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Abstract: Surface texture is regarded as a promising solution for enhancing the tribological features
of industrial materials due to its outstanding benefits, such as minimization of the contact area,
enhancement of the load bearing capacity, storage of the lubricant, and management of the transition
between lubrication regimes. Surface texture can be processed under either liquid or gas conditions.
As compared to laser ablation in air, employing liquids or other gases as ablation media provides
high accuracy and uniformity by limiting the heat-affected zone (HAZ) and other undesired defects
to a large extent, as well as high crater structural features. In addition, the synergistic use of
different liquid, solid, and additive lubricants with surface roughness recently demonstrated excellent
performance. Therefore, surface texture helps to improve the tribological characteristics of a material.
This paper reviews the design methodologies and applications of surface texture, emphasizing the
proper selection of the appropriate laser parameters and ambient conditions for the best texture
quality and functionality. Recent texture geometric design features to improve the film thickness and
the self-lubricating system are presented. The ablation environment is explored using various media.
The interaction between the lubricants’ types and surface textures is explored based on the operating
conditions. Furthermore, surface texture applications using superhydrophobic surfaces, anti-drag,
and vibration and noise friction are discussed. We hope that this review plays an enlightening role in
follow-up research on laser surface texture.

Keywords: laser surface texturing; design methodology; processing medium; lubrication; anti-drag;
vibration and noise

1. Introduction

One of the current objectives in engineering applications is undoubtedly a reduction
in friction and wear for the prolongation of industrial equipment’s lifespan. In fact, every
surface has some kind of texture, defined by profile, volume, and areal parameters and
responsible for fatigue crack and fractures on surfaces, which result in functionality loss.
However, depending on the application area and region, some of these parameters are
considered vital to surface functionality. A limited number of parameters is recommended
to avoid the “parameter rash” [1,2]. Based on the effect of the surface morphology on the
behavior of surfaces, surface texturing, which is a method that creates micro-pits, such as
dimples [3] and grooves [4], on the mating surface under dry and lubricated conditions [5],
was developed to lower friction and wear. From the work of Etsion’s group [6] surface
texturing modeling and design gained great interest with their potential for improving
tribological behavior.
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Texturing methods can be broadly classified into four categories: addition, removal,
displacement of material, and self-forming methods [7], with a large number of surface
texturing technologies, including: mechanical methods [8], etching technologies [9], coat-
ings [10], and laser-based techniques [11]. Laser-based methods have numerous advantages
over the other three methods, such as an absence of tools’ contact with the surface, oper-
ation simplicity, a friendly environment, and the capacity to produce a variety of pits in
a wide range of material. The laser-based methods include laser shock processing [12],
Laser ablation [13], and Laser interference [14]. Among these three laser-based methods,
laser ablation, commonly called LST (laser surface texturing), is the most flexible and is
subjected to a much easier procedure [15]. Laser ablation has developed from long-pulse
or nanosecond (ns) lasers, which created large heat-affected zones (HAZ), oxide amounts,
and defects to short and ultra-short pulse lasers known today as femtosecond (fs) and
picosecond (ps) lasers, respectively; these short and ultra-short pulse lasers improve the
ablation quality with fewer drawbacks. Cernasejus et al. [16] employed a nanosecond laser
to modify surfaces in an oxidizing environment. A large amount of oxides was produced
during the processing procedure, which decreased the surface quality. Trucchi et al. [17]
employed an ultra-short laser for diamond micro-structuring because of the reduced ther-
mal effects, as well as an effective surface nano-structuring. Ultra-short pulse lasers have
been the most popular way to circumvent long-pulse lasers’ limitations. However, during
the laser process, burrs and heat are generated, which may be controlled using a processing
medium [18,19].

Various texture parameters have been applied to mechanical components to improve
their tribological performance, including: shape, size, area density, area ratio, and working
conditions. Relevant researchers investigated the mechanism of improvement in the friction
and wear of concave and convex textures [20–25]. Five main mechanisms were revealed: the
surface hardness [23], the wear debris particle storage [25], the reduction in the real contact
area [24], the lubricant reservoirs [26], and the micro-hydrodynamic pressure [27]. In the
past few years, extensive theoretical and numerical investigations have been conducted,
and significant progress has been achieved regarding surface texture technology. Gropper
et al. investigated the geometric features of surface texture and found that the shape,
texture ratio, area density, dimple orientation, and position are crucial for an efficient
and good texture design [28]. In addition, Hu et al. looked at the influence of four cross-
grooved texture shapes on the tribological performance. Under a high sliding frequency
and low load, the hexagonal shape texture outperformed the other three in terms of
friction, contact stress reduction, and oil film generation [29]. Sun et al. investigated the
friction and wear properties of dents’ texture rolling element bearings under dry wear.
According to the findings, a combination of textural parameters, such as diameter, depth,
and orientation, can reduce the wear rate [30]. In addition, Profito et al. [31] showed that the
operating lubrication regime was the main factor for friction reduction. On the other hand,
Ma et al. [32] combined surface texture, thermal oxidation, and a Polytetrafluoroethylene
(PTFE)-based lubricant coating. The results revealed that PTFE boosted with thermal
spraying on the surface texture improved the tribological performance. Furthermore,
Grützmacher et al. [33] experimentally examined the influence of single and multilayer
textures on the friction reduction. There was a change in the switch from a mixed lubrication
regime to a hydrodynamic one. Later, Grützmacher et al. [34] discovered that the multilayer
texture had a lot of potential for guiding lubricant around the surface.

The purpose of this paper is to present advancements in the effects of laser ablation; the
solution used to deal with unwanted phenomena that slow down the machining process,
such as the generation of burrs; the non-uniform crater morphology; and the thermal
effect of the laser beam by manipulating the laser parameters and introducing processing
media, as framed in Figure 1. We present the process design of the surface texture, with the
latest texture shape acting as a self-lubricating system; effects of the working parameters,
such as load and sliding frequency, on lubrication; and the introduction of potential
lubricants to deal with traditional lubricants’ limitations. In addition, we present surface
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texture applications, including super hydrophobicity, anti-drag, and vibration and noise
for mechanical equipment, followed by the conclusion and outcomes.
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Figure 1. Laser surface texture technology features.

2. Effect of Laser Pulse Properties

Laser surface texturing essentially includes nanosecond, picosecond, and femtosecond
lasers. Although these various types of lasers can perform patterns, the desired pattern
morphology requires a methodic manipulation of various laser parameters. However, only
a few parameters, including the laser type, laser power intensity, laser scanning speed, and
pulse repetition, will be reviewed. In addition, the choice of ambient conditions and the
nature of the target material are as crucial as the laser parameters [35,36]. Table 1 shows an
examination of the effect of the laser parameters on the substrate material.



Coatings 2022, 12, 1015 4 of 32

Table 1. Analysis of different types of lasers with respect to the laser parameters and nature of the material.

Material Type of
Laser

Laser Pulse Power
(w)

Laser Pulse
Repetition
Rate (kHz)

Laser
Scanning

Speed
(mm/s)

Micro
Hardness

(HV)
Depth (µm) Width (µm) Findings Ref

50CrMo4
steel

Millisecond
laser 27 0.01 2 700 HV 200 —

A depth of 1000 µm can be achieved with
ms laser parameters.

