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Abstract: Biodegradable paper mulch has the advantages of being easily degradable and environmen-
tally benign, but its own performance and adaptability to harsh environments have not been tested.
This paper uses scanning electron microscopy and three-dimensional morphometry to microscopi-
cally characterize biodegradable paper mulch and white plastic mulch. To analyze and compare their
mechanical and hydrophobic properties, and weather resistance, the two mulches were measured
through tensile tear load and static contact angle. A comparative analysis of the effect of mulching in
the dry crop area of the Hexi Corridor was conducted by comparing the growth index, farm water
heat, soil oxygen content, and yield using maize and flax. The test results show that biodegradable
paper mulch films were slightly inferior to traditional white mulch films in terms of mechanical and
hydrophobic properties, with inadequate insulation and moisture retention, but better in terms of
aging resistance, soil oxygen content, and crop insulation and water storage capacity in the middle
and growth stages. White mulch film had a better yield enhancement effect on maize, while with
biodegradable paper mulch film, this was more significant with flax.

Keywords: fully biodegradable mulching film; microstructure; mechanical properties; hydrophobic
property; soil hydrothermal; crop growth; maize and flax; Hexi oasis dry farming irrigation district

1. Introduction

The warming, soil moisture conservation, and weed control with the plastic film
mulching technology have largely solved the problem of the fragile agricultural production
capacity in arid areas, and cold and cool areas in Northwest China [1,2]. Plastic film
mulch increased the surface soil temperature, water content, and water use efficiency, but
also increased microbial carbon use, root biomass in the soil layer, and root activity at
maturity [3–7]. Grain crops’ plastic film covering technology can increase production by
about 30%, and economic crops can increase production by 20%–60% [8].

The potential problem is that, because the plastic mulch film is not recyclable in the
soil, the film residue significantly changes the soil bulk density, porosity, saturation con-
ductivity, field capacity, water repellency, and soil metabolism, and significantly interferes
with the biosynthesis of secondary metabolites, and the biodegradation and metabolism
of foreign organisms, causing a significant decline in the quality of agricultural products
while also causing many potential environmental problems [9–12]. In order to eliminate
the harmful effects of traditional mulch, degradable plastic mulch film is considered to be
the best substitute for traditional mulch. The study found that degradable plastic mulch
film could improve the fundamental physical properties of soil and achieved good compre-
hensive performance, which provides a new possibility for environmental protection, and
efficient and sustainable agricultural practice [13–15]. However, there is uncertainty about
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degradable plastic mulch film degradation, and its additives are often ignored, and their
safety has not been tested. The long-term effects of degradable plastic mulch film on plant
diversity and organisms still need to be studied to ensure degradable plastic mulch film’s
environmental safety and sustainability [16,17].

On this basis, the biodegradable paper mulch film shows environmental friendliness
and provides a new direction for developing degradable plastic film, which is widely
used in Japan. Its components mainly include chitosan and plant cellulose, which can
promote the reproduction of soil bacteria favorable for the growth of crops [18,19]. In
practical field trials, biodegradable paper mulch films improve soil properties and crop
yield, and are fully biodegradable and can be used as a better green mulching alternative
in farm mulching [20,21]. Li et al. [22–25] prepared ZnO/SiO2 biodegradable paper mulch
film superhydrophobic coating with a simple coating process using ZnO and SiO2 as raw
materials, and analyzed the aging performance, frictional wear study, and low-temperature
environment of superhydrophobic biodegradable paper mulch film in order to provide a
new way to improve the water resistance and weathering resistance of the biodegradable
paper mulch film. The effect of degradable paper film covering on soil temperature,
the conservation of soil water-holding capacity, the control ability of weed diseases and
insect pests, and self-degradation are also affected by different geographical environments,
rainfall, and other external factors [26].

