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Abstract: Accurate acquisition of dynamic load allowance (DLA) based on measurement data is
essential to the safety assessment of a bridge. When static load tests cannot be achieved, and filtering
fails, the estimated DLAs from the experimental method vary widely due to the choice of a left or
right band. In this paper, the proposed weighted average method (WAM) is used to possibly solve
the above problem in continuous gird bridges. Two-span and three-span precast concrete box-gird
bridges were selected to optimize intercepted segments of WAM for the first time with the assistance
of standard deviation and coefficient of variation in statistics. Then, a DLA measurement case of the
negative bending moment was utilized to verify the validity of the WAM. The results show that the
intercepted segments of 10/16 to 1 times the span length were suitable for the WAM to calculate the
DLA of the negative bending moment due to small offset moments and stable variation coefficients.
The WAM had a strong anti-interference ability of outliers filtering in “bad data,” which differed
significantly from the experimental method. In three measurements of a field bridge, DLAs obtained
by the WAM had less dispersion than the experimental and low-pass filtering methods.

Keywords: bridge engineering; dynamic load allowance; weighted average method; vehicle-bridge
coupled; negative bending moment

1. Introduction

The dynamic effect of moving vehicles on bridges is generally treated as a dynamic
load allowance (or dynamic impact factor), which is one of the important evaluation indi-
cators of bridge health. Failure to properly account for dynamic effect can underestimate
the stress cycles contributing to bridge component fatigue [1,2].

Presently, some disagreement exists between provisions of various national bridge
codes because dynamic load allowance (DLA) depends, in addition to the maximum
span or the natural frequency, on many other parameters that were difficult to consider
with reasonable accuracy [3–5]. These provisions can be divided into two categories:
(1) continuous functions: for example, the DLA in MTPRC (2015) code is determined by the
structure frequency [6], and the JRA code is related to the bridge span and structure type [7].
(2) Discrete functions: for example, CHBDC (2017) code is based on the type and number of
axles, AASHTO (2017) code is related to limit state [8], and Austroads (2004) code is given
based on traffic load models. However, the prerequisite of these codes for specifying DLA is
to identify the accurate measurement value. Then, DLA’s empirical formulas or values are
further determined for design in combination with numerical analysis. Therefore, accurate

Coatings 2022, 12, 1233. https://doi.org/10.3390/coatings12091233 https://www.mdpi.com/journal/coatings

https://doi.org/10.3390/coatings12091233
https://doi.org/10.3390/coatings12091233
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/coatings
https://www.mdpi.com
https://doi.org/10.3390/coatings12091233
https://www.mdpi.com/journal/coatings
https://www.mdpi.com/article/10.3390/coatings12091233?type=check_update&version=2


Coatings 2022, 12, 1233 2 of 23

acquisition of DLAs based on measurement data is essential to the safety assessment
of bridges.

Various definitions have also been used to quantify DLA, leading to different conclu-
sions from the same data. Mclean and Marsh [1] mentioned three common definitions for
DLA, where all methods use the ratio of dynamic response to static response as the basic
principle. A major difference is the acquisition of static response. The static response can
be calculated by analysis, while multiple static load tests or filtering in a field. Sometimes,
finding the mean responses by automatic filtering is made difficult when the period of
static oscillations matches the period of dynamic oscillations. It is also difficult to keep the
vehicle in the same lane during the two tests (static and dynamic load tests). Therefore, a
static response is typically replaced by the equivalent mean response from the dynamic
response curve [9]. Nevertheless, in practice, different choices may lead to a significant
difference in DLAs because there are two minimal values near the maximum dynamic.

Two other issues with DLA were mentioned in our previous study. One is DLA should
be considered for all the impact of the design vehicles on all positions, and the other one is
the time hysteresis of dynamic response [10,11]. As shown in Equation (1) and Figure 1,
the static response of the bridge caused by the design vehicle is equivalently amplified
by µ, and µ should synthetically represent the sum effect caused by each axel as much
as possible. Usually, this µ is only calculated by the maximum dynamic response point,
which is not necessarily the point of interest when checking for fatigue stresses. Therefore,
we have proposed the weighted average method (WAM) to address the above issues [11].
In addition, unrealistic responses of the bridge have been monitored recently, as shown
in [12]. Deflections were contaminated by two high-frequency peaks, which are important
for calculating DLA. When static load tests cannot be achieved, and filtering fails, the WAM
also seems to be an optimal method for dealing with the outliers described above.

Sd = (1 + µ)∑ Piyi = (1 + µ)St (1)

where Sd is the maximum dynamic response of a bridge under the moving vehicles for the
design purpose; µ is the bridge’s integrated (or total or equivalent) DLA for the design
purpose. Pi is the weight of the axle; St is the static design response of the bridge.
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Figure 1. Time-history curves of static and dynamic response due to vehicles. (a) Response of a 
simply supported girder bridge; (b) Response of a continuous girder bridge. ∆t is the hysteresis 

Figure 1. Time-history curves of static and dynamic response due to vehicles. (a) Response of a
simply supported girder bridge; (b) Response of a continuous girder bridge. ∆t is the hysteresis time
between dynamic and static response.
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Moreover, available studies have revealed that road surface condition, bridge structure,
traveling speed, and vehicle parameters (axle weight, wheelbase, and vehicle suspension)
affect DLA [13–16]. Ma et al. [17] demonstrated that the dynamic response of the elastically
supported bridge increases with decreasing bridge span and vehicle weight and the de-
terioration of road profile and support boundary. Gao noted that for continuous girder
bridges, the frequency of the bridge decreases with the number of spans, and the DLA of
the side spans is different from that of the other spans [18]. Deng et al. [19] concluded that
the DLAs of continuous gird bridges increase greatly with road surface conditions. The
effect of vehicle speed on DLA remains controversial, with some monotonically increasing
and others with no obvious regularities [20,21]. Among all the parameters, road surface
condition is still the most significant influencing factor [15].