[18]
Nanosecond

laser 90 500 200 642 HV 80 —

Tin Bronze Femtosecond
laser 0.1 — 5–10 — 1.256–2.94 12.21–14.21 Lower scanning speed, led to deeper and

wider grooves. [37]

20CrNiMo
beryllium

bronze

Femtosecond
laser 5 × 1022–25 × 1022 100 — — 28.007–33.983 169.266–70.398 Laser peak power and exposure duration

produced the optimal crater size. [38]

5A06
aluminum

alloy

Nanosecond
laser 15 × 105 50 41.66 355.08 — — For the nanosecond laser, the HAZ was

clearly visible. [39]

Silicon
Nitride

Nanosecond
laser 50 100 2–100 — — — At a low pulse intensity, the laser cuts

created by the ps laser had smoother
surfaces and straighter edges than the ns

laser with a decreased HAZ and
thermal damages.

[40]
Picosecond

laser 50 100 2–100 — — —

Leaded
brass

Femtosecond
laser 5–15 100–300 5–15 168–189 100–200 10–25

The improved surface roughness and the
hardness of the material decreased the

friction; wear increased in dry conditions.
[41]

—: Not reported.
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2.1. Laser Type

Various laser pulses are used in LST to focus a laser beam on the surface of a material,
as shown in Figure 2. During the process, the electrons absorb energy regardless of the
pulse duration, increasing the kinetic energy of the system. However, the amount of energy
transferred to the bulk is highly dependent on the pulse duration [42–44]. Long pulses
(Figure 2a) through thermalization lead to the formation of surface debris, microcracks,
and a high heat-affected zone, which change the surface chemistry and structure [45],
thus resulting in a continuous melting and re-solidification process. In Figure 2b, short
pulse durations consist of a combination of moderate melting and solidification, straight
evaporation, and, thus, a small HAZ [42]. Ultra-short pulses limit the formation of heat
and the laser–material interaction to direct evaporation due to the short period of energy
deposition (Figure 2c) [41].
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Figure 2. Classification of lasers based on pulse durations: (a) long pulse, (b) short pulse, and
(c) ultra-short pulse; SEM images of surface morphology with: (d) ns laser, (e) ps laser, and (f) fs
laser; surface texture cross-section profiles generated with: (g) ns laser, (h) ps laser, and (i) fs laser,
Reprinted with permission from [46]. Copyright from Elsevier 2021.
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Ultra-short and short laser pulse techniques can lead to controlled ablation and a
micro-texture with a moderate heat-affected zone, as well as fewer burrs and defects
compared to long pulse lasers [46]. As illustrated in Figure 2d,e, the surface texture created
with short and ultra-short pulse lasers exhibits plateau-like surface patterns with fewer
bulges or rims than those made with long pulses (Figure 2f). In addition, differences in the
depths (fs > ns > ps) and widths (ns > fs > ps) can be noticed in Figure 2g–i. A short laser
pulse ablation is melt-free with a minimal thermal impact, no visible material pile-up, and
no convex shape on the ablation edge [41,42]. As a result, femtosecond pulses have more
advantageous effects on the HAZ compared to nanosecond, picosecond, and millisecond
pulses [37,38].

Nanosecond laser ablation was more effective for smooth ablation compared to fem-
tosecond, picosecond, and millisecond laser ablation [18,45,47]. This could be due to the
superior hardening effect of the nanosecond laser compared to femtosecond and picosec-
ond lasers, which can result in direct ablation and the removal of material (Figure 2a).
Nanosecond laser methods are cheaper and more efficient than picosecond and femtosec-
ond lasers and have great potential in large-scale industrial applications [48,49]. Unfor-
tunately, the drawbacks associated with the high-energy photons in nanosecond lasers
result in an expanded heat-affected zone with multiple defects and the production of
bulges [45] (Figure 2g), which lowers the surface quality significantly compared to pi-
cosecond (Figure 2h) and femtosecond lasers (Figure 2i) [40]. The pulse duration has a
significant impact on the laser–material interaction. Selection is based on the cost, the
required geometry, the substrate material, and the application. However, the effect of the
laser type on the surface can be controlled by adding a processing medium to reduce the
thermal damage and bulges on the material’s surface [19].

2.2. Laser Power Intensity and Scanning Speed

The machining process, the size of the crater, and the hardness of a material can
be enhanced by adjusting and controlling the laser power intensity with a direct effect
on tribological performances [38,39,50–53]. Liu et al. [51] used a laser power density
of 0.32 GW/cm2 on TC4, the treated surface that had the lowest COF and wear rate.
During laser processing, the fractures that separated cells in the cell-like surface texture
had regular edges. In another study, by changing the peak power and irradiation time,
various geometric characteristics were obtained, and the friction was reduced by more than
52% [38]. Laser powers with various pulse numbers can further enhance the inner and
outer sizes of the crater and contain wear debris, thereby keeping the surface clean. In
Figure 3a, the area of the crater increases with the increase in the laser fluence and number
of pulses.
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with permission from [50], copyright from Elsevier 2019; (b) impact of laser scanning speed on the
heat-affected zone, reprinted with permission from [54], copyright from Elsevier 2017; (c) cross-section
profile of a crater along a horizontal dashed line, reprinted with permission from [52], copyright from
Elsevier 2020; (d) SEM images of the irradiated silicone sample with N = 200 pulses at an energy
E = 7 µJ, in air, for two different pulse Repetition rate: (left) 1 kHz; (right) 200 kHz. The yellow
arrow in the left panel shows the direction of the laser beam polarization, reprinted with permission
from [55]. Copyright from Elsevier 2019.
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Scanning speed is another critical laser parameter for producing textures with irregu-
larities and can regulate the material removal and the depth [37]. Jia et al. [39] conducted a
study on the impact of the processing parameters on the hardness of textured 5A06 alu-
minum alloy. It was discovered that a low value of the scanning speed was most beneficial
for improving the hardness, followed by the pulse frequency. In addition, Salgero et al. [53]
produced various texture types of titanium Ti6Al4V by changing the energy density and the
scanning speed. Although both factors were shown to be advantageous, the scanning speed
outperformed the energy density, reducing the friction and wear volume by approximately
62% and 80%, respectively. Scanning speed was proven to improve the roughness, the
crater morphology, the HAZ, and the tribological performance at lower speeds [37,41,54].
In Figure 3b, the HAZ is shown to decrease dramatically as the laser spot scanning speed
increased. This is due to the reduction in the total heat energy and the energy at the
bottom of the pits. During the machining process, a relatively low scanning speed should
be employed in order to generate a hole with a comparatively small HAZ region, since
higher scanning speeds have a lower pulse overlap effect, which results in a lower material
removal rate.