The Hexi arid oasis irrigation agricultural area, the main agricultural production area
in Gansu province, China, is rich in light resources, and significant evaporation, and has
less precipitation; it mainly adopted irrigation agriculture, and is a typical arid inland
river irrigation area [27,28]. Plastic film mulching is used to increase the temperature and
conserve the soil moisture in this area all year round. However, with time, the problems of
resource water shortage, wind erosion, and desertification have become more profound [29].
Biodegradable paper mulch film can meet the requirements of green environmental pro-
tection, and is pollution-free, thus promoting the sustainable development of agricultural
production in the region [30]. There are few studies on biodegradable paper mulch film
in the arid oasis irrigation area of Hexi, and its adaptability to soil physical and chemical
properties, and different crops still needs to be studied. This study compares and analyzes
the mechanical and hydrophobic properties, and weather resistance of biodegradable paper
mulch film and traditional white plastic mulch film. In Hexi, biodegradable paper mulch
film and white plastic mulch film were applied to the local field crop of maize and character-
istic cash crop of flax. The mulch effects of different mulch materials were comprehensively
evaluated with the agronomic traits of crops, soil hydrothermal environment, soil oxygen
content, and fruit yield as indicators. Results show that the degradable paper film could
replace traditional white plastic film for the organic planting of maize and flax in the Hexi
arid oasis irrigation area, and is greener and environmentally friendlier.

2. Materials and Methods
2.1. Material

Fully biodegradable paper-based film (BM) from plant straw was manufactured by Tot-
tori Prefecture, Japan. Specifications: 100 cm × 100 m; average thickness, 0.182 mm. White
plastic mulch film (PM) is produced from conventional polyethylene and manufactured by
Qingzhou Hengguan Plastic Co., Ltd., Qingzhou, China. Specifications: 100 cm × 100 m,
average thickness of 0.01 mm (Figure 1a). The maize variety was silage maize Longsilage
No.1, and the flax variety was Jidingya No. 13.
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Figure 1. (a) Soil covering materials used in this study. BM, biodegradable paper mulch film; PM, 
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Factory, Beijing, China); hot air aging tester (MU3040C, Moujing Industrial Co., Ltd., 
Shanghai, China); Shennong Water Meteorological Station (Henan Shangqiu Sensor Tech-
nology Co., Ltd., Shangqiu, China); handheld soil oxygen meter (MO-200, Apogee, Santa 
Monica, CA, USA). 
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and after aging according to GB/T35975-2017. The tensile samples were dumbbell-shaped 
with a length of 115 mm, an end width of 25 mm, and a narrowest parallel width of 6 mm, 
and the right-angle-shaped tear specimens were 100 mm in length and 20 mm in width. 
A contact angle tester was used to test the static contact angles of both mulch films before 
and after aging to determine their hydrophobic properties. According to the GB/T 464-
2008 standard, two kinds of coated paper were aged at 105 °C for 72 h. 
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This experiment was conducted from April to September 2021 in the Minle County 

Experimental Base (100.625′ N, 38.375′ E, 1673 m ASL), Zhangye city, Gansu province, 
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with 1.6 million acres of irrigated farmland, with a temperate continental desert grassland 
climate. In winter, Leng Xia is hot and dry with little rain, the ground pressure is 837.81 
hpa, the annual radiation temperature is 11.61 °C, and the annual average precipitation is 

Figure 1. (a) Soil covering materials used in this study. BM, biodegradable paper mulch film; PM,
white plastic film. (b) Location of the study area.

2.2. Equipment and Instruments

Thickness gauge (QNIX4500, QNIX Company, Cologne, Germany); electronic balance
(FA31047, Shanghai Jinghai Instrument Co., Ltd., Shanghai, China); interferometric three-
dimensional surface topography tester (ST-400M, ZYGO, Middlefield, CT, USA); SEM 450
field emission scanning electron microscope (FESEM) (NOVANANO, Lincoln, NE, USA);
electronic tensile tester (SMT-5000, Yangzhou Saisi Testing Equipment Co., Ltd., Yangzhou,
China); contact angle tester (HKCA-15, Beijing Hacker Test Instrument Factory, Beijing,
China); hot air aging tester (MU3040C, Moujing Industrial Co., Ltd., Shanghai, China);
Shennong Water Meteorological Station (Henan Shangqiu Sensor Technology Co., Ltd.,
Shangqiu, China); handheld soil oxygen meter (MO-200, Apogee, Santa Monica, CA, USA).

