chemically active lithium-storage sites were
continuously activated, resulting in an increase in the pseudocapacitance contribution of
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the electrode surface. In future work, the following methods could be used to improve
the ICE of the electrode: short-circuiting the negative pole piece by electrical contact with
the short-circuit method, adjusting the resistance and processing time of the short-circuit
wire, and realizing prelithiation under the action of the potential difference; using lithium-
aromatic compounds (lithium naphthalene, butyllithium) to immerse or spray the negative
electrode material to achieve chemical prelithiation [39,40]; functionally modifying the
metal electrode with the help of artificial SEI layer technology to improve the ICE [41].

To investigate the Li+ diffusion kinetics of Ti3C2Tx-F, Ti3C2Tx-T and Ti3C2Tx-T(O)
anodes, GITT measurements were performed at a current density of 0.05 A g−1, and the
pulse and relaxation processes are shown in Figure 7a. First, a current was applied to
the pulse, and the battery potential raised rapidly during the pulse. Subsequently, the
charging current was kept constant, and the potential was slowly raised. Finally, entering
the relaxation process, the composition in the electrode tended to be homogeneous through
Li+ diffusion, and the potential decreased slowly until it equilibrated again. Compared
with Ti3C2Tx-F and Ti3C2Tx-T, Ti3C2Tx-T(O) anode exhibited smaller overpotentials during
charging, indicating a better diffusion rate. The diffusion coefficients D of Ti3C2Tx-F,
Ti3C2Tx-T, and Ti3C2Tx-T(O) electrodes changed periodically with the lithiation process
(Corresponding to the discharge process of Figure 7a), and the maximum diffusion rates
were 1.12 × 10−11 cm2 s−1, 3.94 × 10−11 cm2 s−1 and 5.76 × 10−11 cm2 s−1 (Figure 7b). The
Li+ diffusion coefficients of the Ti3C2Tx-T(O) electrode at each potential were higher than
those of the two, which was related to the increased oxygen-containing functional groups
in the surface modification of the material. The replacement of some -F functional groups
on the surface by -O functional groups could improve the diffusion rate of Li+, optimize
the electron/ion transport pathway, and accelerate the kinetics of the electrode reaction,
thereby enhancing the cycling stability and rate capability.
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anodes at different potentials.

By studying the CV curves of the Ti3C2Tx-T(O) anode at different scanning speeds,
the kinetics of lithium storage was explored and the contribution ratio of capacitance was
calculated. Figure 8a shows the CV curves of the Ti3C2Tx-T(O) anode at different scan rates.
According to the cyclic voltammetry test formula i = avb, it was logarithmically transformed
to obtain log(i) = blog(v) + log(a). The b value of the redox peak of the electrode was
calculated by plotting the log(i)-log(v) curve. When b = 0.5, it indicated that the electrode
reaction was dominated by diffusion, and when b = 1, it indicated that the electrode reaction
was dominated by surface pseudocapacitance as host [42]. As shown in Figure 8b, the
b values of the oxidation peak (~1.5 V) and reduction peak (~1.7 V) of the Ti3C2Tx-T(O)
anode were calculated to be 0.76 and 0.77, respectively. The total capacity of the electrode
was divided into two parts: (1) the capacity contribution provided by the ion-diffusion
process; (2) the pseudocapacitive contribution provided by the redox reaction that occurs
during the charge-transfer process on the electrode surface. The lithium storage form of the
Ti3C2Tx-T(O) anode was quantified, as shown in Figure 8c. At the scan rate of 0.1 mV s−1,
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the capacitive contribution of the negative electrode of Ti3C2Tx-T(O) accounted for 23.14%,
and when the scan rate increased to 1.0 mV s−1, the capacitive contribution increased to
69.75%. With the increase, the diffusion rate of Li+ at the electrode interface was accelerated,
and the pseudocapacitance contribution increased.
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4. Conclusions

In summary, few-layer Ti3C2Tx-T(O) anode materials with rich -O functional groups on
the surface were successfully prepared by HF etching of MAX phase, few-layer stripping of
TMAOH organic reagents, and low-temperature oxidation. The micro-oxidation annealing
treatment caused some fluorine end-groups on the surface to be replaced by oxygen end-
groups, which optimizes the types of end-groups on the surface of the material. The
Ti3C2Tx-T(O) anode exhibited a reversible capacity of 444.1 mAh g−1 after 200 cycles
at a current density of 0.1 A g−1 and a reversible capacity of 174.4 mAh g−1 at a large
current density of 5 A g−1. The increased of -O functional groups on the surface of
Ti3C2Tx-T(O) material accelerated the diffusion rate of Li+, optimized the electron-/ion-
transport pathway, and accelerated the kinetics of the electrode reaction. The Ti3C2Tx-T(O)
nanosheets were folded and curled to form a network structure, which increased the active
sites and shortened the Li+ transport path.
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