Our previous research proposed the weighting method and successfully applied it in
simply supported girder bridges. The use of whole measurement data to calculate DLA has
been shown reasonable due to only one positive bending moment zone in these bridges.
However, it has not been demonstrated in continuous girder bridges with multiple zones
and negative moment effects, as shown in Figure 1b. This study is a continuation of our
previous work. It differs from the previous study in that the WAM was first attempted
for the calculated DLA of the negative bending moment in a continuous girder bridge.
Meanwhile, standard deviation and coefficient of variation in statistics were adopted for
the first time to optimize the weighted segments. This paper chose two-span and three-
span precast concrete box-gird bridges as the subject of study. The time-history curves
of the bridges for 25 conditions were obtained by orthogonal tests and vehicle-bridge
interaction analysis (VBI). The discreteness and variability of the DLAs calculated by the
WAM were assessed with the assistance of standard deviation and coefficient of variation.
Optimal intercept segments were determined finally, and an engineering case verified the
applicability of WAM in continuous girder bridges.

2. Existing DLA Methods
2.1. Theoretical Method

The dynamic amplification factor is the ratio of the bridge’s maximum dynamic
response (Ymax) to the maximum static response (Yst) under the same vehicle load. The
difference between the DLA (u) and the dynamic amplification factor (DAF) is 1, as shown
in Equation (2). The diagram of this method is shown in Figure 2, and the related DLA is
named theoretical DLA.

DAF = 1 + µd =
Ymax

Yst
(2)

where DAF is the dynamic amplification factor; µd is the dynamic load allowance calculated
by definition; Ymax and Yst are the maximum dynamic response and its corresponding static
response of a bridge under the same vehicle load in non-design conditions, respectively.
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2.2. Experimental Method

Since it is difficult to get the static response, it is typically replaced by the equivalent
mean response (Ymean) from the dynamic response curve [9], as shown in Equation (3). DLA
by this method is denoted as experimental DLA, and the details are shown in Figure 3.{

1 + µm = Ymax
Ymean

Ymean = 1
2 (Ymax + Ymin)

(3)

where µm is the DLA calculated by the experimental method; Ymean is the equivalent mean
response, which is approximately equal to the average of the Ymax and Ymin.
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This definition can give fairly reliable results because it was obtained from the calibra-
tion test that the maximum static load response is close in magnitude to the corresponding
mean response. In the field test, the maximum dynamic response can be obtained from
the time-history curve of the vehicle-bridge coupled vibration. In contrast, the maximum
static response can be extracted using the Taylor series or filters [22]. Still, in filtering, it
is essential to ensure that the filtered waveform cannot be time-shifted. The reasonable
cut-off frequency is also critical. However, there is still no standard available for filtering;
the low range passing filter of 0.6 to 2.0 Hz is recommended [23–25].

2.3. Proposed Weighted Average Method

The WAM, which we proposed, takes per wave crest corresponding to its wave trough
as a local band, divides the obtained dynamic response (time-history curve) into a finite
number of units, and then weights each unit according to its participation [11], as shown in
Figure 4 and Equations (4)–(7). The DLA from the WAM was denoted weighted DLA. The
calculation process is expressed as follows:

µ =
n

∑
i=1

uivi (i = 1, 2, 3, . . . , n) (4)

vi =
Ymeani

n
∑

i=1
Ymeani

(5)

ui =
Ymaxi
Ymeani

(6)

Ymeani =
(Ymini + Ymaxi)

2
(7)
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where ui is the DLA calculated by the ith local band; Ymeani is the ith local “static” response
corresponding to ui in the time-history curve; Ymaxi is the maximum response of the ith
local band; n is the regular number of the local band appeared in the time-history course
curve; vi is the weight of the DLA of the ith local band.
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3. Bridge and Vehicle Analysis Models
3.1. Vibration Equation

Taking a three-axle vehicle as an example, ignoring the local vibrations inside the
vehicle, the vehicle body was assumed to be rigidly coupled and supported on a suspension-
spring system and wheels. Both the wheels and the suspension system were considered
elastomers whose damping was proportional to speed. Ultimately, the vehicle was sim-
plified to a spring-mass model with five independent DOFs, as shown in Figure 5. The
corresponding parameters of the vehicle are shown in Table 1 [26,27]. The vibration equa-
tion for this vehicle model was expressed as follows:

Mv
..
Zv+Cv

.
Zv+KvZv=Gv+Fbv (8)

[Mv] =


m1 0 0 0 0
0 m2 0 0 0
0 0 m3 0 0
0 0 0 Mβ3

2 + Iα/lu2 Mβ3(β1 + β2)− Iα/lu2

0 0 0 Mβ3(β1 + β2)− Iα/lu2 M(β1 + β2)
2 + Iα/lu2



[Kv] =


ks1 + kt1 0 0 −ks1 0

0 ks2 + kt2 0 −(β2 + β3)ks2 −β1ks2
0 0 ks3 + kt3 0 −ks3

−ks1 −(β2 + β3)ks2 0 ks1 + (β2 + β3)
2ks2 β1(β2 + β3)ks2

0 −β1ks2 −ks3 β1(β2 + β3)ks2 β2
1ks2 + ks3



[Cv] =


cs1 + ct1 0 0 −cs1 0

0 cs2 + ct2 0 −(β2 + β3)cs2 −β1cs2
0 0 cs3 + ct3 0 −cs3

−cs1 −(β2 + β3)cs2 0 cs1 + (β2 + β3)
2cs2 β1(β2 + β3)cs2

0 −β1cs2 −cs3 β1(β2 + β3)cs2 β2
1cs2 + cs3


{Gv} = {m1g, m2g, m3g, Mgβ3, (β1 + β2)Mg}T

{Fbv} =
{

kt1y1 + ct1
.
y, kt2y2 + ct2

.
y2, kt3y3 + ct3

.
y3, 0, 0

}T
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where Mv, Cv and Kv are the mass, damping, and stiffness matrices of the vehicle, re-
spectively; Fvb is the vector of the vehicle-bridge interaction (contact) forces acting on
the vehicle; Gv is gravity force vector; Zv,

.
Zv and

..
Zv are the displacement, velocity, and

acceleration vectors of the vehicle, respectively.