2.3. Performance Testing and Characterization

An SEM450 field emission scanning electron microscope and ST-400M three-dimensional
noncontact surface profiler were used to observe the surface microstructure of two different
plastic films. The element types and element contents of four different types of paper sur-
faces were measured with EDS. The three-dimensional surface topography and roughness
of the surface were tested using a three-dimensional surface topography instrument. The
universal testing machine was used to stretch and tear the specimens before and after
aging according to GB/T35975-2017. The tensile samples were dumbbell-shaped with a
length of 115 mm, an end width of 25 mm, and a narrowest parallel width of 6 mm, and
the right-angle-shaped tear specimens were 100 mm in length and 20 mm in width. A
contact angle tester was used to test the static contact angles of both mulch films before and
after aging to determine their hydrophobic properties. According to the GB/T 464-2008
standard, two kinds of coated paper were aged at 105 ◦C for 72 h.

2.4. Experimental Site Description

This experiment was conducted from April to September 2021 in the Minle County
Experimental Base (100.625′ N, 38.375′ E, 1673 m ASL), Zhangye city, Gansu province,
China (Figure 1b). The experimental area is located in the Hexi arid oasis irrigation area,
with 1.6 million acres of irrigated farmland, with a temperate continental desert grassland
climate. In winter, Leng Xia is hot and dry with little rain, the ground pressure is 837.81 hpa,
the annual radiation temperature is 11.61 ◦C, and the annual average precipitation is
133.1 mm, of which nearly 50% occurs between June and August. The average annual
sunshine hours are 1895.82 h, evaporation is 107.67 mm, annual average temperature is
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11 ◦C, extreme low temperature occurs in April, the average temperature in April is 18.5 ◦C,
and the extreme lowest temperature is 5 ◦C. The highest temperature occurred in July,
with an average temperature of 28.4 ◦C and an extreme temperature of 39.0 ◦C (Figure 2).
According to Chinese soil taxonomy, the soil type is Castanea mollissima, which develops
from loess-like parent material. ECMWF analysis shows that it belongs to the medium-fine
soil type, with a soil PH value of 8.5, and available water content of 1 mm.
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Figure 2. Meteorological radiation, temperature, and precipitation at the experimental site in Hexi
arid oasis irrigation area, China. Values collected in the growing season of maize and flax in 2021
are plotted.

2.5. Experimental Design and Crop Management

Two treatments (BM, PM) and one control (CK), (i) biodegradable paper mulch film
(BM), (ii) white plastic mulch film (PM), and (iii) no mulch (CK), were set up in the experi-
ment. Green organic planting mode technology and mechanized harvesting technology
were adopted. A random block design was adopted for the experiment with a plot area of
12 m2 and three repetitions (Figure 3a). Test varieties: maize, Long Silage 1 for high and
stable yield with dense resistance to collapse, suitable for machine harvesting varieties.
Flax was Ji ding ya no. 13. At the beginning of April 2021, maize and flax seeds were sown
into the soil with a small seeder according to the standard of precision and semiprecision
single-seed sowing. The row spacing and plant spacing of maize were 40 and 25 cm,
respectively, and the row spacing and plant spacing of flax were 20 and 20 cm, respectively
(Figure 4). All the maize and flax plants were irrigated with a drip irrigation system on the
ground, and the irrigation time and amount in each plot were the same. The daily irrigation
amount of each hole was 0.26–0.92 L, which could be adjusted according to different envi-
ronments and growth periods. All adopt green organic planting mode technology, full film
mulching, drip irrigation under film, integrated supporting wide and narrow row planting,
reasonable increase of density, application of organic ferflaxizer, formula ferflaxization,
green prevention and control of pests and diseases, timely late harvest, and mechanization
technology of the whole process of cultivation and harvest.
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Figure 4. Planting patterns and mulching positions of (a) maize and (b) flax (biodegradable paper
mulch film or white plastic mulch film).

Maize was divided into the seedling (05.02–05.11), nodulation (05.12–06.02), tassel
(06.03–07.18) and maturity (07.19–09.15) stages according to the growth cycle. Flax was
divided into seedling (05.03–05.16), fir-shaped (05.17–06.08), bud (06.09–06.20), flowering
(06.21–07.03) and maturity (07.04–08.10) stages.