2.3. Pulse Repetition Rate

Pulse repetition (high or low) has an impact on the material removal rate and the
generated crater morphology in laser ablation [47,52,55,56]. Allahyari et al. [52] investigated
the influence of the pulse repetition rate on the pit features in the range of 10 Hz to 200 Hz
with the fixed number of pulses at 100. The result showed that a high repetition rate led to
a reduction in the crater size and volume, with an increased crater volume (Figure 3c) [52].
An intriguing morphological divergence in the SEM images is shown in Figure 3d. In fact,
the crater formed at 200 kHz (right) is 25% smaller than the one formed at 1 kHz (left), and
nanoparticle debris can be seen covering the outer area near the shallow crater in both of
the following situations: the formation of supra-wavelength grooves in the central zone
of the relatively shallow groove for 1 kHz, and the formation of a channel of micro-sized,
spherically shaped, crochet-like structures in the central part of the hole for 200 kHz. These
nanoparticles are produced during the material degradation that occurs after the laser
ablation of the silicon substrate and the redeposition the material due to the high-pressure,
atmospheric ambient gas [55].

3. Effect of Geometric Characteristics of Textured Surfaces

The coefficient of friction (COF) is strongly influenced by the geometric characteristics
of surface texture, including: shape, size, area ratio, area density, orientation, arrangement,
and sliding direction. Some research works have carried out the geometric characteristics
shown in Table 2. In Section 3, we discuss the standard geometric parameters, as well as
the newest texture design, for a reduction in friction and wear.
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Table 2. Influence of various geometric characteristics on tribological properties.

Ref Geometric Characteristics Observation

shape Diameter (µm) Depth (µm) Area ratio Area density

The dimple contour profile appears to have an influence on the area density
(35%), as does the depth on the area ratio; the ellipsoidal shape provided the

highest LCC.[57]

spherical — — 0.0070 15%
ellipsoidal — — 0.0036, 0.0081 35%

circular — — 0.0035 15%
elliptical — — 0.0017, 0.0038 35%

triangular — — 0.0035 10%
chevron — — 0.0035 10%

[58]

circular 40–90 9.6 — 26%
The rectangular texture was discovered to have the highest LCC of all

the patterns.
rectangular 40–90 7.2 — 17%

square 40–90 7.2 — 20%
Triangular 40–90 9.6 — 21%

[59] Crosshatch groove
texture 5 10–100 0.0—5–0.125 20% The crosshatch angle and area ratio of the pattern appeared to be crucial to

obtaining the lowest COF

[60]

Overlap droplet +
parallelogram 9.5, 45 2.08, 0.90 — 5%–17.5% Both mixture and overlaps had an impact on the friction coefficient with up to an

80% reduction. The overlap with the 5% area density outperformed that of the
7% and the mixture.

Mixture droplet +
parallelogram 12.8, 45 2.26, 0.90 — 5%–17.5%

[61]

circular — 7.5–10 — 4%–9.5%
Elliptical dimples reduced friction by up to 20%, followed by circles, rectangles,
and diamonds. With a 0◦ orientation angle, the optimal area density was chosen

as 4%.

elliptical — 7.5–10 — 4%–9.5%
diamond — 7.5–10 — 4%–9.5%

rectangular — 7.5–10 — 4%–9.5%

[62] Linear groove 100 7–19 0.07, 0.19 10%
Grooves oriented between 0◦ and 90◦ to the sliding direction reduced friction by

44%. Grooves of 7-depth worked better at low pressure, reducing friction by
38.2%, while 19-depth grooves performed better at high pressure.

[63]
Spherical

Long drop spherical
Short drop spherical

900 60 — 7.5%–20% The lubrication regime was influenced positively by the dimple shapes with an
area density of less than 20%. The long drop and the spherical oil pocket

outperformed the short drop.
500 55 — 7.5%–20%
800 60 — 10%–20%
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Table 2. Cont.

Ref Geometric Characteristics Observation

[64]
Circular + elliptical 300 6.5 — 12%, 20% Multi-shape patterns with an area density of less than 20% reduced the COF

under prolonged sliding situations, thereby maintaining the surface quality.Circular + square 500, 250 6.5 — 12%, 20%
Circular + triangular 500, 250 6.5 — 12%, 20%

[65]
Grid groove — — — — The COFs of the grid, asterisk, and circle’s groove patterns decreased by 10.55%,

6.03%, and 9.50%, respectively, while their wear rates increased by 47.05%,
41.48%, and 27.21%, respectively, when compared to the smooth surface.

Circle groove — — — —
Asterix groove — — — —

—: Not reported.
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3.1. Effect of the Texture Shape

Texture pit is characterized by an upper shape and a bottom shape. The upper shape can
have various morphologies, including concave (Figure 4a) and convex textures [58,61,66,67]
(Figure 4b). Hemisphere dimples and grooves are the first standard concave and convex
texture pattern ever created.

Many studies have been conducted regarding the standard design used in surface
texture technology, with relatively great tribological performances [29,57,61,63,65]. Ac-
cording to Boidi et al. [3], a hemisphere dimple can reduce friction by up to 20% and
promote hydrodynamic lubrication at a specific low speed, whereas grooves exhibited little
advantageous or negative effect on the COF [67]. However, in another study, the groove
texture’s tribological properties outperformed round and other shapes [41]. The geometry,
the operating conditions, and the application of these two types of texture, as well as the
lubrication regime, may all contribute to this difference. For face milling applications [67],
fluid from the end of the groove that reaches the tool–chip contact area can lead to higher
lubricity than in closed shapes, but the groove’s open geometry does not keep the lubricant
in a circular shape, which is excellent for lubricant storage under solid cutting conditions.
The circular shape performs better than grooves in compressive lubricants. Nevertheless,
the size of concave textures might cause them to lose their effectiveness.

Some scientists have developed non-standard shapes, as illustrated in Figure 4c,
to counter the standard texture limitations. Many numerical studies [28,68–71] were
conducted focusing on the SQP (sequential quadratic programming) algorithm. When
comparing the convex textures of grooved designs’ shapes, such as herringbone, sinusoidal,
and taper-flat, the taper-flat shape provided a better pressure distribution, load bearing
capacity (LCC), and radial stiffness than other patterns [28]. In addition, Maldonado-Cortes
et al. [67] found that the ‘’S” groove’s geometry exceeds the overall performances over
the other shapes. Furthermore, by varying the crosshatch angle and size, the grooved
crosshatched designs were able to reach considerable friction improvements [59]. In
addition, the GA-SQP (genetic algorithm–sequential quadratic programming) method has
been used for the optimization of V shape, thereby improving the LCC and leakage with
an ultra-low COF under specific situations [68–71]. Similarly, for a concave texture, using
a genetic algorithm (GA), Zhang et al. [66] created a bullet and fish-like texture pattern
for unidirectional movement. The bullet and fish forms were found to have lower friction
coefficients than circular dimples, both numerically and experimentally. However, the
optimized shape has no advantage over a round pit texture under low speed and severe
load. From the aforementioned literature, it can clearly be seen that irregular shapes have a
greater effect on tribological performances than standard concave and convex textures.

