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Abstract: A hydrogen storage alloy was formed by electrodepositing La using a molten salt. La was
electrodeposited using Ni as a substrate in NaCl-KCl-5.0 mol% LaF3 molten salt at electrodeposition
temperatures of 750 ◦C and 900 ◦C. The electrodeposition potential was−2.25 V. The LaNi5 hydrogen
storage alloy was then prepared by the electrodeposition of La and the mutual diffusion of the
Ni substrate. As a result, it was clarified that La can be electrodeposited by using a molten salt.
Single-phase LaNi5 was produced at 750 ◦C rather than at 900 ◦C. It became possible to uniformly
form LaNi5, an intermetallic compound, on the substrate surface. The prepared hydrogen storage
alloy was exposed to Ar-10%H2 to store hydrogen; at this time, hydrogen was stored by changing
the sample temperature. The discharged hydrogen was measured by a gas sensor. It was clarified
that the hydrogen storage and hydrogen discharge were the highest in the sample obtained by
electrodepositing La for 1 h at 750 ◦C. LaNi5 formed by electrodeposition showed hydrogen storage
properties, and this method was found to be effective even for samples with complex shapes.

Keywords: molten salt; LaNi5; hydrogen; gas sensor; electrodeposition

1. Introduction

Hydrogen is attracting attention as an alternative energy source to fossil fuels [1]. It
is necessary to liquefy hydrogen in order to transport a large amount of it; however, it
must be cooled to −253 ◦C in order to be liquefied. Therefore, different transportation
methods must be established. It is conceivable that hydrogen can be stored in a hydrogen
storage alloy and transported. Many studies of hydrogen storage alloys have already been
reported. Mechanical alloying methods [2–8], powder synthesis [9–12] and mechanical
grinding [13,14] are available as methods for producing hydrogen storage alloys. However,
they need to be effectively used since La is a rare element. Furthermore, LaNi5 is an
intermetallic compound and its composition range is narrow, so it is difficult to prepare
it. Another problem is that it is difficult to process. Therefore, the authors of this paper
decided to solve these problems by producing a LaNi5 hydrogen storage alloy by an
electrodeposition method. This method can produce LaNi5 with a large surface area. There
have been reports on surface modification [15,16] and the effects of tertiary elements [17–19].
The method proposed here may replace previously proposed methods.

The authors have easily electrodeposited metals using molten salts, which are high-
temperature liquids. An alloy of an electrodeposited metal and a substrate can be formed
on the surface since electrodeposition is performed at higher temperatures. Therefore, the
authors considered making a hydrogen storage alloy using this method. Figure 1 shows
the method for producing the hydrogen storage alloys used in this study. First, La is elec-
trodeposited on the substrate metal using a molten salt. At this time, the electrodeposited
La reacts with the substrate metal to form an alloy in order to carry out the experiment
at high temperature. The authors have clarified that various metals are electrodeposited
on the Ni substrate to form an alloy surface layer by using high-temperature molten salt.
Therefore, the LaNi5 hydrogen storage alloy was produced by electrodepositing La using
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a molten salt to form an alloy of Ni and La. Molten salt electrodeposition is less affected
by the shape of the sample than the dry process [20–22], so it is suitable for processing
complicated shapes.
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Figure 1. Schematic diagram of formation of LaNi5 hydrogen storage alloy by La electrodeposition.

In addition, the hydrogen storage characteristics of the hydrogen storage alloy pro-
duced by electrodeposition were measured by a gas sensor. There are few reports about the
effect of temperature on the absorption of hydrogen [23–25]. The reason is that it is difficult
to measure the hydrogen storage capacity in situ. The authors measured hydrogen in situ
using yttria-stabilized zirconia, a solid electrolyte. As a result, it was clarified that even a
small amount of hydrogen can be accurately measured in situ.

Therefore, the purpose of this study was to generate the LaNi5 hydrogen storage alloy
by La electrodeposition in a molten salt and to evaluate the hydrogen storage characteristics
by in situ measurement using a gas sensor. In addition, the hydrogen storage capacity was
increased by changing the shape of the sample and increasing the surface area.