2.6. Sampling and Measurement
2.6.1. Soil Water Content and Temperature

On sunny days, at different growth stages of maize and flax, the ground temperature
of 5, 10, and 15 cm depth between any two plants, and the soil water content of 0–10 and
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10–20 cm soil layers were measured at the Shennong water meteorological station in the
middle of each treatment plot along the planting line at 8:00, 14:00, and 18:00, respectively
(Figure 3b). The average value of the three measurements was taken as the soil temperature
of the day, and it was continuously measured for three days.

2.6.2. Soil Oxygen Content

Figure 3b shows the sampled and measured oxygen content of the soil covered by
plastic film. In each growth period of maize and flax, the oxygen content of the soil between
any two plants along the planting line in the 0–10 and 10–20 cm soil layers was measured
with a hand-held soil oxygen measuring instrument (model: MO-200). The measurement
times were 8:00, 14:00, and 18:00. The average value of the three measurements was taken
as the soil oxygen content of the day, the average value was taken for 3 consecutive days,
and the relevant data were recorded.

2.6.3. Growth and Development Index

The seedling stages of corn and flax were recorded, and the emergence rate was
counted. In the vigorous growth period (early July), tape measures were used to measure
the plant height, stem diameter, and ear height of maize, and the main stem length and
branch number of flax under different control conditions. The results were measured seven
times, and the average value was obtained.

2.6.4. Grain Characters and Yield

At maturity, 10 plants were taken from each maize plot, and biological traits were
determined. The ear length, diameter, grain number per ear, and 100-grain weight were
measured with an FA31047 electronic balance and tape. Fifteen plants were taken from
different communities of flax, and the number of fruit per plant, the number of fruit grains,
and the weight of 1000 grains were measured. Maize and flax were harvested according
to the plot in a single harvest, and the grain yield was measured and converted into yield
per mu.

3. Results and Discussion
3.1. Microscopic Characterization

A scanning electron microscope (SEM) was used to observe the surface morphology
of BM and PM, and EDS element analysis was carried out on their surfaces. The results
are shown in Figure 5. Figure 5a,b show that there were many fiber bundles with irregular
orientation on the surface of BM. The fibers were interlaced to form a web of fibers. Figure 5c
shows that, on the surface of the paper mulching film, some paper fibers were scattered
between fiber bundles, and there were many pores between fiber bundles. Therefore, BM
paper fiber expanded after meeting water with strong hygroscopicity. Different from the
BM surface, Figure 5d,e show that PM had good compatibility, a uniform and compact
structure, and no obvious cracks or pores on the surface. On closer inspection, the PM
surface only had some wrinkles and fine cracks. Compared with BM, PM had a tighter
structure, and a more regular and stable surface shape. Figure 5g shows that the surface
of biodegradable paper film contained 18% Al, 17% Si, and 22% Ca, in addition to C and
O organic elements. Si can accelerate the decomposition of organic matter in the soil,
condition the acidified soil, increase the type and number of microorganisms in the soil,
and play a significant role in water and fertilizer retention.
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3.2. Mechanical Property

Figure 6a,b show that the tensile strength and tear strength of BM were lower than
those of PM, which is consistent with the expectation. Because the main component of
PM is polythene, the molecular force between bonding bonds is higher than that between
fibers, which gives it higher strain and plasticity. After dry heat aging, the tensile strength
of BM decreased by 22%, and the retention rate was 78%. The tear strength decreased by
10%, and the retention rate was 90%. After dry-hot aging, the maximal tensile strength of
PM decreased by 26%, and the retention rate was 74%. The tear strength decreased by 14%,
and the retention rate was 86%.

In the same dry heat aging treatment, the retention rate of BM was slightly higher
than that of PM after stretching and tearing treatment. This phenomenon indicates that
BM could better reduce the adverse effect of high temperature on its mechanical properties.
Figure 6c–f compare and analyze the basic mechanics of BM and PM plastic films before
and after aging. On the whole, after aging treatment, the maximal force values available
for BM and PM samples in tensile and tearing experiments decreased. However, since
the thickness of BM was much larger than that of PM, the maximal force value in the BM
tensile tear displacement curve was much larger than that of PM, including after aging
treatment. As shown in Figure 6c,d, the maximal tensile load and right-angle tear load
of BM were reduced by 11.5% and 18.3%, respectively. The paper fiber was damaged
by dry thermal aging, which led to a significant reduction in the maximal force that BM
could bear. Figure 6e,f show that the maximal tensile load of PM was also slightly reduced
after aging. On the whole, PM had higher strength and better plasticity than BM, but BM
achieved better mechanical performance under short-range load action. Moreover, after
high-temperature treatment, the maximal force borne by PM was much lower than that of
BM. Obviously, the basic mechanical properties of BM could still be maintained after high
temperature, which met the conditions of our later field test.