Nevertheless, to ensure the lubricant supply at the interface and the wear debris
storage, the internal structure of the texture is of the utmost importance. A flat bottom is
commonly used in surface texture, and its ability to lower the friction coefficient at high
speeds or under heavy loads has been demonstrated. However, flat bottom profiles, such
as wedge-shapes, can enhance the load-carrying capacity and, thus, increase the friction
performance [69]. Shen et al. [72] looked at the effect of the internal structure of dimples
on hydrodynamic lubrication by comparing three bottom shapes, including: rectangular,
oblique triangular, and isosceles triangular. Their findings demonstrated that cylindrical
dimples with a rectangular cross-sectional form had a significant impact on the LCC. The
ability of the internal structure for lubricant storage and release might be the reason for
these positive benefits. However, under some working conditions, such as Hertzian contact,
starvation of the mating surface, or an inadequate lubricant supply on the interface, result
in high friction [73].

Combining a variety of texture types is essential for enhancing the lubrication proper-
ties; since different textures have distinct effects, a combination will further enhance the
tribological behavior [60,64]. A multi-layer textured surface might improve the lubricant
storage and effectively capture wear debris. Combinations, such as rectangular–spherical
and rectangular–rectangular dimples [69] or circular dimples–ellipses [74], were demon-
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strated to speed up transitions between lubrication regimes as well as enhance the LCC and
the COF, as compared to a single texture type. Mixing concave and convex textures might
be a way to give the resulted texture additional features. Segu et al. [75] recently developed
a combined texture made by a circular dimple and a wavy groove, resulting in an improved
friction coefficient. These beneficial effects might be explained by the largest combined
converging wedge and the smallest separation, which were triggered by different texture
shapes and act as oil reservoirs. However, the texture size is crucial to maximizing the
effect of a compound pattern, since a deep pattern can store lubricant efficiently, while a
wide design can trap debris, leading to a longer oil lifetime [76].

Numerous new texture surface designs with better tribological performances than
traditional textures were proposed with a self-lubricant supply system on the contacting
surface. By using a biomimetic approach, Zhao et al. [77] produced a self-replenishing
lubricating system inspired by earthworms for adaptive friction-reduction and antifouling
surfaces. The system was able to secrete oil on the surface layer when pressure was applied,
and, after unloading, the droplets and boundary were restored. The friction coefficient and
wear resistance were both significantly reduced by the design. In addition, Wang et al. [78]
reported a novel texture design with pockets for improving the tribological properties of
point contact under starved lubrication to deal with the lubricant supply and the surface
contact stress (Figure 4d). The design worked as a lubricant storage (Figure 4e) and release
system (Figure 4f), as well as a surface contact pressure homogenizer. The textured sample
ensured a COF reduction of approximately 40%. It may be deduced from the discussion
above that the influence of surface texture shape on the tribological performance is not
dependent on a single parameter.
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3.2. Effect of the Texture Size

The texture size (depth and diameter) has a considerable effect on the tribological
properties by storing the lubricants, trapping wear debris, avoiding the oil layer rupture,
and enhancing the load bearing capacity [75]. The impact of groove size on the enhancement
of tribological properties under sand–oil lubrication was explored by Dongya et al. [66]. It
was discovered that the width could contain wear debris in the hole, thereby preventing
sand migration on the sliding contact and lowering friction and wear. Nevertheless, the
wear increases with the pattern size. In general, increasing a dimple’s diameter means
more hydrodynamic effect to reduce contact between the mating surfaces. However, when
the diameter is larger than the contact width, the interference of a nearby pressure peak
and the pressure trough of two adjoining textures may reduce the hydrodynamic effect.
Nevertheless, oil is trapped as the depth increases, and the lubrication mechanism can
shift from boundary to starved lubrication leading to higher friction and wear [41,61]. In
that view, shallow and small circularly patterned dimples had a more noticeable effect
on the hydrodynamic pressure, thus the friction reduction. The performance of dimple
size also depends on the lubrication regime. In boundary lubrication, the highest friction
reduction effect is generated for all of the dimpled surfaces, potentially due to the secondary
lubrication. In EHL (electrohydrodynamic lubrication) contact, shallow dimples resulted
in enhanced film thickness, but deep dimples resulted in film collapse [62]. When the
optimum tribological performance is required, the influence of depth is preferable to the
diameter [73]. However, the surface texture is gradually removed with wear, when the
depth is small, which may cause the friction to increase again [74].

3.3. Effect of Area Density and Area Ratio

Many studies [61,67,74,79–82] have investigated the influence of the texture–area ratio
and area density with the optimal choice ranging from 5% to 20% for the area density and
smaller than 1 for the area ratio to enhance the LCC and friction coefficient. Ding et al. [61]
found that an area density of 4% is advantageous for friction reduction on cast iron.
Additionally, some previous research found a 16% area density to be optimum for lowering
the COF and wear [67]. On the other hand, a dimple area ratio of 0.1 µm and a dimple area
density of 20% reduced the friction by 40% [74]. The load bearing capability of the surface
texture decreases as the area density rises, lowering the tribological features [61]. Recently,
four different densities of 10%, 15%, 20%, and 25% with corresponding aspect ratios of
0.16 and 10% (texture 1), 0.16 and 15% (texture 2), 0.16 and 20% (texture 3), 0.16 and 25%
(texture 4), and 0.08 and 10% (texture 5) were investigated [75]. The reference sample T6
and the simple texture samples T7 (circles/dimples) and T8 (sine wave channels) were also
tested and compared. The best tribological performance was performed by texture 1 for a
10%–15% area density and a 0.16 area ratio.

3.4. Effect of Texture Arrangement, Orientation, and Sliding Direction

The texture is arranged and distributed on the surface in a multitude of ways. The
most common texture arrangements used in current research are square, staggered, and
radiating lattices. The texture arrangements had a substantial impact on the LCC, hydrody-
namic pressure, and many other properties [62–82]. Hua et al. [83] arranged square and
staggered patterns on the surface of a DF2 utility knife. The staggered texture had a better
lubricating effect. In addition, Zhang et al. [25] compared two texture arrangements: the
square and the linear radiating arrays. The results proved that the square texture had a su-
perior friction performance. Later, they proposed a texture distribution based on a genetic
algorithm. They discovered that asymmetric triangular/trapezoid texture distributions
had a comparatively high bearing load and low friction [79]. Therefore, it can be seen from
the above literature that the traditional arrangement had less effect than the non-standard
arrangements. Furthermore, Ren et al. [84] investigated fishbone, sine, triangle, and honey-
comb texture arrangements. Short groove textures with low area ratio sine arrangements
improved the hydrodynamic pressure. At this time, the texture arrangement design study
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has not reached a common result. Each study emphasizes different organizational forms
and criteria, and there are few parameters that describe and characterize texture arrange-
ment. While most researchers have focused on the texture arrangement, some studies have
paid attention to the texture orientation’s impact on the tribological performance.