2. Experimental Procedure
2.1. La Electrodeposition Using the Molten Salt

Commercially available 99.9% pure Ni (The Nilaco Corporation, Tokyo, Japan) was used as
the substrate. A plate-shaped sample was used as the sample morphology, and a mesh-shaped
sample was used to increase the surface area. The surface of the plate-shaped sample was
polished to No. 800 with emery paper, then cleaned ultrasonically in acetone. The mesh-shaped
sample was washed with acetone without polishing and was used in the experiment.

The LaNi5 hydrogen storage alloy was formed by electrodepositing the La. The
electrodeposition was carried out using a molten salt. The NaCl-KCl mixed salt, having an
equimolar composition to which 5.0 mol% LaF3 was added, was used as the electrolytic
bath. The electrolytic cell used in this experiment was described in a previous report [26].
The mixed salt of NaCl-KCl-AgCl (45:45:10 mol%) was placed in a mullite tube, and an
Ag wire was immersed in the mixed salt as the reference electrode. The bath temperatures
during the La electrodeposition were 750 ◦C and 900 ◦C. Ar gas was added to the cell at
the flow rate of 200 mL min−1 during the experiment. The electrodeposition was −2.25 V,
at which the reduction reaction of La occurs based on the cathode polarization curve. After
the treatment, the sample was removed from the bath and the salt, which had adhered to
the sample surface, was removed by washing with water. The cross-section of the sample
after treatment was observed and analyzed using a scanning electron microscope (scanning
electron microscope: SEM, Tokyo, Japan) and an X-ray micro-analyzer (electron probe micro-
analyzer: EPMA, Tokyo, Japan). Furthermore, the identification of the electrodeposited
layer was performed by the X-ray diffraction method. CuKα radiation was used as the
X-ray source.
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2.2. Measurement of Hydrogen Storage Capacity by Solid Electrolyte

The LaNi5 hydrogen storage capacity produced by electrodeposition was observed
in situ using a gas sensor. Figure 2 shows a schematic diagram of the equipment used to
measure the hydrogen storage capacity. A sample obtained by electrodepositing La on
the surface was placed in an electric furnace. The sample temperature was set by moving
the electric furnace up and down. The sample was heated by flowing Ar-10% H2 gas at
40 mL min−1 to occlude the hydrogen. The temperatures at which the hydrogen was
occluded were 340 ◦C, 440 ◦C and 540 ◦C. Next, Ar gas was flowed and the sample was
heated at 340 ◦C to discharge the hydrogen. The amount of hydrogen discharged was
measured using a gas sensor called an oxygen pump sensor.
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Figure 2. Diagram of measuring device for hydrogen storage capacity of LaNi5 hydrogen storage alloy.

Tubular yttria-stabilized zirconia (8 mol% Y2O3-ZrO2) was used for the oxygen pump
sensor. The measurement gas was then flowed inside the tube. The oxygen pump sensor
consisted of a sensor part and a pump part. Pt was used as the electrode. The oxygen
partial pressure can be measured by this sensor part. The oxygen partial pressure was
determined using the Nernst equation. The electromotive force measured by the oxygen
sensor was substituted into the Nernst equation shown in Equation (1), and the oxygen
partial pressure was obtained.

E =
RT
4F

ln
PO2(meas.)

PO2(ref.)
(1)
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where R indicates the gas constant (J K−1 mol−1); T indicates the temperature (K);
F indicates the Faraday constant (A s mol−1); E indicates the measured electromotive
force (V); and PO2(ref) indicates the reference gas (air, 0.21 atm). The sensor was operated at
850 ◦C. The oxygen can be supplied to the inside of the pipe by the reaction of (2) by passing
an electric current through the pump part, because this gas sensor is an oxide ion conductor.

2O2−→O2 + 4e− (2)

The hydrogen discharged from the hydrogen storage alloy flows together with Ar,
which is a carrier gas. The oxygen in Equation (2) and the released hydrogen react as in
Equation (3) by applying an electric current in the pump section.

O2 + 4e− + 2H2→2H2O (3)

The sensor unit maintains the initial oxygen partial pressure state. When hydrogen is
released from the hydrogen storage alloy, the oxygen partial pressure in the pipe decreases.
Oxygen is supplied from the outside of the pipe by the pump part to maintain the initial
state. As a result, the amount of hydrogen generated can be determined from the amount of
supplied oxygen. More emitted hydrogen indicates more supplied oxygen. The amount of
hydrogen discharged from the hydrogen storage alloy can be found by measuring the current
value of the oxygen supply. The supplied oxygen was calculated using Faraday’s law [27].

