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Abstract: Metal nanoparticles (NPs) concentrate the energy of incident photons through plasmon
resonance excitation, which allows scattering into a substrate with a high refractive index, and the
radiated energy from this excitation significantly increases the optical absorption of the substrate.
In this work, the effect of Ag NPs on the absorption capacity of mushroom-nanostructured Si
metasurfaces was analyzed using the finite-difference time-domain method. It was observed that
the absorbance in the metasurfaces with Ag NPs increased from 90.8% to 98.7% compared with
nanostructured Si metasurface without NPs. It was shown that the plasmon resonance effect of
Ag NPs enlarged the range of the FP cavity by about 10 times, and the electric field strength |E|2

increased by about four times through the combination of Ag NP and Si absorbers. Meanwhile, the
effect of randomly distributed nanostructures on the absorption properties of Si metasurfaces was
simulated. Additionally, the nanostructured surface with Ag NPs was insensitive to angle, which
encourages the design of broadband and wide-angle superabsorption nanostructures.

Keywords: plasmon resonance; finite difference time domain method; superabsorption; subwavelength
structure

1. Introduction

The demand for light energy utilization grows along with the popularity of light
absorbers in various research fields [1–3], especially in photovoltaic devices [4–6], photode-
tection [7,8], thermal imaging [9,10], and solar cells [11,12]. In order to achieve broadband
light absorption from the visible to the terahertz frequencies, the use of metamaterials and
subwavelength nanostructures has greatly increased [13–16].

Many metamaterial absorbers have perfect absorption and are insensitive to the in-
cident angle and polarization [17,18]. A typical metamaterial absorber is composed of a
metal-dielectric multilayer film, which achieves broadband absorption through impedance
matching and resonance [19–21]. Kim et al. first introduced hyperuniform disordered
patterns to a metal-insulator-metal gap plasmon metasurface, demonstrated enhanced
wideband light absorption in the visible and near-infrared spectral region, and revealed
the origins of the two resonance modes of the gap plasmon metasurface structure [22]. Fur-
thermore, the subwavelength structure can capture the incident light, and the combination
of the subwavelength structure and metallic particles can increase the plasmon resonance,
which further supports the broadband absorption [23–25]. Moreover, Zhou proposed a
wide-band bidirectional visible-light absorber based on a quasi-periodic nanocone array
coated with a dielectric-loaded Au monolayer, which is capable of simultaneously absorb-
ing light from both the front and rear surfaces. They obtained an average front absorption
of 87.4% and a corresponding rear absorptivity of 76.2% in the 300–700 nm range [26].
However, the above methods have issues such as limited resonance bandwidth, ther-
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mal mismatch of multilayer materials, complex processing technology of subwavelength
structures, and high cost.

These issues were addressed in our previous research by fabricating a silicon meta-
surface with mushroom structures, using an effective method based on metal thermal
annealing and inductively coupled plasma (ICP) processes. The effect of the diameter of the
hemispherical Ag NP and the height of the waist-shape structure on the absorption proper-
ties of the silicon metasurface was analyzed using the FDTD method. The absorptance of
the prepared silicon metasurface was ~98% in the wavelength range from 360 to 2000 nm.
It was proved that the structure had nearly perfect superabsorption over a broadband
range from UV to NIR. However, the physical mechanism behind this superabsorption
was reasonably explained in our previous work [27]. In this work, the finite difference time
domain (FDTD) method was used to analyze and simulate the influence of Ag nanopar-
ticles (NPs) on the absorption of Si metasurfaces. The broadband absorption levels of
nanostructured Si surfaces with and without Ag NPs were compared. In addition, the effect
of randomly distributed nanostructures on the absorption properties of Si metasurfaces
was simulated via FDTD. Furthermore, the absorbance of nanostructured Si metasurfaces
with Ag NPs for varying incidence angles was studied to test its wide-angle performance
for various applications.

2. Materials and Methods
2.1. Model

Figure 1a shows a schematic diagram of the proposed nanostructure, which is com-
posed of three different layers. The top is made up of Ag NPs to enhance the absorption
efficiency owing to the coupling and interaction of surface plasmons. The middle part is a
waist-shaped nanostructure to reduce the reflection of incident light, and the bottom layer
is the Si substrate.
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Figure 1. (a) Schematic diagram of the proposed mushroom-nanostructured arrays; (b) 2D view of
the nanostructure with Ag NPs in a unit cell.