Coatings 2022, 12, x FOR PEER REVIEW 6 of 24 
 

 

1 1 1

2 2 2 3 2 1 2

3 3 3
2

1 2 3 2 1 2 3 2 1 2 3 2
2

1 2 3 1 2 3 2 1 2 3

0 0 0
0 0 ( )

[ ] 0 0 0
( ) 0 ( ) ( )

0 ( )

s t s

s t s s

v s t s

s s s s s

s s s s s

k k k
k k k k

K k k k
k k k k k

k k k k k

β β β

β β β β β β β
β β β β β

+ − 
 + − + − 
 = + −
 − − + + + + 
 − − + + 

 

 

1 1 1

2 2 2 3 2 1 2

3 3 3
2

1 2 3 2 1 2 3 2 1 2 3 2
2

1 2 3 1 2 3 2 1 2 3

0 0 0
0 0 ( )

[ ] 0 0 0
( ) 0 ( ) ( )

0 ( )

s t s

s t s s

v s t s

s s s s s

s s s s s

c c c
c c c c

C c c c
c c c c c

c c c c c

β β β

β β β β β β β
β β β β β

+ − 
 + − + − 
 = + −
 − − + + + + 
 − − + + 

   

{ } 1 2 3 3 1 2{ , , , , ) }TvG m g m g m g Mg Mgβ β β= +(    

{ } 1 1 1 2 2 2 2 3 3 3 3{ , , ,0,0}Tbv t t t t t tF k y c y k y c y k y c y= + + +      

where vΜ , vC  and vK  are the mass, damping, and stiffness matrices of the vehicle, 
respectively; vbF  is the vector of the vehicle-bridge interaction (contact) forces acting on 
the vehicle; vG  is gravity force vector; vZ , vZ  and vZ  are the displacement, velocity, 
and acceleration vectors of the vehicle, respectively. 

 
Figure 5. Vehicle model with three-axis. 

Table 1. Parameters of the vehicle. 

Parameter Value 

Pitching moment of inertia of truck body cI /(kg·m2) 55,502 

Mass of the first, second, and third suspension im /(m/kg) 500 

Upper spring stiffness of the first axle 1sk /(N·m−1) 251,380 

Upper spring stiffness of the second and third axle 2tk , 3tk /(N·m−1) 2,064,000 

Upper damper coefficient of the first axle 1sc /(N·s·m−1) 50,636 

Upper damper coefficient of the second and third axle 2tk , 3tk /(kN·s·m−1) 25,320 

Lower spring stiffness of the first axle 1sk /(N·m−1) 1,100,000 

Lower spring stiffness of the second and third axle 2sk , 3sk /(N·m−1) 2,200,000 

Lower damper coefficient of the first axle 1sc /(N·s·m−1) 3500 

Figure 5. Vehicle model with three-axis.

Table 1. Parameters of the vehicle.

Parameter Value

Pitching moment of inertia of truck body Ic/(kg·m2) 55,502
Mass of the first, sec ond, and third suspension mi/(m/kg) 500
Upper spring stiffness of the first axle ks1/(N·m−1) 251,380
Upper spring stiffness of the sec ond and third axle kt2, kt3/(N·m−1) 2,064,000
Upper damper coefficient of the first axle cs1/(N·s·m−1) 50,636
Upper damper coefficient of the sec ond and third axle kt2, kt3/(kN·s·m−1) 25,320
Lower spring stiffness of the first axle ks1/(N·m−1) 1,100,000
Lower spring stiffness of the sec ond and third axle ks2, ks3/(N·m−1) 2,200,000
Lower damper coefficient of the first axle cs1/(N·s·m−1) 3500
Lower damper coefficient of the sec ond and third axle kt2, kt3/(N·s·m−1) 7000
lu/(m) 5
β2lu/(m) 1.06
β3lu/(m) 1.3

The bridge vibration equation was expressed as follows:

Mb
..
Yb+Cb

.
Yb+KbYb=Fvb (9)

where Mb, Cb and Kb are the mass, damping, and stiffness matrices of the bridge, respec-
tively; Y,

.
Y and

..
Y are the displacement, velocity and acceleration vectors of the bridge,

respectively; Fvb is the vector of the vehicle–bridge interaction (contact) forces acting on
the bridge.

If the vehicle and the bridge were considered as two separate systems, the coupling
between the two was linked by the interaction between the tire and the bridge deck, as
shown in Figure 6. The interaction force between the tire and the bridge was described as:

Fti = ktiui + cti
.
ui (10)

where Fti is the vehicle-bridge interaction (contact) forces acting on the bridge; kti, and cti are
the stiffness and damping coefficient of the ith tire; ui and

.
ui are the vertical displacement

and velocity of the ith tire contact with the bridge.
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Figure 6. Mechanical model of wheel-bridge contact.

The vehicle-bridge coupling vibration equation system could be obtained by combin-
ing Equations (8)–(10) as follows:[

Mb
Mv

]{ ..
Yb..
Zv

}
+

[
Cb Cbv
Cvb Cv

]{ .
Yb.
Zv

}
+

[
Kb Kbv
Kvb Kv

]{
Yb
Zv

}
=

{
Gv+Fbv

Fvb

}
(11)

where Kbv, Kvb, Cvb, and Cbv are the damping and stiffness coupling matrices of the
vehicle-bridge, respectively.