Coatings 2022, 12, 1225 8 of 19Coatings 2022, 12, x FOR PEER REVIEW 8 of 19 
 

 

 

 
Figure 6. (a) Tensile strength of BM paper film and PM white film before and after dry heat aging; 
(b) tear strength of BM and PM before and after dry heat aging; (c) tensile curve of BM paper film 
before and after aging; (d) tear curve of BM paper film before and after aging; (e) tensile curve of 
PM white film before and after aging; (f) tear curve of PM white film before and after aging. 

3.3. Hydrophobic Property 
As shown in Figure 7a, BM was hydrophobic (CA ≥ 90°), while PM was hydrophilic 

(CA < 90°). The contact angle of BM decreased by 51% after aging, changing from hydro-
phobic to hydrophilic due to the softening of BM surface fibers caused by dry thermal 
aging, resulting in a significant decrease in its hydrophobic properties; the contact angle 
of PM increased by 14% after dry thermal aging, changing from hydrophilic to hydropho-
bic. At the same time, 15 μL of water was dropped onto the surface of both as-is samples. 
Figure 7b shows that the water droplets that spread around the BM surface were slowly 

Figure 6. (a) Tensile strength of BM paper film and PM white film before and after dry heat aging;
(b) tear strength of BM and PM before and after dry heat aging; (c) tensile curve of BM paper film
before and after aging; (d) tear curve of BM paper film before and after aging; (e) tensile curve of PM
white film before and after aging; (f) tear curve of PM white film before and after aging.

3.3. Hydrophobic Property

As shown in Figure 7a, BM was hydrophobic (CA ≥ 90◦), while PM was hydrophilic
(CA < 90◦). The contact angle of BM decreased by 51% after aging, changing from hy-
drophobic to hydrophilic due to the softening of BM surface fibers caused by dry thermal
aging, resulting in a significant decrease in its hydrophobic properties; the contact angle of
PM increased by 14% after dry thermal aging, changing from hydrophilic to hydrophobic.
At the same time, 15 µL of water was dropped onto the surface of both as-is samples.
Figure 7b shows that the water droplets that spread around the BM surface were slowly
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absorbed by the paper film and lastly converged into tiny water droplets. Figure 7c shows
that the water droplets were partially spread out on the PM surface, unable to gather
together and leave water stains in rolling. The comparison shows that the hydrophobic
performance of BM was better than that of PM, but PM was more hydrophobic after dry
heat aging.
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3.4. Three-Dimensional Morphology and Roughness

The surface roughness of two kinds of plastic films before and after aging was mea-
sured by a three-dimensional noncontact surface profiler. Figure 8a,c show that the BM
and PM surfaces were both distributed with convex structures. However, BM was an
aggregated convex with uneven height, the PM surface convex was not aggregated with
uniform height, and the vertical height of the highest and lowest points was more promi-
nent. The Rq of BM and PM were 8.998 and 94.199 µm, respectively. Compared with Sa, the
roughness of PM was much larger than that of BM. As shown in Figure 8b, the surface of
BM after dry-heat aging still had a convex structure, but its height was relatively consistent.
The average arithmetic height Sa decreased by 41%. Due to the high-temperature aging, the
fiber structure on the surface of the paper film was destroyed, which reduced the average
arithmetic height of the surface. Figure 8d shows the three-dimensional morphology of
PM after dry-heat aging, with Sa reduced by 88%, and surface roughness significantly
reduced. Compared with Figure 8c, PM’s surface structure changed from convex into
flat and partially concave after dry-heat aging. When aging at a high temperature, the
internal molecular chain of PM was destroyed due to the setting temperature of 105 ◦C.
The thermal oxidation reaction of polythene and other polymers caused local degradation,
which directly changed its surface morphology and arithmetic average height. To sum up,
the thermal aging resistance of BM was better than that of PM.
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3.5. Field Test
3.5.1. Soil Temperature