Moreover, Figure 1b shows the 2D unit cell view of the proposed nanostructure
with Ag NPs. The main structural parameters of the unit cell are the period of the struc-
ture P, the Ag NP diameter Ds, the height H, and the bottom diameter Db of the waist-
shaped nanostructure.

2.2. Simulation

The optical properties of the silicon metasurface with and without Ag NPs were
simulated using the commercial software Lumerical FDTD Solutions. The FDTD simulation
model was built in an x-y-z axis space rectangular coordinate system, which included the
silicon substrate, waist-shaped nanostructure array, air layer, source, and monitor. Both
the reflected and transmitted waves were monitored to calculate the reflectance (R) and
transmittance (T). The absorbance (A) was calculated as A = 1 − R − T. Moreover, the
electric field distribution on the unit cell array was also obtained from the simulations at
different incident wavelengths. The FDTD Solutions software used a plane wave source
with a polarization direction along the x axis, and the boundary conditions of the x and
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y axis were periodic, where the perfectly-matched layer boundary condition was applied
on the z axis. The Bloch boundary condition was used for oblique incidence light. In
order to obtain accurate simulation results, the mesh override regions dx, dy, and dz were
0.01 µm, the simulation time was 5000 fs, and the boundary layer was 12 in FDTD. The
materials Si and Ag were taken from Si (Silicon)—Palik and Ag (Siliver)—Palik (0–2 µm)
in the material library, respectively. The parameters of the simulation model were set as
P = 800 nm, Db = Ds = 600 nm, and H = 1000 nm, and the thickness of the Si substrate was
2 µm.

2.3. Experiment

The expected mushroom-nanostructures were prepared with metal annealing and
ICP processes. The process diagram of the nanostructure preparation is shown in Figure 2.
First, the Si samples were cleaned by the Radio Corporation of America (RCA) process,
and a 50-nm-thick Ag film was deposited on the substrates via sputter coating (Alliance
Concept, DP650, Annecy, France). Thereafter, the samples were placed in a muffle furnace
for rapid thermal annealing at 350 ◦C for 3 min, thereby forming a mask of Ag NPs. Then
the nanostructures were prepared using Ag NPs masks via an ICP process. The etching
parameters were maintained at 300 W and 20 W of upper source and lower electrode power,
respectively. A mixture of 30 sccm CHF3 and 10 sccm SF6 was used as the etching gas at
a pressure of 0.5 Pa for 80 s. In addition, the samples without Ag NPs were obtained by
removing residual Ag NPs with an etching solution.
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Figure 2. Process diagram for preparing the mushroom-nanostructures via metal thermal annealing
and ICP processes.

2.4. Characteristics

The structured morphology was observed using scanning electron microscopy (SEM,
Quanta 250, FEI, Hillsboro, OR, USA). Then, the optical reflectance and transmittance
were measured using a universal scanning spectrophotometer (EssentOptics, PHOTON
RT, Minsk, Belarus). The wavelength range of the spectrometer source was set from 360 to
2000 nm. The slit width was set at 230 µm.

3. Results and Discussion

A 3 × 3-unit cell array was established as the simulation model, as shown in Figure 1a,
in order to investigate the effect of Ag NPs on the absorption of Si metasurface with
nanostructures. The absorbance, reflectance, and transmittance for the simulation model
without and with Ag NPs were calculated via FDTD Solutions.
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3.1. The Effect of Ag NPs on the Absorption of Si Metasurfaces

Figure 3a shows the optical absorption properties of Ag NPs on Si substrate (before
the ICP process), which had absorption peaks at 0.42 µm, 0.82 µm, 1.12 µm and 1.42 µm.
This was due to the fact that the incident light coupled with the different positions of
the Ag NPs to form surface plasmon resonance, which reduced the reflection of specific
wavelengths and thus enhanced the absorption. As shown in Figure 3b, the nanostructured
Si metasurface without Ag NPs had an average absorbance of 92.3% and an average
reflectance of 7% in the wavelength range of 400–2000 nm. Meanwhile, Figure 3c shows
that the nanostructured Si metasurface with Ag NPs had a higher average absorbance of
98.2%, and the average reflectivity was also just 1.6% lower than that of the nanostructures
without Ag NPs. This could be attributed to the transition behavior of free electrons
induced by the addition of metallic Ag NPs, and the plasmon resonance excitation of the
gap plasmon mode or the surface plasmon mode, which concentrated the energy of incident
photons into the structure. Therefore, based on superabsorption, the nanostructured Si
metasurface with Ag NPs was confirmed to exhibit higher absorbance characteristics in the
wavelength range of 400–2000 nm compared to that without Ag NPs.
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Figure 3. Simulated optical properties of (a) Ag NPs on Si substrate (before ICP process) and
nanostructured Si metasurface (b) without and (c) with Ag NPs (A-Absorbance, R-Reflectance,
T-Transmittance, the black dotted line corresponding to the average absorbance).