The texture orientation can improve the hydrodynamic effect, raising the open force
and minimizing the outflow [28,62]. Leakage is minimized when the texture is positioned
at 0◦ and 90◦ in the flow direction but with a minimal effect on the hydrodynamic pressure.
However, for a 40◦–70◦ orientation, there is a significant improvement in the load capacity,
but the leakage remains high. Ding et al. [61] obtained an inclination angle of 0◦ of the
elliptical dimples, which gives a lower friction coefficient, thereby enabling a stronger
hydrodynamic effect. On the other hand, 60◦ was found to be the orientation with the
maximum wear reduction [79]. A specific orientation of the texture can then result in a
minimum contact area, thus improving the tribological behavior.

The effect of the arrangements can be improved further with the sliding direction.
Some scientists [11,68,75], found that dimples with a distribution perpendicular to the
reciprocating motion resulted in the production of a thicker film and a lower friction
than those parallel to the sliding direction. In addition, for texture shapes such as the
triangle or chevron, the orientation of the patterns to the sliding direction was significant
in decreasing the friction when the side border perpendicular to the sliding motion first
approached the region of contact [11]. However, the effect of the sliding direction on
orientations may change [75]. Perpendicular grooves do not provide substantial tribological
enhancements due to their huge transversal dimensions, and, when compared to untextured
surfaces, parallel grooves reduced the performance of curved surfaces by increasing contact
of the surfaces and the friction [3]. The reason might be that the similar orientation
of the grooves to the sliding speed promotes lubricant flow inside the pattern, thereby
preventing a pressure build-up of the local lubricant. For a chevron parallel to the sliding
direction, a smaller angle of a chevron vertex between the chevron’s arms can improve
tribological behavior [11]. As a result, tribological properties may be highly sensitive to
the geometric shape (concave or convex) and sliding conditions and, therefore, require
more investigations.

4. Laser Surface Texture Processing Medium

The target material is melted, and its structure is altered during laser ablation in air.
Material removal from the surface is related to the type of laser pulse parameters, as well
as the material’s thermal and optical properties [49,85–87]. The material ejected from the
target surface forms a plasma plume, which expands and exits the target surface, producing
a pressure wave that travels through the material’s surface. The ejected material can
redeposit on the surface, creating burrs and reducing the ablation efficiency. The hardness
of these burrs or oxides is often higher than the original material’s due to the oxidation
effect, and elimination of these burrs is crucial for an optimum tribological behavior [41,85].

The physical, chemical, sand-blasting, acid, etching, and electropolishing burrs re-
moval has been investigated. Although these methods provide positive outcomes, the
substrate material is likely to be damaged, and the dimple size is likely to be affected.
Using a liquid or gas is a great solution for improving ablation by reducing the thermal
effect, burrs, and microcracks, as well as for maintaining the cleanliness of the mating
surface [36,49,88]. Table 3 shows a synopsis of the studies on various ablation media.
Processing media, such as liquids, gases, and others, will be reviewed in Section 4.
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Table 3. Some studies on water ablation processing.

Materials Processing Environment Findings Ref

Ti6Al4V Air and water Underwater ablation produced a better upper and bottom
shape with an efficient control of laser parameters. [89]

Crystalline Silicon Air and water The roughness of the textured surfaces was 7.2 µm in air and
5.5 µm in water. [90]

Aluminum Air and distilled water Obvious bubble formation in water that led to control of the
ablation rate. [85]

— Air and water
In water, there was an improvement in laser energy coupling to

the target surface and more energy was delivered to the
cavity’s sidewalls.

[91]

Titanium Flowing water A uniform feature was achieved by combining a high laser
pulse frequency with a large water flow speed. [19]

Bone Tissue Underwater The bubble’s hydrokinetic forces helped to reduce heat damage
and improved the crater’s geometry. [92]

LCD glass, Alumina
Air and water

In comparison to air, underwater processing reduced
microcracking and the heat-affected zone by the synergistic use

of laser power and pulse repetition rate.

[93]

Stainless Steel [94]

Ti6Al4V Ethanol, saturated, sodium
bicarbonate

The water contact angle and the rolling angle in the ethanol
medium were 54.9◦ and 9.8◦. Furthermore, the textured surface

in the saturated sodium bicarbonate solution exhibited
excellent water adhesion.

[49]

Al-Li Alloys Argon or air
The cut-edge surfaces of air were gritty, and dross was visible at

the bottom. Using argon, grooves were produced, and the
range of cutting speeds was discovered with no dross.

[95]

Aluminum Underwater The drilling was most enhanced for a 3-mm thick water layer. [87]

—: Not reported.

4.1. Pulse Laser Ablation Processing with Liquids

In order to overcome the drawbacks of laser ablation in the air, a solution was de-
veloped that included underwater ablation or water-assisted subtractive machining pro-
cesses using the liquid layer, water droplet, and moving water approaches, as shown
in Figure 5 [85–87,89,90,94,96]. Underwater processing is superior to in-air processing
(Figure 6a) and helps to avoid the re-deposition of debris due to the flowing effect of
water [91]. Metal melting and vaporization are reduced, and particle re-deposition are
stopped, as seen in Figure 6b. However, as seen in Figure 6d, divergent refraction of the
laser beam can reduce the size of the resultant hole.

Wee et al. [97] used a laser to target a silicon substrate under air and water. Water as
a processing medium minimized spatters and reduced tapers with fewer nanoparticles
and no cauliflower formation on the surface. In addition, using a flowing water system,
Feng et al. [98] investigated multi-scan ablation for deep pattern construction on copper.
They found that water reduced the heat-affected zone, and a continuous flow of water
during the processing dissipated excess heat, particles, and bubbles more effectively than
stagnant water. Water processing has the advantage of reducing burrs and improving the
morphology of the crater as compared to laser ablation in air [89,93,99]. In Figure 7, the
surface morphologies of the SiC ceramic microgrooves machined using air and water are
illustrated. Undesirable effects, such as splash and debris residue on the kerf, emerged
during air processing (Figure 7a), while, in water, a smooth surface of the microgrooves
was obtained (Figure 7c), with essentially no deposited debris or recast layer. This is due to
the optical breakdown that happens in water, resulting in vaporization, expansion, plasma
shock wave, and gas bubbles that efficiently take away the accumulated debris [85,87,92,96].
However, when a liquid, such as oil, is vaporized, the resultant shockwave compresses
the ablated molten metal targeted by the pulse, and the evaporation of the oil creates the
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two aspects of gas (bubbles) and liquid, which can result in an unbalanced power intensity
of the laser spot and a lower processing efficiency [88].
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Despite the positive benefits of underwater processing, including a uniform bottom
profile [96], the effectiveness of water irradiation is less than that of air, since the targeted
depth requires more repetitive scans [89]. In fact, while processing in water, a reduction in
depth (Figure 7d) compared with the irradiation in air (Figure 7b) is noticed because of the
water layer that limits the direct interaction of the laser with the surface. The crater size
during underwater processing could be improved with proper selection of the water’s film
thickness, which is still challenging to define [87]. The change in the focal spot, induced by
refraction (Figure 6c,d), can improve the width size but reduces the depth size (Figure 7d).

