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Abstract: As the core component of the wind turbine transmission chain, the wind power gear
plays a vital role in the safe and efficient operation of the whole machine. Wind power gears are
subjected to varying degrees of wear on their contact surfaces due to alternating load impacts. For
wind power gear repair and remanufacturing, laser cladding technology is proposed on the wind
power gearbospline shaft. The effect of tungsten carbide (WC) addition on the laser-clad Fe-based
coatings was investigated in this study. The morphology and composition of the composite coatings
formed with different proportions of WC were studied using scanning electron microscopy (SEM)
and energy-dispersive spectroscopy (EDS). The microhardness and wear resistance were measured
with a digital microhardness tester and a wear testing machine, respectively. The coatings were
compact with no apparent cracks or pores and the microstructures of the regions above the fusion
zone gradually changed from planar crystal to columnar crystal and cellular crystal, while the middle
and upper parts of the coating mainly consisted of equiaxed crystals. The microhardness of the
coatings gradually increased with the increase of WC content. The coating with 16% WC addition
reached a maximum microhardness of 826.2 HV. The increase of WC content improved the wear
resistance of the laser-clad Fe-based composite coatings. The wear mechanism of the coatings was
mainly abrasive wear, along with slight adhesion wear and oxidative wear.

Keywords: wind power gears; laser cladding; Fe-based coating; microstructure; wear-resistance

1. Introduction

The failure of wind turbine gearboxes accounts for 40% of the total failure of wind
turbines, and is the primary cause of shutdown of wind turbines [1]. Due to the complex
working conditions of gears and the huge load they are subjected to, gear wear is the
leading cause of gearbox failure. The improvement of the wear resistance of gears is urgent
to extend the lifespan of gearboxes and improve the overall power generation efficiency of
wind turbines [2]. The methods commonly used at home and abroad to improve the wear
resistance of components include laser cladding [3], shot peening [4], overlay welding [5]
and thermal spraying [6]. All these technologies have a certain effect on the improvement
of the wear resistance of wind power gears.

Laser cladding (LC) is an advanced surface modification technology which uses a laser
as a heat source to melt the filler material (powder or wire) and the substrate together [7–11].
After solidification, an LC coating is formed on the substrate’s surface, thus enhancing wear
and/or corrosion resistance of the substrate [12–14]. LC has a high work efficiency, emits
less pollution and can be used to fabricate thick coatings, all of which are advantages over
other surface treatment techniques [15]. Moreover, LC can refine the grains and stabilize the
phase owing to its rapid cooling rate [16]. In addition, laser-clad coatings generally display
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a low dilution rate and strong metallurgical bonding with the substrate [17]. Therefore,
LC received much attention and became one of the hotspots in current research. LC
is now widely studied and used in important fields such as aerospace, metallurgy and
engineering machinery [18–20]. For example, Huebner et al. [21] fabricated the Inconel
625-WC composite coatings on Inconel 625 substrate via LC for turbine blade application.
Tungsten carbide (WC) addition facilitated the formation of topologically close-packed
phases and carbides, which improve the mechanical properties of the composite coatings
and improve the performance of the die steel at high temperature. Cui et al. [16] fabricated
FeCoCrNiMnAlx high-entropy alloy coatings on H13 steel via LC. The combined effects
of improved microhardness and oxidation resistance enhanced the wear resistance of
the FeMnCrNiCoAlx coatings at high temperature, which effectively protected the H13
substrate from wear. Zhu et al. [22] cladded 316L, 410 and 420 stainless steel coatings on
rail wheel discs via LC to analyze their wear characteristics. Results revealed that all three
clad wheel discs displayed lower wear rates compared to the unclad wheel discs.

At present, there are self-fusing alloy powders, ceramic powders, composite pow-
ders, etc. The self-fusing alloy powders, including Fe-based [23,24], Ni-based [25,26],
Co-based [27,28], etc., refer to the powders with specific elements. Among them, the com-
position of Fe-based alloy powder is very similar to steel. When the substrate is steel, the
two can be more compatible, forming a metallurgical bond with firm interfacial bonding.
In addition, the cost of Fe-based alloy powder is very low, so it is widely used in LC.
However, compared with Ni-based and Co-based alloy powders, Fe-based alloy powder
displays poorer self-melting properties and relatively weaker corrosion resistance. The WC
ceramic powder with high hardness exhibits excellent wear resistance properties, which
can further improve the wear resistance of the LC coatings. Composite powder mainly
refers to a composite or mixed powder system with ceramic and metal powders, and is
currently a hot topic in the field of LC technology. Chen et al. [29] fabricated H13 steel
matrix composites with TiC reinforced particles via LC. The effects of the TiC volume
fraction on microstructure and hardness of the TiC/H13 composites were studied. Results
showed that the hardness of TiC/H13 composites with 80% TiC (volume fraction) was two
times higher than that of the H13 substrate. Ding et al. [30] conducted LC experiments
on railway CL60 wheel steel using Fe-based powders with different WS2 contents. The
authors reported the smallest wear rate (2.7 µg/m) and the shortest rolling contact fatigue
cracks that occurred on the coatings with 6 wt.% WS2. Chen et al. [31] synthesized in-situ
TiC and TiB2 reinforced composite coatings on carbon steel to enhance the hardness as well
as wear resistance of remanufactured components. Results revealed that the microhardness
of composite coating with 961.49 HV is 5.04 times more, and the corresponding wear loss is
2.8 times less, than those of 45 steel.