It can be seen from Figure 9 that there was higher ground temperature at the maize
tasseling stage and lower at the maturity stage, and higher ground temperature at the
flax flowering stage and lower at the seedling stage. The average ground temperature of
both BM and PM was lower than that of CK due to lower rainfall, longer light hours, and
more substantial drought stress and heat stress during the growing period in the region,
resulting in higher bare ground temperature. The difference in mean ground temperature
between BM and PM was not significant throughout the reproductive period of maize and
flax. There was no significant difference (p < 0.05) in other fertility stages. In general, PM
mulching was more effective in retaining heat in the early growth stage, and BM mulching
was more effective in retaining heat in the middle and late growth stages. Moreover, both
mulching samples had minor variations in ground temperature, and both could play a role
in stabilizing ground temperature.
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Figure 9. Changes in plastic film mulching on soil temperature in 2021. (a) Soil temperature of maize 
at 5, 10, and 15 cm depth; (b) soil temperature of flax at 5, 10, and 15 cm depth. Values represent the 
mean ± standard deviation. Using Duncan’s multiple-range test, different lowercase letters indicate 
significant differences in soil temperature under different mulching methods at the same growth 
period (p < 0.05), and different capital letters indicate significant differences in soil temperature at 
different growth stages under the same mulch control (p < 0.05). BM, biodegradable paper mulch 
film; PM, white plastic mulch film; CK, not covered with film. 

  

Figure 9. Changes in plastic film mulching on soil temperature in 2021. (a) Soil temperature of maize
at 5, 10, and 15 cm depth; (b) soil temperature of flax at 5, 10, and 15 cm depth. Values represent the
mean ± standard deviation. Using Duncan’s multiple-range test, different lowercase letters indicate
significant differences in soil temperature under different mulching methods at the same growth
period (p < 0.05), and different capital letters indicate significant differences in soil temperature at
different growth stages under the same mulch control (p < 0.05). BM, biodegradable paper mulch
film; PM, white plastic mulch film; CK, not covered with film.
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3.5.2. Soil Moisture Content

As seen in Figure 10a,b, soil water content was positively proportional to soil depth,
and there was a significant decrease in water content with the growing season for both soil
depths. Compared to CK, the average surface water content increased by 6% and 3% for
BM and PM, respectively, during maize fertility, and by 5% and 2%, respectively, during
flax fertility. The water retention effect of PM on maize and flax was better than that of
BM because BM paper film was prepared from straw fibers. The internal fiber bundles
were hygroscopic, especially after aging, the contact angle decreased significantly, which
was less effective in improving the soil water content of crops under the film, and the
subsequent surface modification improved its hydrophobic properties and thus enhanced
moisture retention performance. In conclusion, both mulching methods increased the
moisture content of the soil surface layer, following the relationship of PM > BM > CK, with
significant differences between them (p < 0.05).
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2% higher than that of PM (Figure 11a); The average soil oxygen content of flax covered 
by BM was 1% higher than that of PM (Figure 11b). The reason for this phenomenon may 
be that BM contains trace elements such as Si and Ca that can promote the decomposition 
of microorganisms in the soil, and thus increase the oxygen content in the soil. PM has 
poor air permeability, which inhibits root respiration and microbial metabolism during 
the growth period, resulting in the insufficient decomposition of organic matters and the 
generation of harmful gasses. At the same time, due to the nondegradability of PM white 
film itself, it exists in the soil in the form of microplastics, resulting in soil hardening. 

Figure 10. Soil moisture content affected by mulching materials in (a) maize and (b) flax in 2021. Soil
depth was 0–10 and 10–20 cm. Values represent the mean ± standard deviation. Using Duncan’s
multiple-range test, different lowercase letters indicate significant differences in soil moisture content
under different mulching methods at the same growth period (p < 0.05); different capital letters
indicate significant differences in soil moisture content at different growth stages under the same
mulch control (p < 0.05). BM, biodegradable paper mulch film; PM, white plastic mulch film; CK, not
covered with film.