Laser parameters, including laser energy, laser frequency, the scanning speed, and
the number of scans, have a substantial effect on the crater size [100,101]. The depth of
the microgroove increased with a frequency between 10 and 50 kHz and a pulse energy
of 25 µJ saturated, as shown in Figure 6f, and decreased at a 55 µJ pulse energy or a
100 kHz frequency. With 25 µJ, the width increased at 10 and 25 kHz, and then decreased
at 55 and 100 kHz. The growing trend was slightly below 55 µJ, as seen in Figure 6g. The
microgroove’s depth grows quickly as the pulse energy increases, yet the microgroove’s
depth fluctuation becomes bigger. Due to the nonlinear impact of underwater laser process-
ing, the microgroove’s width increased with a pulse energy below 55 µJ and subsequently
decreased with a pulse energy between 55 and 75 µJ. Figure 6h shows that when the num-
ber of scans increases, the microgroove’s depth decreases. The width of the microgroove
improves with the scanning number and speed. The laser parameters have an impact on the
bubbles generated during processing, as illustrated in Figure 7e. When the conditions were
a low pulse energy (15 µJ), low frequency (10 kHz), and low scanning speed (0.5 mm/s),
disturbance-free removal was achieved. The gas bubbles were tiny and quickly evaporated
at low values with no negative effect on the machining area. The gas bubbles moved in the
opposite direction of the water. It was possible for the debris to be taken away, keeping the
surface smooth. However, at a high frequency (50 kHz), laser energy (75 µJ), and scanning
speed (7 mm/s), the phenomenon of a gas bubble explosion occurred, and the gas bubble
clusters emerged abruptly, causing uncontrollable reflection, refraction, and scattering of
the laser beam, changing the position and intensity of the beam, and, potentially, leading
to a poorly finished surface and defects. The pulse frequency, energy, and scanning speed
should be less than 50 kHz, 75 µJ, and 7 mm/s, respectively.

Oil has a stronger thermal resistance than water, and alcohol has a lower collapse
limit than water, which could counter water’s limitations as a medium [49,100,102,103].
Zhang et al. [88] used the oil processing medium to improve the processing quality and
tribological properties of textured surfaces. Oil with a 0.28 mm thickness exhibited a
remarkable cooling effect, preventing hot oxides from sticking to friction pairs. A thick oil
film has a detrimental effect on crater size and generated burrs (Figure 6e). Furthermore,
using a volatile solvent, such as ethanol or methanol, as a processing medium, improved the
machining process by promoting burr-free holes, fewer cracks, no thermal damage, and a
uniform shape with relatively quick evaporation of the alcohol. Ouyang et al. compared air,
isopropanol, distilled water, and glycerin laser processing of Al and Ti alloys under ambient
conditions [104]. The surface morphologies of the holes generated in glycerin were smooth
with fewer burrs than those created in liquids because of its high viscosity. Furthermore,
the density, thermal conductance, and acoustic impedance of the fluid medium affect the
laser ablation efficiency. However, for laser ablation, additional liquid solutions, such as
KOH, shielding oil, or grease, which have excellent oxygen-retardant qualities, might be
used to improve ablation efficiency.

4.2. Pulse Laser Ablation Processing with Gases

Although liquid-assisted laser machining gives great results, it is not always effective
because of the light absorption and scattering in liquids that are greater than in gases
and some phenomena, including corrosion/oxidation, contamination of the workpiece
with carbon, the collapse of bubbles, and defects [103]. It is then important to consider
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gas-assisted laser ablation. Gases can act as oxidation retardants and can enhance the melt
expulsion, spattering, and ejection of the molten material (Figure 8a–d) [95,105–107].
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Riveiro et al. [108] looked into the influence of an oxygen and nitrogen assist gas on
the laser cutting of an Al-Cu alloy. Argon (Ar) was found to be the optimum candidate
for a cutting-assistance gas. However, oxygen also proved to have a very great impact on
the laser ablation performance (Figure 8e). In Figure 8a, with the oxygen assist gas, more
material was ejected in the form of fragmented particles, and the vapor expulsion increased,
resulting in few burrs on the surface. In addition, the image in Figure 8f showed that
ablation with oxygen led to a smaller burr height compared to the other three assist gases.
Oxygen and argon can then be employed in combination to speed up material removal at
lower costs and to improve the textured surface quality and mechanical properties.

Recently, Xing et al. [36] compared three gases: argon, compressed air, and oxygen.
It was observed that, despite argon’s superior depth performance in the re-melted layer
hardness, the usage of oxygen or compressed air showed a better laser ablation performance.
Figure 8a,c clearly show the superiority of the ablation performance using oxygen and
compressed air, respectively, over argon (Figure 8b) and nitrogen (Figure 8d). Furthermore,
the region in which the ablated material re-deposits and the color of the re-deposit material
are diverse when comparing the images in Figure 8b,d. It is gray for argon, while it
is gray to black for nitrogen. Nitrogen has a bigger area of re-deposited material than
argon. Exothermal chemical reactions on the material’s surface decreased when gases or
compressed air were used. As a result, the desired surface features were achieved.

However, ablation with an assist gas might occasionally result in poor stability. Thus,
it is necessary to add another element that, in addition to the greater effect on gas flow,
can also provide stability. Wang et al. [105] used an external longitudinal magnetic field to
confine and guide laser-induced plasma by vertical squeezing and horizontal stretching.
A greater longitudinal magnetic field proved useful for plasma confinement and guiding.
Laser ablation using a gas medium is still not well investigated and requires a further study.
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5. Effect of Surface Texture on Lubricated Condition

Different lift-generating processes are used to lubricate flat textured surfaces. However,
the sliding pair’s operating the parameters depend on parameters such as the load and
sliding frequency [109]. The mechanical pair is in a state of boundary lubrication when
the sliding speed is low with a high load, which creates a monolayer of lubricant that
covers the interacting surfaces [110] with contact asperities that increase the friction. For
mixed lubrication (1 < λ < 3), the film thickness can support the load and reduce the contact
asperity. Surface texture can generate microfluidic dynamic pressure, improve the contact
state of the asperities, collect debris and lubricant, and reduce abrasive and adhesive
wear [41,111]. In the hydrodynamic lubrication (λ > 3), the speed of pairs relative to the
movement continues to increase. At this point, the texture under hydrodynamic pressure
can fully support the load [112]. However, the potential of the oil pocket to store and release
lubricants is the mechanism behind the improved tribological performance of the surface
texture in a lubricated state. A surface texture’s geometric features may be crucial for
storing and releasing lubricants at different loads and sliding speeds [11,67,74,75,113–116].
As illustrated in Figure 9a, when compared to non-dimpled surfaces, the friction coefficient
of the dimpled surfaces is reduced with higher loads and sliding speeds. In Figure 9b,
under a low contact pressure, the circle exhibited the lowest COF, compared to that of the
“S” shape and others. Under a higher contact pressure, the grooved texture (line and “S”
shape) exhibited the lowest COF. However, traditional lubricants, particularly oils, are
formed from natural hydrocarbon components and have a low thermal balance. They
also deteriorate in hostile conditions, and, during operation, oil moves outside the friction
interface. It is vital to replenish the lubricant in such a situation.