3. Results and Discussion
3.1. Cathode Polarization Curve in Isomolar NaCl-KCl Composition with Added LaF3

Figure 3 shows the cathode polarization curve at 750 ◦C in the NaCl-KCl-5.0 mol%
LaF3 molten salt on a Ni substrate. The results of the cathode polarization curve in the
NaCl-KCl molten salt without the addition of LaF3 are also shown for comparison. The
cathode current increased from around −1.8 V with no addition. This is considered to be
an increase in the cathode current due to the reduction reaction of Na+ and K+ contained in
the molten salt. On the other hand, an increase in the cathode current was also observed
from around −1.8 V even in the bath to which LaF3 was added. However, the cathode
current increased more than the result without adding LaF3 from around −2.25 V. It is
considered that the reduction reaction of La3+ occurred from around −2.25 V. Therefore, La
electrodeposition was performed at −2.25 V.
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3.2. Cross-Sectional Microstructure of the Sample Obtained by Electrodepositing La

Figure 4 shows the cross-sectional microstructure and elemental analysis results after
the La electrodeposition at −2.25 V for 1 h and 1.5 h in the molten salt at 750 ◦C. An
electrodeposited layer of about 7.8 µm was observed on the surface of the 1 h sample. As
a result of analyzing this layer, La was 16.9 at.% and Ni was 83.1 at.%. Here, the LaNi5
hydrogen storage alloy was formed. On the other hand, an electrodeposited layer of about
5.6 µm was observed on the surface of the sample with an electrodeposition time of 1.5 h.
As a result of analyzing this electrodeposition layer, La was 17.6 at.% and Ni was 82.4 at.%.
It is considered that LaNi5, which has a composition similar to that of a hydrogen storage
alloy, can be produced in a sample with an electrodeposition time of 1 h. The longer the
electrodeposition time, the higher the La concentration. The difference in thickness was
considered to be within the margin of error.
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NaCl-KCl-5.0 mol%LaF3 melts at 750 ◦C.

Figure 5 shows the cross-sectional microstructure and element analysis results after
the La electrodepositions at −2.25 V for 1 h and 1.5 h in the molten salt at 900 ◦C. The
electrodeposition layer of about 5.8 µm was observed in the inner layer for the 1 h sample.
When this layer was analyzed, La was 17.3 at.% and Ni was 82.7 at.%. It is considered that
LaNi5, which is a hydrogen storage alloy, was formed. However, La was electrodeposited on
the outer layer. For the sample with the electrodeposition time of 1.5 h, an electrodeposited
layer thicker than the 1 h one was observed on the surface. This electrodeposition layer
also had a two-layer structure. As a result of the analysis of the inner layer, La was 16.9 at.%
and Ni was 83.1 at.%. It appears that the LaNi5 hydrogen storage alloy was formed in this
inner layer like the other samples. However, La was 99.5 at.% and Ni was 0.5 at.% in the
outer layer according to our analysis. Therefore, it appeared to be a La metal. Furthermore,
many cracks were observed in the La metal for both the 1 h and 1.5 h samples.

Figure 6 shows the XRD diffraction results of the La-deposited samples (1 h and 1.5 h)
at 750 ◦C and 900 ◦C. The peaks of LaNi5 and Ni were observed under the electrodeposition
conditions of 1 h at 750 ◦C. It is probable that a peak was observed on the substrate due to
the thin electrodeposition layer. In addition, the generated electrodeposition layer could be
identified as LaNi5, which is a hydrogen storage alloy. Similar results were obtained for
the 1.5 h sample at 750 ◦C. However, the peak of La was observed at 900 ◦C. The La metal
and the hydrogen storage alloy LaNi5 were electrodeposited for 1 h at 900 ◦C. This result
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is consistent with the result of the cross-section observation. In addition, it is considered
that the peaks of LaNi5 and Ni were observed in the sample at 900 ◦C for 1.5 h because
there was a part without any La metal. The reaction slowly proceeds at 750 ◦C, resulting
in a uniform electrodeposition layer, but the reaction is rapid at 900 ◦C, resulting in a
non-uniform electrodeposition layer.
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3.3. Measurement of Occluded and Discharged Hydrogen by Gas Sensor