The vehicle equation (Equation (8)) and the bridge equation (Equation (9)) are indepen-
dent equations, while the vehicle-bridge coupled vibration equation system (Equation (11))
becomes non-independent due to the introduction of mutual interaction force (Equation
(10)). The analytical solution cannot be obtained because Equation (11) is a higher-order
inhomogeneous system of differential equations, which could be solved by numerical
solution methods [28–32]. The Newmark-β in the direct integration methods (step-by-step
integration) was used in this paper [5,33]. The vehicle and bridge were considered as
two subsystems and modeled accordingly in the ANSYS workbench. The transmission
of mutual interaction forces linked the two systems. Assuming that the displacement ui,
velocity

.
ui and acceleration

..
ui of a bridge under the vehicle at time ti were known, the

displacement ui+1, velocity
.
ui+1 and acceleration

..
ui+1 of a bridge at the time ti+1 were

obtained using Equations (12)–(14). According to the changing time and position of the
vehicle acting on the bridge, the coupled vibration responses of the bridge and vehicle were
solved sequentially based on the ANSYS solver. The specific solution procedure can be
referenced in [34]. Figure 7 shows in detail the flow of this process.

(a0[M] + a1[C] + [K]){ui+1} = {Fi+1}+ [M]
(
a0{ui}+ a2

{ .
ui
}
+ a3

{ ..
ui
})

+
[C]
(
a1{ui}+ a4

{ .
ui
}
+ a5

{ ..
ui
}) (12)

where a0 = 1
α∆t2 , a1 = δ

α∆t , a2 = 1
α∆t , a3 = 1

2α − 1, a4 = δ
α − 1, a5 = ∆t

2

(
δ
α − 2

)
, δ = 1/2,

α = 1/4. { ..
ui+1

}
= a0({ui+1} − {ui})− a2

{ .
ui
}
− a3

{ ..
ui
}

(13){ .
ui+1

}
= a1({ui+1} − {ui})− a4

{ .
ui
}
− a5

{ ..
ui
}

(14)
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damping matrices of the vehicle
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damping matrices of the bridge

The initial displacement of the vehicle and bridge 
at a given time t

Calculate the position, number of the wheels, and 
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the  geometric equation of wheel- bridge contact

Solve the bridge vibration equation to obtain the 
Bridge displacement at the current moment

Solve the vehicle vibration equation to obtain the 
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Calculate the interaction force of vehicel and 
bridge

Whether the bridge 
displacement converges

Whether the vehicles 
are all out of the bridge

Obtained the time-history curve 

End

Yes

No

Yes

No

Figure 7. Solution flow of the vehicle-bridge coupled vibration.

3.2. Negative Moment Responses of the Continuous Box-Girder Bridge

Taking precast concrete continuous box-girder bridges as examples, the cross-section
is shown in Figure 8; The FEM was established by ANSYS software. Beam188 elements
simulated the girder, the damping ratio was 0.05, and the model is shown in Figure 9, with
the following basic assumptions:

(1) The wheels always kept in contact with the bridge during moving, while only the
vertical vibration of the vehicle was considered;

(2) The stiffness and damping of the bridge should be evenly distributed within the
length of the bridge span;

(3) The deformations of the structure satisfied Hooke’s law.
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Figure 9. Model of the precast concrete box-gird bridge.

The sensitive parameters on the DLA of bridges were considered, such as bridge span
length, driving speed, road surface condition, and vehicle weight, to solve the dynamic
response of the negative bending moment of the continuous girder bridge. Considering
many full-scale test conditions, an orthogonal test design was used to select representative
conditions for the calculation (Figure 10). The condition parameters of the orthogonal test
are shown in Table 2. The negative moment responses (or time-history curves) of typical
conditions for two-span continuous gird bridges and three-span continuous gird bridges
are shown in Figures 11 and 12.
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Figure 11. Time-history curves of the negative bending moment in the two-span continuous girder
bridges. (a) Time-history curves of the bridges with a span of 20 m; (b) Time-history curves of the
bridges with a span of 25 m; (c) Time-history curves of the bridges with a span of 30 m; (d) Time-
history curves of the bridges with a span of 35 m; (e) Time-history curves of the bridges with a span
of 40 m.

Table 2. Parameters of each condition.

Conditions Span (m) Velocity (km/h) Road Surface Condition Vehicle Weight (ton)

1 30 30 A 35
2 30 30 A 30
3 40 60 C 35
4 25 30 D 30
5 30 90 C 20
6 25 30 C 25
7 30 120 B 20
8 35 120 D 20
9 25 120 A 35

10 40 30 A 20
11 25 90 A 20
12 20 120 C 30
13 20 90 D 35
14 25 60 B 20
15 40 30 D 20
16 20 30 B 25
17 20 60 A 20
18 40 120 A 25
19 40 90 B 30
20 30 60 D 25
21 35 60 A 30
22 20 30 A 20
23 35 30 B 35
24 35 90 A 25
25 35 30 C 20

Denotes: Four different road surface conditions were used in the study: ‘very good’, ‘good’, ‘average‘, ‘poor‘.
Detailed parameters could be referred to [20].



Coatings 2022, 12, 1233 11 of 23

Coatings 2022, 12, x FOR PEER REVIEW 11 of 24 
 

 

  
(d) (e) 

Figure 11. Time-history curves of the negative bending moment in the two-span continuous girder 
bridges. (a) Time-history curves of the bridges with a span of 20 m; (b) Time-history curves of the 
bridges with a span of 25 m; (c) Time-history curves of the bridges with a span of 30 m; (d) Time-
history curves of the bridges with a span of 35 m; (e) Time-history curves of the bridges with a span 
of 40 m. 

   
(a) (b) (c) 

  
(d) (e) 

Figure 12. Time-history curves of the negative bending moment in the three-span continuous girder 
bridges. (a) Time-history curves of the bridges with a span of 20 m; (b) Time-history curves of the 
bridges with a span of 25 m; (c) Time-history curves of the bridges with a span of 30 m; (d) Time-
history curves of the bridges with a span of 35 m; (e) Time-history curves of the bridges with a span 
of 40 m. 