In this study, the aims are to investigate the effect of tungsten carbide (WC) content
on the morphology, microstructure and properties of Fe-based LC coatings. Therefore, the
Fe-based LC coatings with WC addition on Q550 structural steel were prepared to improve
the wear resistance and service life of wind turbine gears. The research results are expected
to provide technical support for the repair and manufacture of wind turbine gears.

2. Materials and Methods
2.1. Materials

Q550 structural steel (Wuyang Iron and Steel Co., Ltd., Wugang, China) was selected
as the LC substrate and its chemical composition is given in Table 1. The Fe-based alloy
powder (BGRIMM Advanced Materials Science & Technology Co., Ltd., Beijing, China)
with a particle size of 50~105 µm was utilized to prepare the LC coatings and its chemical
composition is given in Table 2. The WC powder is a nickel-coated WC powder with
15.2 wt.% Ni content. The nickel-coated WC powder could improve the wettability and
bonding strength between WC and the Q550 substrate. The Fe-based alloy powders with
different WC contents (0%, 4%, 8%, 12% and 16% in mass ratio) were put into a ball mill
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(QXQM-4) with a ball-to-powder ratio of 2:1. The speed of ball milling was set as 100 r/min
for 2 h for evenly mixed Fe /WC composite powders.

Table 1. Chemical composition of Q550 structural steel.

Element C Si Mn P S Fe

wt.% 0.13–0.18 0.20–0.50 0.90–1.30 0.90–1.30 0.90–1.30 Bal.

Table 2. Chemical composition of Fe-based alloy powders.

Element Cr B Si C Fe

wt.% 13.0 1.6 1.2 0.15 Bal.

2.2. Methods

The LC experiment was performed using a fiber laser (YLS-3000, IPG Photonics
Corporation, Oxford, MA, USA) with a spot diameter of 1.8 mm with a coaxial powder
feeder. Before the experiment, the surface of the substrate was ground with sandpaper
to remove the surface oxides and enhance the bonding strength between the coating and
substrate. The surfaces were then cleaned with ethanol to remove impurities and oil. The
following optimized LC process parameters were used: laser power of 900 W, a scanning
speed of 4 mm/s, a powder feeding rate of 8.5 g/min, a defocus amount of 20 mm and an
overlap rate of 40%. 99.99% argon was used and the shielding gas flow was 15 L/min.

After LC, the oxide layers and slag on the coatings’ surfaces were removed by sand-
paper and the macroscopic morphologies of the coatings were then observed using a
stereomicroscope (Leica S9i, Leica, Weztlar, Germany). The LC samples were cut from the
middle using the electrical discharge machine. The surfaces perpendicular to the scanning
direction were ground with 280#, 400#, 600#, 800#, 1000# and 1400# grit sandpapers in turn,
and then polished.

The sample was etched for about 30 s using nitrate alcohol etching solution
(HNO3:HCL = 1:3). The microstructures of the coatings were observed via a scanning
electron microscope (SEM, JSM-IT200, JEOL Ltd., Tokyo, Japan), which is equipped with
energy dispersive spectroscopy (EDS, JEOL Ltd., Tokyo, Japan).

One piece of sample was used for hardness measurement and microstructural ob-
servation. The other was ground using a grinding machine before the wear tests. The
semi-automatic Vickers hardness tester (HVST-1000Z, SHSIWEI, Shanghai, China) was
utilized for hardness measurement. The load using for the hardness measurement is 15N.
The average value of five random regions was defined as the hardness value of the coating.