Nanostructures without and with Ag NPs were prepared via the processes shown in
Figure 2. Furthermore, Figure 4 shows the cross-sectional SEM images of the nanostructures
without and with Ag NPs after the ICP process. The nanostructure arrays had uniform
dimensions, with a height of 1080 nm and a pitch of 230 nm between two adjacent nanos-
tructures, which was achieved using thermal annealing and etching. The experimental
etching structure is consistent with the proposed simulation model. The pitch and height
of the nanostructures could be experimentally controlled by changing the etching time and
gas flow.
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Moreover, optical reflectance (R) and transmittance (T) were measured using a univer-
sal scanning spectrophotometer, and the absorbance (A) was calculated as A = 1 − R − T.
Figure 5 shows the measured reflectance, transmittance, and absorbance spectra of the
nanostructured Si metasurface without and with Ag NPs after the ICP etching process.
At wavelengths greater than 1400 nm, the nanostructured Si metasurface without Ag
NPs showed absorbance values less than 90%, while the average reflectance was higher
at approximately 9%, as shown in Figure 5a. Consistent with the simulated results, the
absorption of the nanostructured Si metasurface with Ag NPs also significantly improved.
The average absorption was 98.7% in the wavelength range of 400–2000 nm, as shown in
Figure 5b, showing a near perfect broadband absorption effect.
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3.2. The Effect of Nanostructured Si Surface with Ag NPs on Wide-Angle Superabsorption

We also simulated the influence of Ag NPs on the absorption ability of the mushroom-
structured Si metasurface. Figure 6a shows the angular dependence of the absorption-
wavelength curves for incident angles ranging from 0 to 60◦. Within 0 to 30◦, the absorption
curves of the nanostructures with Ag NPs were almost indistinguishable, and all absorbance
exceeded 98.6% in the whole spectrum range of 400–2000 nm, which indicated insensitivity
to the angle of incidence. However, as the incident angle increased, the absorption weak-
ened. At 60◦, the absorption capacity was significantly smaller than in the 0–45◦ range at
wavelengths of 1200–2000 nm, and the minimum absorbance was only 96%. However, this
was still higher than the average absorptivity of 92.3% for the nanostructures without Ag
NPs under normal incidence, as shown in Figure 3a.
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To verify the performance of the large-angle superabsorption on the fabricated nanos-
tructured Si metasurface with Ag NPs, the angle-dependent absorption spectra were
measured at different incident angles from 0◦ to 60◦, as shown in Figure 6b. In general, as
the angle of incidence (AOI) increased, the absorption band narrowed. When the AOI was
increased from 0◦ to 45◦, the average absorbance of the surface with Ag NPs was 98.7%,
99.1%, and 99.3%, respectively. The nanostructures exhibited near-perfect superabsorption
with increasing AOI. However, in the case of 60◦ AOI, the absorption of the nanostructures
decreased at wavelengths above 1600 nm; this may have been because the energy of the
structure with Ag NPs was mainly concentrated on the upper position of the structures
when the wavelength was greater than 1600 nm, and the energy was easily radiated into
the air in this mode. Thus, the proposed structure is suitable for broadband and wide-
angle absorption applications, which providing large angle detection and measurement for
optical systems in atmospheric and remote sensing.