4. Optimization of the Intercepted Segment for the Weighted DLA 
4.1. Intercepted Segments of the Time-History Curve 

Take the negative moment time-history curve of Section B as an example; different 
lengths of the curve were intercepted according to the span length L (for example, from 
the peak of the negative moment of each span, increase the intercept intercepted length in 
steps of 1/16 L). The way of segment interception is shown in Figure 13, and the parame-
ters are shown in Table 3; wherein segment 0 indicates the DLA calculated by the theoret-
ical method. 

0 10 20 30 40 50 60 70
−1600

−1200

−800

−400

0

400
 Condition 8  Condition 21
 Condition 23  Condition 24
 Condition 25

Be
nd

in
g 

m
om

en
t /

 (k
N

·m
)

Location of longitudinal bridge (m)
0 10 20 30 40 50 60 70 80

−2000

−1500

−1000

−500

0

500
 Condition 3  Condition 10
 Condition 15  Condition 18
 Condition 19

N
eg

at
iv

e 
m

om
en

t /
 (k

N
·m

)

Location of longitudinal bridge (m)

0 10 20 30 40 50 60
−900

−600

−300

0

300
 Condition 12  Condition 13
 Condition 16  Condition 17
 Condition 19

Be
nd

in
g 

m
om

en
t /

 (k
N

·m
)

Location of longitudinal bridge (m)
0 20 40 60 80

−1200

−900

−600

−300

0

300

600  Condition 4  Condition 6
 Condition 9  Condition 11
 Condition 14

Be
nd

in
g 

m
om

en
t /

 (k
N

·m
)

Location of longitudinal bridge (m)
0 20 40 60 80

−1500

−1200

−900

−600

−300

0

300

600  Condition 1  Condition 2
 Condition 7  Condition 5
 Condition 20

Be
nd

in
g 

m
om

en
t /

 (k
N

·m
)

Location of longitudinal bridge (m)

0 20 40 60 80 100

−1600

−1200

−800

−400

0

400

800  Condition 8  Condition 21
 Condition 23  Condition 24
 Condition 25

Be
nd

in
g 

m
om

en
t /

 (k
N

·m
)

Location of longitudinal bridge (m)
0 20 40 60 80 100 120

−2000

−1500

−1000

−500

0

500

1000  Condition 3  Condition 10
 Condition 15  Condition 18
 Condition 19

Be
nd

in
g 

m
om

en
t /

 (k
N

·m
)

Location of longitudinal bridge (m)

Figure 12. Time-history curves of the negative bending moment in the three-span continuous girder
bridges. (a) Time-history curves of the bridges with a span of 20 m; (b) Time-history curves of the
bridges with a span of 25 m; (c) Time-history curves of the bridges with a span of 30 m; (d) Time-
history curves of the bridges with a span of 35 m; (e) Time-history curves of the bridges with a span
of 40 m.

4. Optimization of the Intercepted Segment for the Weighted DLA
4.1. Intercepted Segments of the Time-History Curve

Take the negative moment time-history curve of Section B as an example; different
lengths of the curve were intercepted according to the span length L (for example, from
the peak of the negative moment of each span, increase the intercept intercepted length
in steps of 1/16 L). The way of segment interception is shown in Figure 13, and the
parameters are shown in Table 3; wherein segment 0 indicates the DLA calculated by the
theoretical method.
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Table 3. Parameters of the segments.

Intercepted Segment Number Interval Length

0 theoretical method
1 L/16
2 2L/16
3 3L/16
4 L/4
5 5L/16
6 3L/8
7 7L/16
8 L/2
9 9L/16
10 5L/8
11 11L/16
12 3L/4
13 13L/16
14 7L/8
15 15L/16
16 L

Note: No. 1 in the table corresponds to the intercepted segment 1©, as shown in Figure 13 and the other segments
in turn.

4.2. DLAs by the Weighted Average Method

Each time-history curve was intercepted sequentially according to segment length
in Table 3, and the weighted DLAs corresponding to different intercepted segments were
obtained from Equation (4), as shown in Figure 14.
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Figure 14. Weighted DLAs of each condition. (a) Weighted DLAs for the two-span continuous girder
bridge; (b) Weighted DLAs for the three-span continuous girder bridges.

In Figure 14, the weighted DLAs fluctuate greatly in the early stage and stabilize in
the latter as the segment length increases. The maximum difference of DLA for the same
time-history curve between segments 1 and 8 is 0.17, and the maximum difference between
segments 9 and 16 is relatively stable, with a maximum difference of 0.06. Overall, The
weighted DLAs for the last eight segments are less different than the first eight segments.
However, too much data increases the amount of computation, so the segments need to
be optimized.

4.3. Differences between Weighted Average Method and Theoretical Method

In the field load test, outliers may occur in the measured data, and the uncertainty and
contingency factors interfere with the DLA. However, the time-history curve obtained by
numerical simulation doesn’t have these problems.

To quantify the difference between the weighted DLA and the theoretical DLA, the
second-order central moments describing the characteristics of the data variables were
introduced. The weighted DLA could be analogized to the standard value in mathematical
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statistics. The weighted DLA of the different intercepted segments under the same time-
history curve could be considered a set of samples. The second-order central moment of
the weighted DLA D2

i is expressed by Equations (15) and (16). The standard deviation
of the weighted DLA Di, which was a square root of D2

i , as shown in Equation (17), was
used to evaluate the dispersion of the weighted DLA from the theoretical DLA in different
intercepted segments.