A high-frequency reciprocating wear tester (MDW-05, Jinan Yihua Tribology Testing
Technology Co., Ltd, Jinan, China) was used to test the wear properties of the coatings.
The GCr15 balls, with a diameter of 6 mm, were selected as the grinding balls. The
corresponding parameters were: a reciprocating distance of 5 mm, a frequency of 2 Hz,
a normal load of 50 N and a testing time of 30 min. The wear loss was measured using
an electronic balance with 0.1 mg precision. The worn surfaces were observed by SEM to
analyze the wear mechanism.

3. Results and Discussion
3.1. Macroscopic Morphology

The macroscopic morphologies of the coatings with different WC contents are shown
in Figure 1. It can be seen that the surface morphologies of the coatings were compact with
no apparent cracks or pores, and there were no obvious powders sticking to the coating
surface, which benefited from the previously optimized LC process parameters.
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Figure 1. Macroscopic morphologies of the composite coatings with different WC contents:
(a) 0 wt.% WC; (b) 4 wt.% WC; (c) 8 wt.% WC; (d) 12 wt.% WC and (e) 16 wt.% WC.

3.2. Microstructure

Figure 2 shows the microstructure of the LC Fe-based coatings with different WC
contents. It can be seen that the microstructure of each coating exhibits a distinct difference
as WC content changes. A white fusion zone appeared at the bottom of the coating, which
indicates that the coating and the substrate have good metallurgical bonding. From the
figure, it can be seen that the microstructures in the fusion zone were mainly planar crystals.
The microstructures of the regions above the fusion zone gradually changed from planar
crystal to columnar crystal and cellular crystal, while the middle and upper parts of the
coating mainly consisted of equiaxed crystals. The microstructures inside the coating are
mainly associated with temperature gradient (G) and solidification rate (R), analyzed in
G/R [32]. At the initial stage of solidification, the temperature gradient of the fusion zone
was relatively large, but the solidification rate was relatively low [33]. The G/R value of the
fusion zone was large, so the microstructure was mainly planar crystal structure. As the
solidification moved upward, the temperature gradient decreased, while the solidification
rate increased, the G/R value decreased gradually, and the microstructure above the fusion
zone gradually transformed into columnar and cellular crystals. The temperature gradient
in the middle and upper parts of the coating further decreased, while the solidification rate
continued to increase, leading to a decreased G/R value. Therefore, the microstructure in
the middle and upper parts of the coating transformed into equiaxed grains. In addition,
the grain size of the coating was gradually refined with increasing WC content. It is evident
that the microstructures inside the heat-affected zone (HAZ) were mainly martensite. The
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Q550 steel initially consisted of ferrite and pearlite. However, during LC, the temperature
in HAZ exceeded the austenitizing temperature but did not reach the melting point of
the Q550 steel. In the rapid cooling process, ferrite and pearlite in HAZ transformed into
martensite [34].
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EDS mapping was conducted for the coating with 8 wt.% WC addition and the result is
shown in Figure 3. It is evident that W and C elements were segregated in the white region,
suggesting the white region was a WC particle. The beard-like morphology appeared
around the WC particle, indicating that the WC particle was partially melted. The partially
melted WC particles revealed that the WC particles were metallurgically bonded with the
Fe-based laser cladding coating matrix. The melting of WC particles led to the diffusion
of W and C elements into the dendrite region. As a result, the W atoms dissolved into the
matrix, which played a solid solution strengthening effect on the matrix. In addition, C and
Cr elements were mainly distributed in the dendrite region, indicating that the dendrite
region is mainly composed of chromium carbide. Figure 4 shows the elemental content of
the area in Figure 3. The W content in this area was more than 8 wt.%, which is mainly due
to the enrichment of WC particles in this area, so the W content here surpassed the nominal
content (8 wt.%).
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3.3. Microhardness

In order to investigate the effect of WC content on the microhardness of the coatings,
the microhardness measurement was conducted, as shown in Figure 5. The microhardness
of the coating without WC was recorded to be about 763.1 HV. With the increase of WC
content, the microhardness of the cladding layer increases gradually. When the content of
WC is 16 wt.%, the microhardness is about 826.2 HV, indicating that the addition of WC
increased the microhardness of the coatings. This is mainly attributed to the following
reasons: (1) The proportion of hard phase (i.e., WC and chromium carbide) in the coatings
increased with the increase of WC content, which improved the microhardness of the
coatings. (2) Part of the W atoms dissolved into the matrix, which played a solid solution
strengthening role on the matrix and consequently increased the microhardness of the
coating. (3) With WC addition, grain refinement was observed in the coatings. The refined
grains improved the grain boundary density and inhibited the motion of dislocations.
The microhardness of the Fe-based cladding coating increases gradually under these
strengthening effects.
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3.4. Wear Performance