Liquid metal (LM) lubricants [81,117–119], nanoparticle oil lubricants [119–123], solid
lubricants [32,124–131], and water lubricants [41,76,132–134] have all recently exhibited fas-
cinating behavior in overcoming the traditional oil lubricants’ limitations. The mechanisms
of these lubricants can be shown in Figure 10. The lubrication mechanism of LM has been
attributed to its interaction with the atmosphere [119–135], which results in the production
of an oxide film in aerobic and of an adhesive film in anaerobic conditions (Figure 10). Liq-
uid metal converting to a paste might easily adhere to the contact zone during the process,
thereby lowering the COF and wear resistance. Liquid metal can act like a coating layer,
protecting the mating surfaces from excessive wear. The wear scar in Figure 9c showed a
very smooth surface with few wear debris, and the EDS in Figure 9d revealed a very strong
concentration of Ga on the surface, showing LM adhesion on the tribo pair. Nanoparticles
acting abrasively can support the load of the mating surface and transfer a tribo-film layer
onto the mating surfaces in extreme conditions. The same mechanism can be attributed to
solid lubricants, where a tiny lubricant layer can be formed at the interface; in addition, the
release of the texture lubricant onto the contact surface improves the tribological behavior.
As seen in Figure 11a, the average friction of the patterned samples burnished with CaF2
or h-BN solid lubricants resulted in a high friction coefficient, compared to that of WS2 or
graphite solid lubricants for which it was relatively low. A similar result can be seen on the
wear resistance (Figure 11b). The reason might be the ability of the solid lubricant to stick
to and transfer a tribo-film onto the contact surface. Furthermore, the presence of water on
a surface covered by textures could easily capture wear debris or chase the debris away
from the contact area, with the water layer keeping the surface clean, supporting the load
(Figure 11c) at a sufficient quantity, and decreasing the friction and wear.
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However, these new lubricants might be enhanced further with the use of additives.
When coupled with the h-BN nano-additive [119], the tribological behavior of the LM
lubrication yields extremely excellent tribological behavior under an extreme applied load,
as seen in Figure 9e. In addition, for oil additives, Qi et al. [136] examined the synergistic
lubricating impact of antioxidants and low-content ZDDP. According to the results, 2,6-Di-
tert-butyl-4-methylphenol (BHT) antioxidant may increase ZDDP’s anti-wear performance
and the grease’s anti-wear performance. However, the use of this low content ZDDP has
not been tested on surface texture and might be beneficial for further enhancement of
tribological properties. In addition, the h-BN nanosheet can be considered as a candidate
for enhancing the friction and wear resistance, since it can readily shear at contact surfaces
with the aid of its multi-layer crystal structure, which is comparable to graphene [119].
Furthermore, Fu et al. [125] focused on a modified WS2 solid lubricant hot-pressed in
texture. According to the results, the synergistic action of the textures and lubricant offered
excellent anti-friction and anti-adhesion properties with a WS2 release rate decreased by
102.2% by employing a silane coupling agent. More recently, Li et al. [137] has created
a GuGa2 coating on copper-based materials, that utilizes the variation of gallium liquid
metal surface tension. During the sliding process, the GuGa2 grains tended to compress
smoothly and were capable of creating scratched tribo-film. Subsequently, on the worn
surface, gallium, indium, and oxides helped reduce the friction and wear. As illustrated in
Figure 11d, the synergistic influence of the 3-APS (3-aminopropyltriethoxysilane) treated
in water lubricant and the surface texture further decreased the wear compared to the
untextured and textured without 3-APS [138,139]. These newest lubricants and additives
have shown tremendously positive results in enhancing the tribological performance.
However, many of these lubricants have yet to be tested on surface texture. Table 4
demonstrates how different lubricants affect surface texture.
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Figure 11. (a) COF and (b) wear rate of patterned surfaces burnished with CaF2, h-BN, WS2, and
graphite solid lubricants, reprinted with permission from [127], copyright from Elsevier 2019; (c) Crit-
ical load of non-textured and textured samples, reprinted with permission from [132], copyright from
Elsevier, 2006; (d) wear rates of different Al-bronze surfaces, reprinted with permission from [139],
copyright from Elsevier, 2020.

Table 4. Effects of various lubricants on surface texture.

Type of Lubricants Surface Texture Observation Ref

Water, oil Micro grids
Friction was reduced by up to 27.64% for water lubrication compared

to oil lubrication. Wear was reduced by up to 88.39% compared to
water lubrication.

[41]

Water Elliptical and groove
textures The groove surface texture exhibited lower friction and wear. [99]

Graphene or MoS2
solid lubricant Cross groove For 18 and 40% area densities, graphene had a longer lifetime

than MoS2. [128]

DLC coating Dimple Patterned chambers and the DLC covering increased the peak energy
by approximately 5.8%. [126]

ZDDP, DDP
lubricants additives — It was found that under all conditions, the performance of ZDDP as

an anti-wear film was superior to that of DDP. [129]

Paraffin oil Micro-grooved
crosshatch

It has been discovered that each texture’s geometric parameter had
an effect on friction. [59]

Polyalphaolefin
(PAO) Dimple The best dimple arrangement was hexagonal with a 10% area density

and a 0.1 area ratio. [82]

ZDDP Dimple, cross
The cross patterns reduced the wear loss by two orders of magnitude

via lubricant storage in the textured pockets and anti-wear
tribo-film formation.

[110,130]
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Table 4. Cont.

Type of Lubricants Surface Texture Observation Ref

h-BN — An h-BN lamellae tribo-chemical thin layer on contact surfaces
decreased friction and protected the contact interface. [122,123]

MoS2 Multi-dimple pattern The dimple combined with MoS2 increased tribological performance
for most applied loads. [131]

Sn-Ag-Cu Groove The groove-textured surfaces with 20 and 25% area densities filled
with Sn-Ag-Cu solid lubricant had the lowest friction. [124]

Seawater lubrication Hemispherical,
triangular, elliptical

The ellipsoidal pits had the highest frictional performance, followed
by triangular pits; hemispherical pits had the poorest

frictional performance.
[133]

Liquid metal droplet
wrapped in chitosan
(NLMWC) in water

— NLMWC added in water reduced the friction and wear rate by 40%
and 69%, respectively. [134]

—: Not reported.

6. Application of Surface Texturing

Surface texturing has been widely used in a variety of elements, such as automobile
engines; cutting tools; biomedical applications, including hip joint replacements and dental
implants; etc., as shown in Figure 12. The application of surface textures will be reviewed
in Section 6 in association to superhydrophobic surfaces as well as anti-drag and vibration
and noise control in mechanical equipment.
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6.1. Surface Texture for Superhydrophobic Surfaces

Laser surface texturing using nanosecond, picosecond, and femtosecond laser tech-
niques has been previously shown to be effective for the creation of superhydrophobic (SH)
surfaces in various kinds of materials [48]. Superhydrophobic surfaces have outstanding
water resistance characteristics and are non-wetting, anti-icing, dust/mud self-cleaning,
and corrosion resistant [140] due to a contact angle greater than 150◦. The nanosecond laser
is the most commonly used technique to create superhydrophobic surfaces because of its
efficient and less expensive procedure that can process data significantly faster, turning
the surface from hydrophobic to superhydrophobic when exposed to ambient circum-
stances [141–143]. However, the fabrication of a durable and repairable superhydrophobic
surface often requires additional chemical treatment. Ma et al. [48] used the nanosecond
laser to fabricate a succession of circle-shaped texture patterns with various pitches over
diameter values (p/d). The hydrophobicity was obtained not only after additional chemical
modification but also with the p/d value. In addition, Wang et al. [49] obtained a contact
angle of 154,9◦ with ethanol solution, indicating that the surface was SH, followed by the
bicarbonate solution. Even after ambient air exposure, the superhydrophobicity persisted.