µi =
n

∑
j=1

µijYmeanij
n
∑

j=1
Ymeanij

(
i = 1, . . . , 16 j = 1, . . . , n

)
(15)

D2
i = (µi − µ0)

2 (i = 1, . . . , 16) (16)

Di =

√
Di

2 (17)

where µi represents the DLA calculated by WAM using the ith intercepted segment; µij
is the DLA calculated by the experimental method using the jth local band of the ith
intercepted segment; n represents the total number of interception segments of a time-
history curve; D2

i is the second-order central moment of the weighted DLA related to the
ith intercepted segment under the same time-history curve; Di is the standard deviation
corresponding to the second-order central moment D2

i .
The statistics Di for each condition in Table 2 were performed to make the variation

of the standard deviation of weighted DLA µ more representative. Linear normalization
was used to eliminate the influence caused by dimensional differences. The overall trend in
the difference between weighted DLA and theoretical DLA was characterized using the
total effect of the standard deviation, which was denoted as offset moment K. The specific
operation processes are as follows:

(1) First, the standard deviations of each time-history curve Di are compiled into an array
and normalized;

(2) Then, the normalized standard deviations Dnorm
i with the same number in different

time-history curves are added to obtain the offset moment Ki (Equation (18)), and the
calculation results are shown in Figure 15.

Ki =
9

∑
m=1

D2
m (18)
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Figure 15. Normalized standard deviation Dnorm
i and offset moment K of the weighted DLAs.

(a) Results for two-span continuous gird bridge; (b) Results for three-span continuous gird bridge.
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The offset moment K reflects the standard deviation Dnorm
i in all conditions. The

smaller the standard deviation Dnorm
i , the smaller the difference between the weighted DLA

and the theoretical DLA. In Figure 15, the 2nd to 4th intercepted segments have the largest
offset moment K of 19.50, which indicates that the weighted DLA deviates significantly
from the theoretical DLA. The offset moment K of the 10th to 16th intercepted segments is
between 5.61 and 8.45, which are smaller than other intercepted segments. From the above,
the weighted DLAs calculated using the intercepted segment lengths of 10L/16 to L are
closer to the theoretical DLAs.

4.4. Variability of DLAs by the Weighted Average Method

A coefficient of variation was introduced to study the relationship between the variabil-
ity of weighted DLA and the segment length. The variation coefficients of each intercepted
segment vi were obtained according to all local bands to evaluate the stability of weighted
DLAs. The specific operation processes are as follows:

(1) First, the weighted DLAs of each intercepted segment in Figure 14 are substituted to
Equation (19), and the weighted variance σ2

i after considering the magnitude of each
segment is obtained. Next, the weighted standard deviation σi is obtained by opening
the square of the weighted variance σ2

i ;
(2) The coefficients of variation vi for different segments were obtained by substituting

the weighted standard deviations σi into Equation (21), and the results are shown in
Figure 16.

σ2
i =

n

∑
j=1

(
µij − µij

)2Ymeanij
n
∑

j=1
Ymeanij

(
i = 1, . . . , 16 j = 1, . . . , n

)
(19)

σi =
√

σ2
i (20)

vi =
σi
µi

(21)

where σ2
i is the variance of the weighted DLA for the ith intercepted segment, which is

simply referred to as weighted variance; σi is the standard deviation of the weighted
DLA for the ith intercepted segment, which is denoted to as weighted standard
deviation; vi is the coefficient of variation of the weighted DLA for the ith inter-
cepted segment.
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Figure 16. Coefficients of variation of the weighted DLA. (a) Coefficients of variation for two-span
continuous gird bridge; (b) Coefficients of variation for three-span continuous gird bridge.

In Figure 16, the variation coefficients of the intercepted segments for most conditions
fluctuate greatly at the beginning. Among them, the maximum value is 6.08. Then the
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coefficients of variation gradually stabilize as the weighted segment length increases. The
maximum difference in the coefficient of variation between the 1st and 9th segments of
the same condition for the two-span continuous girder bridge is 5.85, while the maximum
difference in coefficients of variation between the 10th and 16th segments is 1.22. The
maximum difference in the coefficient of variation between the 1st and 9th segments of the
same condition for the three-span continuous girder bridge is 5.89, while the maximum
difference in coefficients of variation between the 10th and 16th segments is 1.82. The
trends for two-span continuous girder bridges and three-span continuous girder bridges
are almost identical. The results show that the weighted DLA calculated using the 1st to
the 9th segment is not stable enough. The segment with a relatively small value and stable
coefficient of variation should be selected if possible.

In summary, the optimal intercepted segment of the weighted DLA for the negative
bending moment is to consider the effect of the dispersion of weighted DLA and the
stability of the WAM for a comprehensive comparison. Under the same segment number,
the offset moments of the 10th and 16th segments for the 25 conditions are relatively small,
and the value is closer to the theoretical DLA. Meanwhile, the coefficients of variation of
these segments are more stable than in the first nine segments. Therefore, the intercepted
segment length of 9L/16 to L is suitable as the optimal segment for calculating the weighted
DLA of the negative moment in a continuous girder bridge. Moreover, it is recommended
to use the re-averaging of the DLAs of these seven segments.

4.5. Ability to Resist Outliers

As shown in [12], a small amount of outliers frequently occurs in measured signals
during field tests, and the corresponding data set was referred to as “bad data”. The WAM
had the advantage of minimizing the effect of outliers on DLA. To evaluate the ability of the
WAM to resist “bad data,” the outliers were created by artificially adjusting the amplitude
of a small number of points. Taking the time-history curves of condition 3 in two types of
continuous gird bridges as examples, two factors were considered in creating “bad data”
one was the ratio α of outliers (ratio of the number of outliers in the whole data set). The
other was the multiple k of the outlier amplitude (a multiple of the amplitude of the outliers
to their raw amplitude after adjustment). Considering the ratio α of outliers as 5%, 10%,
15%, 20%, 15%, and the multiple k of the outlier amplitude as 1.1 times, 1.2 times, 1.3 times,
1.4 times, 1.5 times, the DLAs with different “bad data” are shown in Figure 17.
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Figure 17. Comparison of DLA with different data. (a) DLAs for two-span continuous girder bridge;
(b) DLAs for three-span continuous girder bridge.