Figure 6 shows the wear loss of the substrate and coatings with different WC content
after the wear tests. With the increase of WC content in the coating, the wear weight loss
of the coatings decreased gradually, which was due to the fact that the addition of WC
improved the wear resistance of Fe-based coatings. It can be seen that the wear weight
loss of the Q550 substrate was the largest and the wear weight losses of the coatings with
different WC contents were less than that of the substrate. The relative wear resistance
of the coating with 16 wt.% WC is approximately 16.3 and 9.7 times higher than those
of the substrate and coating without WC, respectively. The enhanced wear resistance of
the composite coatings benefited from their improved microhardness with WC addition,
similar to results of previous researches [35–37].
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Figure 7 shows the worn surface morphologies of the coatings with different WC
contents. It can be seen that the wear track of the substrate was obviously wider than those
of the composite coatings. In addition, with the increase of WC content, both the depth
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and width of the furrows inside the wear tracks decreased, suggesting an increased wear
resistance of the coatings. The existence of furrows revealed that the wear mechanism of
the coatings was mainly abrasive wear. As shown in Figure 7f, a white adhesion (position 1)
appeared on the worn surface. According to the EDS results in Figure 8, the oxygen content
in region 1 is relatively high. Therefore, it is identified as oxides. This is mainly due to
the fierce contact between the grinding ball and the coating during the wear test process
increasing the temperature of the contact surface, leading to the worn surface happened
oxidation to some extent. The oxides formed on the worn surface could act as a lubricant
and withstand wear [38], which further decreased the wear rate of the composite coatings.
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(k,l) Q550 substrate.



Coatings 2022, 12, 1209 11 of 15
Coatings 2022, 12, x FOR PEER REVIEW 11 of 15 
 

 

 

(a) 

 

(b) 

Figure 8. EDS results of regions in Figure 7f: (a) region 1 and (b) region 2. 

Figure 9 shows the worn area of the grinding ball after the wear test. It can be seen 
that a small platform appears on the grinding ball (Figure 9a), suggesting that the grinding 
ball also underwent certain wear during the wear test. Furrows also appeared on the worn 
area of the grinding ball, which indicates the grinding ball underwent abrasive wear dur-
ing the wear test. EDS analysis shows that the elements of region 2 contained a high oxy-
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Figure 8. EDS results of regions in Figure 7f: (a) region 1 and (b) region 2.

Figure 9 shows the worn area of the grinding ball after the wear test. It can be seen that
a small platform appears on the grinding ball (Figure 9a), suggesting that the grinding ball
also underwent certain wear during the wear test. Furrows also appeared on the worn area
of the grinding ball, which indicates the grinding ball underwent abrasive wear during
the wear test. EDS analysis shows that the elements of region 2 contained a high oxygen
content (Figure 9b,d) and the W element was detected on the worn area of the grinding
ball (Figure 9d), which indicates that abrasive wear, oxidative wear and adhesion wear
occurred on the grinding balls during the wear test.

The wear debris morphology is shown in Figure 10. The wear debris mainly consisted
of long lumps and fine powders. The worn surface material was exfoliated or extruded from
the surface to form three-body abrasive wear together with the coating and the grinding
ball. Therefore, the wear debris was mainly powder-like [39]. In the EDS result, the oxygen
content in the wear debris is high, indicating that the wear debris might be the peeled oxide
layers [40], which further proves that oxidative wear occurred during the wear tests. A
combination of Figures 7, 9 and 10 revealed that the wear mechanism of the coatings was
mainly abrasive wear, along with slight adhesion wear and oxidative wear.
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4. Conclusions

In this study, the Fe-based coatings with different WC addition were fabricated via
laser cladding to improve the wear resistance of the wind turbine gears. The morphology,
composition, microhardness and wear resistance of the composite coating formed under
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different WC contents were studied, respectively. The main findings are summarized
as follows:

(1) The microstructures of the regions above the fusion zone gradually changed from
planar crystal to columnar crystal, cellular crystal and equiaxed crystals due to the
ratio of temperature gradient (G) and solidification rate (R) changed in different
zones. Moreover, the microstructure inside the coatings changed significantly with
different amounts of WC addition. The grain size of the coatings gradually refined
with increasing WC content.

(2) The addition of WC improved the microhardness of the coatings due to the proportion
of hard phase, solid solution strengthening and grain refinement which increased
with the increased of WC content.

(3) The wear weight loss decreased and the wear resistance increased with the increase
of WC content in the Fe-based coatings. The enhanced wear resistance benefited from
their improved microhardness with WC addition. The wear mechanism of the coatings
was mainly abrasive wear, along with slight adhesion wear and oxidative wear.
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