SH surfaces require an adequate surface morphology; it is vital to control the surface
topology. Authors have been frequently inspired by nature while creating such surfaces.
Fabricating a superhydrophobic surface on metal materials, inspired by lotus leaves, of-
fers a lot of potential for corrosion prevention [144,145]. Surface texture is an efficient
way to create superhydrophobic surfaces, although chemical treatments to increase the
superhydrophobicity and anti-fouling performances of textured surfaces are becoming
increasingly common.

6.2. Surface Texture for Anti-Drag Application

The notion of resistance has caused a great impact on human life, using a lot of energy
and resources in various applications, including ship navigation, water transportation,
oil and gas pipelines, and microfluidic channels [146]. A reduced resistance can aid in
increasing cruising speed and lowering fuel consumption [147,148]. Anti-drag surfaces are
an excellent approach for reducing the resistance force between liquid and solid surfaces es-
pecially for superhydrophobic surfaces. Shark skin, dolphin skin, penguin feather-induced
microbubbles, the “lotus effect” superhydrophobic, and the pitcher plant-inspired slippery
drag reduction are just a few of the studies that have been done to solve the problem using
a biomimetic approach [149]. However, shark skin is one of the biomimetic approaches
with the most significant improvements, especially to turbulent flow. Many approaches
have been used to mimic the shark skin riblet structure for drag reduction, including LST
and 3D printing, with incredible results [149–152]. Controlling the geometric characteristics
of patterns has a significant influence on a surface’s anti-drag properties [150–153]. Hy-
drophobic surfaces offer a lot of potential for reducing surface drag, especially in laminar
flow [146]. Although numerical and experimental studies on anti-drag surfaces have been
conducted, some limitations remain to be addressed, such as the use of a complete structure
for an analysis of the drag reduction performance, superhydrophobic surfaces that can
withstand high pressure, and in vivo methods for exploring the underlying mechanisms.

6.3. Surface Texture for Vibration and Noise in Mechanical Equipment

Noise at a low frequency (0–500 Hz) and noise at a high frequency (500–18,000 Hz) are
two types of noise produced by friction, and these are directly caused by factors such as
load, velocity, and shape of the surface [154]. Surface texture can be regarded as a potential
solution to the problem of friction-induced noise, as vibrations and noises induced by
friction are mostly determined by the contact state. The groove surface texture, for example,
may effectively modify the interface’s contact state and interrupt the persistence of friction,
thereby reducing and suppressing self-excited noise and vibration during the friction
operation [154–156].
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In order to get the best results, the oil pockets’ design is of the utmost importance. By
manipulating the geometric parameters of surface texture, vibration and noise can be sus-
pended. Furthermore, several studies have demonstrated that lubricants can diminish the
discontinuous contact state on the surface, thereby reducing the contact stress and strength-
ening the noise reduction effect. In this regard, the novel trend of combining textural and
solid lubricants has recently showed tremendous promise [154,155,157,158]. Xue et al. [155]
combined groove patterns and Sn–Ag–Cu solid lubricants. Friction leading to noise and
vibration was suppressed with the formation of a CASs profile with visible wrinkles.

7. Conclusions and Outcomes

In the present review, the laser’s interaction with the material, the texture’s design
characteristics, the processing media’s influence on the ablation efficiency, and the operating
parameters’ impact on lubrication, as well as the optimized lubrication mechanism of some
potential lubricants, were presented. From the discussion above, some conclusions can
be drawn:

1. Depending on the material and the machining instrument, different pulse durations
(ns, fs, and ps) have different effects. The ablation of 50CrMo4 steel required 1.5 W
for the fs laser, 13.5 W for the ps laser, and >90 W for the ns laser. For silicon nitride,
1 W was required for the ps laser, with a maximum of 3 and 1.6 W for the ns laser.
A lower pulse power lowered the HAZ and created burrs in both situations. Short and
ultra-short lasers can withstand a high laser power while causing less heat damage
and defects.

2. Low scanning speeds (less than 10 mm/s) provide high-quality surface textures in a
wide range of materials, but high scanning speeds may result in smaller widths and
deeper depths. A high repetition rate could reduce the size and volume of craters.

3. Using an assist processing medium, such as a liquid or gas, can enhance crater
structure, eliminate microcracks and debris redeposition, and reduce HAZ. The ac-
cumulation of fatigue on the target surface can be caused by ionization of water,
recurrent high pressure, and thermal stress. The laser-induced gas bubble might
scatter the laser beam, compromising the treated surface’s accuracy. Alcohol solution,
KOH, or a shielding oil can be used to avoid gas bubbles and oxidation, thereby
improving the surface’s finish. There are few investigations of laser ablation with a
gas medium; this might be a future study subject.

4. The texture characteristics have an indisputable effect on the tribological performance
of mechanical equipment. The area density and area ratio are critical characteristics
that have a significant impact on the tribological performance, with the area density
affecting the performance in the range of 5%–20% and the area ratio less than 1. The
design parameters should be carefully selected to ensure the generation of a thick
lubricating film, lubricant storage, release, and a self-lubricating system.

5. Oil lubricant is made of natural hydrocarbon elements that have low thermal stability,
degrade quickly, and can move outside the friction contact when subjected to higher
loads and sliding frequencies. The introduction of new lubricants provides a clear
mechanism for the friction and wear reduction in extreme conditions. Furthermore,
the synergistic usage of the surface texture and coating in the case of solid lubricants
can increase the tribological behavior.

Despite LST’s rapid advancement, there are presently no guidelines or criteria for
controlling the design of surface textures, particularly for real-world applications, because
of the additional manufacturing steps and costs to the industry. The trial-and-error method
is still the most popular, although it has limitations with regard to texturing performance.
Furthermore, no appropriate theoretical model for predicting the experimental tests has
been found. As a result, a future focus could be on numerical approaches, such as machine
learning. Indeed, the large number of studies on surface texture can help in the develop-
ment of a predictive model that uses artificial intelligence to predict the impact of laser
parameters, texture designs, and lubricants on tribological properties, allowing for the
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selection of the best texture layout and working conditions prior to the manufacturing
process. Furthermore, self-lubricating devices might be seen as an innovative way to
improve the tribological performances of mechanical equipment. This review can serve as
a reference for current investigations and future perspectives on LST technology for the
design and operation of mechanical components.
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