3.5.3. Soil Oxygen Content

As shown in Figure 11, the soil oxygen content remained stable during the growth
period of maize and flax. Interestingly, there was no significant difference between BM
and CK, while the soil oxygen content of PM was lower than that of CK, and the difference
was significant (p < 0.05). The average soil oxygen content of maize covered by BM was
2% higher than that of PM (Figure 11a); The average soil oxygen content of flax covered
by BM was 1% higher than that of PM (Figure 11b). The reason for this phenomenon may
be that BM contains trace elements such as Si and Ca that can promote the decomposition
of microorganisms in the soil, and thus increase the oxygen content in the soil. PM has
poor air permeability, which inhibits root respiration and microbial metabolism during
the growth period, resulting in the insufficient decomposition of organic matters and the
generation of harmful gasses. At the same time, due to the nondegradability of PM white
film itself, it exists in the soil in the form of microplastics, resulting in soil hardening.
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Figure 11. Soil oxygen content affected by mulching materials in (a) maize and (b) flax in 2021. Values
represent the mean ± standard deviation. Using Duncan’s multiple-range test, different lowercase
letters indicate significant differences in soil oxygen content under different mulching methods at the
same growth period (p < 0.05); different capital letters indicate significant differences in soil oxygen
content at different growth stages under the same mulch control (p < 0.05). BM, biodegradable paper
mulch film; PM, white plastic mulch film; CK, not covered with film.

3.5.4. Growth and Development Index

Table 1 shows that maize under BM and PM mulching had better agronomic traits
compared to with CK. Furthermore, the seedling emergence and ear height of maize
under PM mulching were 3% and 5.11 cm higher, respectively, than those in BM with
significant differences (p < 0.05). The high ears of maize can lead to poorer resistance to
overturning, which is not conducive to mechanized harvesting. As seen in Table 2, there
was no significant difference (p < 0.05) between BM and PM mulching for each growth trait
of flax, and the main stem length and main stem number were significantly higher (p < 0.05)
than those of CK. Thus, PM had a better effect on the agronomic traits of the crop compared
to BM for maize application, while BM and PM had comparable effects for flax application.
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Table 1. Agronomic characters of maize covered with BM paper film and PM white film.

Treatment
Crop Growth Index of Maize

Emergence Rate
(%)

Plant Height
(cm)

Stalk Diameter
(cm)

Ear Height
(cm)

BM 93.83 ± 0.60 b 302.71 ± 1.29 a 19.09 ± 0.11 a 167.69 ± 0.50 b
PM 95.98 ± 0.60 a 306.48 ± 2.92 a 19.51 ± 0.47 a 172.8 ± 0.26 a
CK 91.13 ± 0.31 c 286.30 ± 6.45 b 15.69 ± 0.15 b 161.2 ± 0.30 c

Values represent means ± SD. Values within a column followed by different lowercase letters indicate significant
differences at p < 0.05 using Duncan’s multiple-range test. BM, construction with biodegradable paper film
mulching; PM, construction with white plastic film mulching; CK, construction without mulching.

Table 2. Agronomic characters of flax covered with BM paper film and PM white film.

Treatment
Crop Growth Index of Flax

Emergence Rate
(%)

Main Stem Length
(cm)

Main Stem Number
(cm)

BM 66.67 ± 5.69 a 55.70 ± 1.77 a 19.09 ± 0.11 a
PM 70.67 ± 4.51 a 60.09 ± 3.51 a 19.51 ± 0.47 a
CK 63.83 ± 1.89 a 53.25 ± 0.75 b 15.69 ± 0.15 b

Values represent means ± SD. Values within a column followed by different lowercase letters indicate significant
differences at p < 0.05 using Duncan’s multiple-range test. BM, construction with biodegradable paper film
mulching; PM, construction with white plastic film mulching; CK, construction without mulching.

3.5.5. Grain and Biomass Yields

Under the coverage of BM and PM, the yield of maize was improved. The grain yield
and grain characteristics of maize are shown in Table 3. The yield under PM coverage
was 19% higher than that under BM control. The ear length, diameter, and grain number
per ear were 7.8%, 8.4%, and 18.6% higher than those of BM treatment. The 100-grain
weight was 7% higher than that of BM treatment. The effect of PM on increasing maize
yield was better. However, BM mulching significantly increased the grain yield of flax,
while the grain yield under PM mulching was significantly lower than that without film
mulching (Table 4). Compared with PM, BM mulching significantly increased flax grain
yield by 136%, which was a tremendous increase. Because it is easy for flax to provoke
weeds, PM had better heat preservation and moisture retention effects, and high light
transmittance, which significantly promoted weed growth, inhibited flax growth, and
significantly reduced the yield of flax. Compared with no film mulching, there was no
significant difference between the two kinds of film mulching (p < 0.05). Weeds are thus
the main factor affecting the yield of flax. To sum up, BM can improve the grain yield and
grain characters of both maize and flax, and the yield-increasing effect of BM was slightly
lower than that of PM, while that of flax was significantly better than that of PM.