Figure 7 shows the results of the temperature dependence of the oxygen partial
pressure (a) and the time dependence of the amount of discharged hydrogen (b) measured
by the gas sensor. Figure 7a shows the result of measuring the oxygen partial pressure by
changing the temperature after occluding hydrogen at 540 ◦C in Ar-10% H2. The decrease
in the oxygen partial pressure indicates that hydrogen is being generated. Therefore, it was
clarified that hydrogen was not occluded in the 900 ◦C sample because the oxygen partial
pressure did not decrease. On the other hand, a decrease in the oxygen partial pressure was
observed from around 200 ◦C in the sample deposited at 750 ◦C for 1 h. The oxygen partial
pressure decreased the most at 250 ◦C. On the other hand, a decrease in the oxygen partial
pressure was observed from around 250 ◦C, and the oxygen partial pressure decreased the
most at 280 ◦C in the sample electrodeposited at 750 ◦C for 1.5 h. It can be seen that the
hydrogen emission was completed at 340 ◦C in both samples. The hydrogen discharge was
measured at 340 ◦C, at which the hydrogen discharge was completed in all the samples.
Figure 7b shows the result of measuring the amount of discharged hydrogen by a gas
sensor when the hydrogen was discharged at 340 ◦C. It can be seen that hydrogen is rapidly
discharged when the sample is heated to 340 ◦C. However, the hydrogen discharge was
low using the 900 ◦C sample. On the other hand, a large peak is shown at 750 ◦C, and
hydrogen was discharged for a long time, especially in the sample electrodeposited at
750 ◦C for 1 h. Therefore, it was found that most of the hydrogen was occluded.
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Figure 8 shows the time-dependent results of the oxygen partial pressure when hydro-
gen was discharged by changing the temperature of the hydrogen storage experiment to
340 ◦C, 440 ◦C and 540 ◦C. The hydrogen discharge experiment was performed at 340 ◦C.
A decrease in the oxygen partial pressure was observed with the generation of hydrogen
for the 750 ◦C sample. However, no decrease in the oxygen partial pressure was observed
with hydrogen generation for the 900 ◦C sample. On the other hand, a decrease in the
oxygen partial pressure due to the generation of hydrogen was observed in the samples in
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which hydrogen was occluded at 440 ◦C and 540 ◦C for the 750 ◦C samples. In addition,
the 440 ◦C and 540 ◦C results displayed similar behavior. Therefore, it was clarified that
hydrogen was occluded at 440 ◦C. When hydrogen was discharged at 340 ◦C, a decrease in
the oxygen partial pressure associated with hydrogen generation was observed at 1.5 h,
but not at 1 h. Therefore, 340 ◦C appears to be the critical temperature.
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Figure 8. Oxygen partial pressure–temperature curves of Ni after La deposition at−2.25 V in NaCl-KCl-
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Figure 9 shows the hydrogen discharge measured by the gas sensor. The hydrogen
discharge experiment was performed at 340 ◦C. In addition, the temperature at which
hydrogen was occluded was changed to 340 ◦C, 440 ◦C and 540 ◦C. No hydrogen emission
was observed for the sample with the electrodeposition temperature of 900 ◦C. Hydrogen
emission was observed for the sample with the electrodeposition temperature of 750 ◦C.
The large peak due to hydrogen generation can be observed during the initial stage for the
sample with the electrodeposition time of 1 h. The hydrogen storage temperature peaked at
440 ◦C and 540 ◦C. After showing a large peak, the amount of hydrogen generated sharply
decreased and remained low. On the other hand, a sample with the electrodeposition
time of 1.5 h also showed a large amount of hydrogen generation during the initial stage.
In particular, the peak increased at 440 ◦C and 540 ◦C. Therefore, 440 ◦C and 540 ◦C resulted
in a large amount of hydrogen storage. After the discharge, the hydrogen storage amount
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was low. Based on these results, it was clarified that a large amount of hydrogen was
emitted during the initial stage.
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Figure 10 shows the Arrhenius plot of the total amount of hydrogen generated, cal-
culated from the results of Figure 9. A high value was shown for the sample in which the
electrodeposition layer was formed at 750 ◦C. On the other hand, the value was low in
the sample for which the electrodeposition layer was prepared at 900 ◦C. Moreover, it was
clarified that hydrogen was not occluded at 900 ◦C, since no temperature dependence was
observed. On the other hand, the 1 h sample at 750 ◦C showed a temperature dependence
and the slope became smaller. Therefore, it can be easily seen that hydrogen storage and
discharge occur. The 1.5 h sample showed a small inclination, but the inclination was
greater than that of the 1 h sample. It is considered that a more uniform hydrogen storage
alloy was produced from the 1 h sample.
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3.4. Hydrogen Storage Alloy Using Ni Mesh