In Figure 17, the truth DLA was obtained from the raw data using the theoretical
method, while the weighted DLA was obtained by averaging the weighted DLAs of the
segments 10L/16 to L. The maximum error between the DLAs calculated by Equation (2)
and the truth DLA in the two types of continuous gird bridge is 381.3% when the multiple
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k of outlier amplitude is 1.5 times. At the same time, the maximum error between the
weighted DLA and the truth DLA is only 96.4%. The maximum error between the DLA
calculated by Equation (3) and the truth DLA of the two bridges is 75.2% when the multiple
of outlier amplitude k is 1.1 times. At the same time, the maximum error between weighted
DLA and true DLA is only 12.0%. The error between the weighted DLA and the truth DLA
increases with the outlier ratio α and outlier amplitude multiple k. As the outlier ratio α

and outlier amplitude multiple k change, the experimental method has an error of 8.3%
to 172.8% with the truth DLA, while the error of the weighted DLA range from 0.1% to
96.4%. The error between the weighted DLA and the true DLA is always smaller than the
experimental method under the same conditions. The above results show that the WAM
has strong “outlier filtering” ability in the “ bad data” processing.

5. Strategies for Accurately Assessing Bridge DLA
5.1. Measurement

The choice of sensor is critical to acquiring the DLA based on the measurement
target (dynamic response). Deflection and strain are the most common measurement
targets for a bridge’s dynamic response [33,35]. For deflection, a distinction needs to be
made between stiff bridges (main natural frequency f < 1 Hz, deflection at millimeter or
sub-millimeter level) and flexible bridges (main natural frequency f > 1 Hz, deflection at
centimeter or decimeter level) [12]. Normally, devices or methods such as dial gauge and
LDTV have high SNR (signal-to-noise ratio) and reliable results in stiff bridge’s dynamic
deflection measurement [36–38]. Meanwhile, geodetic techniques (GPS/GNSS) [39,40],
microwave radar interferometry [41,42], terrestrial laser scanning (TLS) [43], and vision-
based optical methods [44] perform well in flexible or large span bridges due to high SNR
in a large deflection.

For strain measurement, it is necessary to differentiate between steel and concrete
bridges according to the structural material. For steel bridges, the strain value is usually
larger, and fiber-optic strain gauges, resistive strain gauges, and double-cantilever strain
gauges can be used. Meanwhile, for concrete bridges, fiber-optic strain gauges and dual-
cantilever strain gauges are appropriate to measure the bridge’s dynamic strain to obtain
signals with high SNR [45]. Resistance strain gauges have high sensitivity and are highly
influenced by temperature and humidity in the field environment.

The sampling frequency is also an important factor affecting the measurement results.
According to the Nyquist–Shannon sampling theorem, the sampling rate has to be at least
twice as high as the fundamental frequency to estimate the frequency [3,46,47]. In the
sampling with strict requirements on the peak value, it is still necessary to increase the
sampling rate further. The signal peak value obtained by 8 to 10 times the sampling rate is
close to the real signal (Figure 18), which can avoid signal aliasing while capturing the full
dynamic response of the structure [35,48].
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In addition, the dynamic response of the bridge without external load excitation
should be collected during the measurement, and the SNR of the measured signal could
be initially estimated by the signal-to-noise indicator ε, as shown in Equation (22) and
Figure 19. Empirically, a more accurate DLA could be obtained when ε < 0.02. After the
above conditions are met, dynamic response measurement could be carried out.

ε =
∆Y
2Yst

(22)

where ε is signal-to-noise indicator; ∆Y represents the range of initial signal amplitude; Yst
is the amplitude of the measured static response.

Coatings 2022, 12, x FOR PEER REVIEW 18 of 24 
 

 

0 1 2 3 4 5
-2

-1

0

1

2

3

0 1 2 3 4 5
-2

-1

0

1

2

3

 Dynamic
 Static

D
ef

le
ct

io
n 

(m
m

)

△Y

△Y

(a) （）Time s

（）(b) Time s

Yst

Yst

Ymax

Ymax

 Dynamic
 Static

D
ef

le
ct

io
n 

(m
m

)

 
Figure 19. Deflections measured by different methods.  

stY
Y

2
Δ=ε  (22)

where ε  is signal-to-noise indicator; YΔ  represents the range of initial signal ampli-
tude; 

stY
 is the amplitude of the measured static response. 
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5.2. Data Processing

After obtaining the data, it should be set as the filtering cut-off frequency based on
the vibration participation mass ratio first to filter out the white noise and the higher order
mode signals with a lower contribution. Usually, the modes with 95% of the participating
mass can be selected as the cut-off frequency. A time-continuous derivative of the signal
is performed to obtain the velocity and velocity response. If a very obvious peak point
appears, it indicates that the signal at the point extremely near the point is an outlier and
should be excluded. The theoretical method to calculate the DLA is the best choice when
the signal is good. The WAM is recommended to calculate the DLA when the signal has
outliers at the peak point, and either exclusion or retention greatly influences the results.

6. A Case of DLA Measurement

A 3× 30 m precast box-girder bridge on the Anlan Highway (Shaanxi Province, China)
was carried out as a case of DLA measurement to verify the applicability of the WAM. The
cross-section of the bridge is shown in Figure 20. Strain gauges were pasted at the bottom
plate of the girder in the negative moment zone of the fulcrum section. One unilateral
wheel of a 36-ton vehicle slowly crossed the bridge along the white boundary of the travel
lane to obtain the maximum static strain. Then, a vehicle excitation was carried out, and
the lateral driving position was strictly controlled in the same way as the above static test.



Coatings 2022, 12, 1233 18 of 23

The sampling frequency was 200 Hz, and the measurement details are shown in Figure 21.
The dynamic tests were carried out three times for representativeness.
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Figure 21. Representative photographs of the static and dynamic load tests. (a) Bridge appearance;
(b) Data acquisition process; (c) Static and dynamic load tests; (d) Strain sensor arrangement.