3.3. The Effect of Randomly Distributed Nanostructured Si Surface on Absorption

Firstly, the effect of random diameters of Ag NPs on the optical properties of Si
metasurfaces was investigated, and the reference diameter Ds, height H and period P were
set to 0.5 µm, 0.9 µm and 0.8 µm, respectively. In order to simulate the random structures
in FDTD, the periodic arrangement of the structure array was replaced by the random
diameter arrangement, the variation in the diameters of Ag NPs within each unit cell
was set as the deviation value ∆d, and ∆d is set as 0 µm, 0.1 µm, 0.2 µm, and 0.3 µm,
respectively. For example, when ∆d = 0.1 µm, the diameter selection range of the Ag
NPs was 0.5 µm ± 0.1 µm. Figure 7 shows the absorbance curves of different diameter
deviation values ∆d as a function of wavelength. It can be seen that when ∆d was less than
0.2 µm, the absorbance of the structures was less affected, which was similar to the periodic
structures (∆d = 0 µm). However, when ∆d = 0.3 µm, the absorbance of the structures
decreased significantly. This was because, with the increase in diameter fluctuation, the
volume of the Ag NPs changed significantly, which changed the resonance mode between
Ag NPs, and the light coupled into the structure decreased.
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Similarly, Figure 8 depicts the absorbance curves of different structural height devi-
ation values ∆h as a function of wavelength. ∆h was chosen as 0 µm, 0.1 µm, 0.2 µm,
0.3 µm, and 0.4 µm, respectively. We can observe that ∆h was negatively correlated with
the absorption rate; that is, the larger the variation of ∆h, the smaller the absorbance of the
random structures. When ∆h = 0.4 µm, the average absorbance of the random structures
was reduced to 97.3%. Moreover, compared with the periodic structures (∆h = 0 µm), with
the increase in the height deviation value ∆h, the resonance peak also changed, resulting in
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a red-shift phenomenon. This may have been because with the increase in ∆h, if the struc-
ture as subdivided into N layers, the refractive index of each layer was no longer a smooth
gradient change, resulting in enhanced reflection of incident light and reduced absorption.
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In addition, the effect of different positional deviation values ∆p on Si metasurface
absorption is shown in Figure 9. It can be seen that the change of ∆p barely changed
the incident light absorbance of the random structures. Only when ∆p = 0.15 µm, the
absorption of the structure decreased slightly around the wavelength of 1000 nm. For
changes in ∆p, the average period of the structures was constant for the entire simulated
array, since each structure was displaced within its own unit cell. Therefore, when ∆p
fluctuated within a certain range, the absorption effect of random arrays and periodic
arrays on the Si metasurface was consistent.
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3.4. Superabsorption Analysis of Nanostructured Si Metasurfaces

Furthermore, we investigated the effect of Ag NPs on the absorption properties of Si
metasurface and discussed the electric field distribution. Three wavelengths of incident
light (0.62 µm, 1.05 µm, and 1.73 µm) were selected for the electric field distribution patterns
of Ag NPs on Si substrate (before ICP process), the nanostructures without and with Ag
NPs, as shown in Figure 10. Figure 10a–c describe the electric field intensity distribution of
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the cross-section of Ag NPs on Si substrate in the x-z direction. Meanwhile, Figure 10d–f
and g–i show the nanostructures without and with Ag NPs.
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The images in Figure 10a–c show the three electric field modes corresponding to
individual Ag NPs at different wavelengths, which contribute to the enhanced absorption.
At 0.63 µm, localized surface plasmon resonance (LSPR) mainly occurred on the surface of
NPs, as shown in Figure 10a. Figure 10b shows that the electric field was mainly distributed
between the NPs and air at 1.05 µm, and this mode could emit energy into space with
increased scattering. Moreover, a part of the LSPR was coupled between the NPs and the
Si substrate at 1.73 µm, as shown in Figure 10c, while for the nanostructures without Ag
NPs, the energy was mostly concentrated near the waist of the structure, and its absorption
mainly depended on the structured silicon. The FP resonance was formed on the side
surface of the Si absorber to absorb the incident light. Since the sidewall profile of the Si
absorber was a quasi-smooth curved surface, the incident light was strongly absorbed, as
shown in Figure 10d–f. On this basis, combining Ag NPs with Si absorber, it can be seen
from Figure 10g,h that the LSPR effect of Ag NPs enlarged the range of the FP cavity about
10 times, and the electric field strength |E|2 increased about four times. In addition, at the
wavelength of 1.73 µm, the high-order LSPR of Ag NPs was excited, increasing the total
absorption of the structure.

4. Conclusions

Based on the simulation model, we used a FDTD software to optimize the structural
parameters of a 3 × 3 unit cell. Then, a silicon metasurface with mushroom-nanostructures
was fabricated using thermal annealing and ICP processes. The average absorbance of
the nanostructured Si metasurface with Ag NPs was 98.7% in the wavelength range of
400–2000 nm and reached up to approximately 99% for incident angles of 0–45◦. Meanwhile,
it was proved by FDTD simulation that random structure and periodic structure have the
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same effect on Si metasurface absorption to a certain extent. From the analysis of the electric
field distribution of the desired structures at different wavelengths, it was proved that the
addition of Ag NPs excites the resonance between the particles, so that the broadband
absorption of the mushroom-nanostructured Si metasurface is improved. This is expected
to benefit the development of devices such as photovoltaic cells and photoelectric detectors.
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