Table 3. Correlation between maize grain yield and covering materials in four growth stages.

Treatment
Yield and Yield Components of Maize

Ear Length (cm) Ear Diameter (cm) Grain Number
per Spike (Grain)

100-Kernel
Weight (g) Grain Yield (kg)

BM 17.23 ± 0.57 b 47.63 ± 1.25 a 590.33 ± 1.53 b 43.47 ± 0.71 b 405.18 ± 0.85 b
PM 18.57 ± 0.15 a 51.63 ± 0.25 b 700.33 ± 2.08 a 46.50 ± 0.66 a 483.71 ± 3.06 a
CK 15.57 ± 0.15 c 47.21 ± 0.30 a 360.67 ± 10.60 c 37.06 ± 1.23 c 386.67 ± 1.11 c

Values represent means ± SD. Values within a column followed by different lowercase letters indicate significant
differences at p < 0.05 using Duncan’s multiple-range test. BM, construction with biodegradable paper film
mulching; PM, construction with white plastic film mulching; CK, construction without mulching.
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Table 4. Correlation between flax grain yield and covering materials in five growth stages.

Treatment
Yield and Yield Components of Flax

Plant Fruit
Number

Fruit Grain
Number

Branch
Number

1000-Kernel
Weight (g)

Grain Yield
(kg)

BM 21.00 ± 1.73 a 9.33 ± 0.58 a 24.33 ± 1.53 a 6.24 ± 0.20 a 34.68 ± 1.54 a
PM 20.67 ± 1.53 a 8.67 ± 1.53 a 23.67 ± 2.31 a 6.38 ± 0.47 a 14.67 ± 2.78 c
CK 18.67 ± 1.53 a 7.67 ± 0.58 a 21.67 ± 2.52 a 6.28 ± 0.22 a 20.01 ± 0.67 b

Values represent means ± SD. Values within a column followed by different lowercase letters indicate significant
differences at p < 0.05 using Duncan’s multiple-range test. BM, construction with biodegradable paper film
mulching; PM, construction with white plastic film mulching; CK, construction without mulching.

4. Summary and Conclusions

In the Hexi arid oasis irrigation area, biodegradable paper mulch film performed well
in flax and maize crop production. Compared with BM, the tensile tear strength of PM was
50% and 237% higher, respectively. The ground temperature of maize and flax was 17%
and 19% higher at the seedling stage, respectively. The soil water content of maize and flax
was 4% and 3% higher, respectively. The yield of maize increased by 19%. Compared with
PM, BM’s static contact angle is 13% higher. After aging, the tensile and tear retention rates
were higher by 3% and 4%, respectively. At the jointing stage of maize and budding stage
of flax, the ground temperature was higher by 6% and 5%, respectively. During the growth
period of maize and flax, the soil oxygen content was 2% and 1% higher, respectively. The
output of flax increased by 136%. Although the mechanical properties, moisture retention
performance, and warming performance of biodegradable paper mulch film were not as
good as those of traditional white plastic film, its hydrophobic performance, antiaging
performance, soil oxygen content and heat preservation, and water storage capacity in the
middle and later stages of crops were better. Traditional white plastic mulch film was better
in maize planting from the perspective of yield increasing performance.

In contrast, the application effect of biodegradable paper mulch film in flax planting
was better. The mechanical and hydrophobic properties of biodegradable paper mulch film
could also be improved with later surface modification. In addition, the biodegradable
paper mulch film could improve soil properties, promote crop growth and development,
and is environmentally friendly, which cannot be achieved with traditional white plastic
mulch film. Therefore, the biodegradable paper mulch film can replace the white plastic
mulch film in planting maize and flax in the Hexi arid oasis irrigation area, as it is a better
substitution in the planting of flax.
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