Figure 11 shows the results of the La electrodeposition using a Ni mesh to increase
the surface area and increase the hydrogen storage capacity. Figure 11a shows the cross-
sectional microstructure using 20 mesh Ni. In addition, (b) shows the cross-sectional
microstructure using 100 mesh Ni. The electrodeposition layer was 3.6 µm in the 20-mesh
sample of (a). As a result of analyzing this electrodeposition layer, La was 16.5 at.% and Ni
was 83.5 at.%. It is considered that LaNi5, which is a hydrogen storage alloy, was produced.
The 100-mesh sample for (b) was 5.8 µm-thick, which is thicker than that of the 20-mesh
sample. The analysis of this electrodeposition layer revealed that La was 17.0 at.% and Ni
was 83.0 at.%. It is considered that LaNi5, which is a hydrogen storage alloy, was produced
in the same way as the 20-mesh sample.
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Figure 11. Cross-sectional microstructure and element analysis of Ni mesh after La deposition at
−2.25 V in NaCl-KCl-5.0 mol%LaF3 melts at 750 ◦C.

Figure 12 shows the amount of hydrogen generated measured by a gas sensor when
hydrogen was occluded at 540 ◦C and discharged at 340 ◦C. The table shows the total
amount of hydrogen obtained by integrating Figure 12a. It was found that the performance
of the mesh-shaped sample was improved compared to that of the plate-shaped sam-
ple. In particular, the amount of generated hydrogen was dramatically improved for the
100-mesh sample. The initial amount of hydrogen generated dramatically increased for
the 100-mesh sample. It is considered that the surface area increased and the hydrogen
storage capacity increased when the mesh-shaped sample was used. Furthermore, it can be
seen that the mesh-shaped sample occludes more hydrogen than the plate-shaped sample
when comparing the amount of hydrogen obtained by integrating Figure 12a. In this
experiment, the hydrogen storage time was 1 h and Ar-10% H2 gas was used. However, if
pure hydrogen gas were used, it is considered that more hydrogen could be occluded than
that shown by the result obtained in this experiment.
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4. Conclusions

The La electrodeposition was performed at −2.25 V in a NaCl-KCl-3.5 mol%LaF3
molten salt using Ni as a substrate. The electrodeposition temperatures were 750 ◦C
and 900 ◦C. The electrodeposition time was 1 h and 1.5 h. Furthermore, the stored and
discharged hydrogen of the electrodeposited layer was measured in situ by a gas sensor.

1. The LaNi5 hydrogen storage alloy can be produced by La electrodeposition on Ni
in the molten salt.

2. At the electrodeposition temperature of 900 ◦C, the La metal was formed in the outer
layer and the LaNi5 hydrogen storage alloy was formed in the inner layer. On the other
hand, when the electrodeposition temperature was 750 ◦C, a single LaNi5 was produced.

3. As a result of measuring the oxygen partial pressure of the sample that occluded
hydrogen using a gas sensor, it was observed that the oxygen partial pressure decreased
with the hydrogen discharge. Specifically, the sample at 1 h at the electrodeposition
temperature of 750 ◦C showed the lowest oxygen partial pressure.

4. As a result of measuring the amount of discharged hydrogen using an oxygen pump
sensor, it was clarified that a large amount of hydrogen was discharged during the early
stage of the temperature increase.

5. The surface area was increased and the amount of stored hydrogen was significantly
improved by changing the morphology of the substrate Ni sample from a plate shape to a
mesh shape.
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6. In order to further improve the performance, it is necessary to try to grow thick
LaNi5 by changing the deposition conditions.
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