The measurement data were checked according to Section 5.2. After determining
that there were no outliers, DLAs were calculated using the theoretical, the WAM, the
experimental, and the low-pass filtering methods. The results are shown in Figure 22.
Among them, the spectrum was obtained by FFT (fast Fourier transform) of dynamic strain
for filtering (Figure 23). Then, the right side of the first main lobe in the power spectrum
was regarded as the cut-off frequency, and the quasi-static strains were obtained by filtering
at 1, 1.6, and 1 Hz in three measurements, respectively [49].
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Figure 22. Measured dynamic strain of the bridge. (a) Response of the negative bending moment
strain for the first measurement; (b) Response of the negative bending moment strain for the second
measurement; (c) Response of the negative bending moment strain for the third measurement.
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Figure 23. Power spectrum of the measured strain response. (a) Power spectrum for the first
measurement; (b) Power spectrum for the second measurement; (c) Power spectrum for the
third measurement.

In Figure 24, the average error in the three measurements between the weighted DLAs
and the theoretical DLAs is 6.5%, and the maximum error is 12.9%. The errors between
the experimental and theoretical methods in DLAs range from 4.2% to 73.9%, with a large
dispersion due to a left or right band selection. The errors between the low-pass filtering
and the theoretical method in DLAs range from 4.5% to 65.2%. Nonetheless, the error of the
DLA calculated by WAM is smaller than that of the experimental and filtering methods.
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Figure 24. Comparison of DLAs from various methods.

A combination of dynamic and static load tests is the most reliable method under
strictly controlled conditions. However, it is not easily adopted by engineers in practice
due to time and cost. The WAM is difficult to obtain extreme values because of the multi-
point effect, which usually floats around the theoretical value. When the combination of
dynamic and static tests is not achieved, such as random traffic, the weighted DLA has
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higher measurement accuracy than the experimental and low-pass filtering methods. The
WAM, which can fully account for the impact effects of multiple locations (even multiple
moving loads) instead of single-point, could eliminate the accidental error introduced by
external factors or randomness of road surface conditions. The research of the WAM in
continuous girder bridges with negative bending moments will further expand the scope
of the WAM applications.

Moreover, further improve the efficiency of dynamic and static load test, such as the
employment of wireless data acquisition and non-contact measurement, which helps to
adopt the theoretical method. The low-pass filtering method still needs to be combined with
experiments to further research the “dynamic-static” response separation technique that
can improve the accuracy and reliability of extracting the static response. The experimental
method is recommended for use in many repeated dynamic load tests rather than in a
single test. The average result of multiple tests under the same conditions should be taken
as the DLA. Combining the WAM method and signal noise-reduction technique would
further improve the accuracy of weighted DLA.

7. Conclusions

The intercepted segments of the negative moment response for the weighted DLAs
were optimized for the first time based on the offset moment and variation coefficient
in the precast continuous box-girder bridge. The ability of the WAM to resist outliers
was evaluated. Finally, the applicability of WAM to calculate DLAs was verified by a
measurement case. The conclusions were drawn as follows:

(1) In the negative bending moment of precast concrete continuous girder bridges, the
offset moment first increased and then decreased. At the same time, the weighted
DLAs and the variation coefficient fluctuated greatly in the early stage and stabilized
in the latter as the weighted segment length increased. The intercepted segments
of 10/16 to 1 times the span length were suitable for the WAM to calculate the
negative bending moment DLA due to small offset moments and stable variation
coefficients. Moreover, it is recommended to use the re-averaging of the DLAs of these
seven segments. When artificially creating outliers for valid data, the error between
the weighted DLA and the truth DLA increased with the outlier ratio and outlier
amplitude multiple. Thus, the WAM has a strong anti-interference ability against
outliers in “bad data”.

(2) In field tests, the choice of sensor is critical to acquiring the DLA based on the mea-
surement target. Thus, it is necessary to distinguish between stiff and flexible bridges
for deflection measurement and between steel and concrete structures for strain mea-
surement. The minimum sampling frequency of 8~10 times concerned high-order
frequency of a structure should be satisfied to obtain accurate DLAs. The ratio of the
initial signal amplitude range to the estimated static response could be used as a basis
for a quick assessment of the SNR. After obtaining the measurement data, the modes
with 95% of the participating mass can be selected as the cut-off frequency to filter out
white noise and higher-order modes with a lower contribution. Then, the collected
signal was used to derive the time sequentially to obtain the velocity and velocity
response and identify outliers.

(3) The DLAs obtained by the WAM have less dispersion than the experimental and
low-pass filtering methods. In three measurements of a field bridge, the error ranges
of the DLAs obtained by the WAM, the experimental method, and the low-pass filter
method from the theoretical DLAs were 1.1% to 26.5%, 7.6% to 98.6%, and 7.3% to
85.5%, respectively. When the combination of dynamic and static tests is not achieved,
the weighted DLA has higher measurement accuracy than the experimental and
low-pass filtering methods. The WAM can fully account for the impact effects of
multiple locations (even multiple moving loads) instead of single-point, which could
eliminate the accidental error introduced by external factors or randomness of road
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surface conditions. Moreover, combining the WAM method and signal noise-reduction
technique would further improve the accuracy of weighted DLA.

(4) The theoretical method was recommended in numerical simulation; however, the
data may be affected by the external environment or power frequency in a field. There
was great randomness and uncertainty in using it to calculate a DLA. The different
choices of the left and right bands could lead to significant differences in the DLAs
calculated by the experimental method, which is recommended for use in many
repeated dynamic load tests. When the period of static oscillations matches the period
of dynamic oscillations, the filtering method to calculate DLA will fail. The weighted
DLA can fully consider the overall impact effect of the vehicle on a bridge, which was
closer to the existing structural design concept; meanwhile, it has a great advantage
in eliminating the interference of external factors.

It should, however, be noted that the WAM does not always obtain the most unfa-
vorable effect of DLAs, but will minimize the measurement error between the two after
optimization and ensure that extreme value does not occur. The research of the WAM in
continuous girder bridges with negative bending moments will further expand the scope
of the WAM applications.
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