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Abstract: Nanocrystalline graphite (NCG) layers represent a good alternative to graphene for the
development of various applications, using large area, complementary metal-oxide semiconductor
(CMOS) compatible technologies. A comprehensive analysis of the physical properties of NCG
layers—grown for different time periods via plasma-enhanced chemical vapour deposition (PECVD)—
was conducted. The correlation between measured properties (thickness, optical constants, Raman
response, electrical performance, and surface morphology) and growth time was established to
further develop various functional structures. All thin films show an increased grain size and
improved crystalline structure, with better electrical properties, as the plasma growth time is increased.
Moreover, the spectroscopic ellipsometry investigations of their thickness and optical constants,
together with the surface roughness extracted from the atomic force microscopy examinations and
the electrical properties resulting from Hall measurements, point out the transition from nucleation
to three-dimensional growth in the PECVD process around the five-minute mark.

Keywords: nanocrystalline graphite film; PECVD; ellipsometry; Raman; AFM; hall effect; Romania
sensor applications

1. Introduction

Graphene has generated—since its discovery [1]—an enormous interest; initially lim-
ited to theoretical studies, the topic quickly transitioned to a more application-orientated
field of focus after its empirical finding by Novoselov et al. A broad spectrum of applications
was unveiled [2,3] since but, device integration with current production techniques and
equipment was shown to be inefficient compared to other state-of-the-art materials. There-
fore, manufacturing and integration constraints are the main drivers in identifying other
carbon-related materials, which could be compatible with complementary metal-oxide
semiconductor (CMOS) technologies, thus enabling more accessible and faster integration
into different applications. Nanocrystalline graphite (NCG), which can be described as
a collection of sp2 hybridised carbon nanodomains delimited by amorphous carbon and
various other defects, can represent a feasible alternative [4,5]. NCG thin films have already
shown immense versatility, bringing tremendous contributions to various applications:
from FETs and sensors to protective coatings and supercapacitors [4].

Its “less ordered” nature allows NCG thin films to be synthesised through a large
variety of techniques and retain the critical properties of graphene [4], thus providing
them with a significant advantage in research and development and large-scale production.
From the broad assortment of deposition techniques, plasma-based methods see the most
frequent use, as they provide additional energy in the form of ion bombardment and
allow for lower substrate temperatures during growth. Plasma-enhanced chemical vapor
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deposition (PECVD) is one of the most used plasma-based methods to grow NCG thin
films due to its great capability of fine-tuning the film’s properties through the multitude
of available parameters [4–6]. Parameters such as discharge power, pressure, gas ratio, and
substrate temperature can provide a high degree of control over the thin films’ crystallinity,
electrical conductivity, and even the type of growth (i.e., planar or vertical) [4,6–10]. Another
notable process parameter that may not seem highly impactful at first is the plasma growth
time, with which the film thickness can be controlled. Although film thickness is the direct
consequence of varying the exposure time to the plasma phase, other intrinsic properties
also suffer significant changes (e.g., electrical conductivity [6,11]).

The simple variation of the growth time can impart significant modifications to several
physical properties. Thus, it can be a valuable parameter for adjusting the film’s properties
for specific applications. Moreover, it is arguably the easiest one to modify and is readily
available to do so on any deposition system. Although studies that include time-dependent
deposition properties have been presented in the past, they usually focus more deeply
on other process parameters, and the scope of said papers is not solely aimed at the
investigation of growth time dependence [6,7,11]. For example, Schmidt et al. [7] presented
a comprehensive study of NCG thin films’ properties with respect to several growth
parameters, including deposition time, but the paper concentrates on a larger array of
parameters and analyses a growth period of only 15 min. We believe it is important to
investigate the films’ properties over a larger growth period to better observe how the thin
films’ properties evolve with further three-dimensional growth. Therefore, in this paper, we
aim to provide a systematic study of NCG’s properties strictly with respect to the deposition
time for growth periods of up to 60 min. Several NCG thin films were grown by capacitively
coupled radio frequency (RF) PECVD for different periods of time, and properties such as
crystallinity, surface morphology and topography, and several electrical properties were
investigated through X-ray diffraction (XRD), spectroscopic ellipsometry (SE), scanning
electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, and
Hall measurements.

2. Experimental
2.1. Samples Preparation

Prior to the NCG deposition, the 4” Si wafers were coated with a low-temperature
oxide (LTO) by PECVD with the LPX-CVD equipment (SPTS, Newport, UK). The deposition
occurred at a substrate temperature of 300 ◦C, using SiH4 and N2O as precursors. The
NCG growth was accomplished using the PECVD NANOFAB 1000 (Oxford Instruments,
Abingdon, UK) equipment. First, the wafers were loaded from a load-lock chamber into the
PECVD reactor at 200 ◦C, and the substrate temperature was gradually raised (15 ◦C·min−1)
to 900 ◦C in an Ar/H2 (5%) atmosphere. The wafers were kept in these conditions for
10 min, thus completing the post-deposition densification of the LTO layer. Next, the
hydrogenation of the surface is carried out for 5 min in an Ar/H2 (10%) atmosphere.

The growth of the NCG thin films was completed in a CH4:H2 plasma, at the same
substrate temperature of 900 ◦C, for various growth intervals between 1 and 60 min. After
the plasma was switched off, the wafers were cooled down to 200 ◦C in Ar atmosphere
at a rate of 9 ◦C·min−1. They were then transferred back into the load-lock chamber
(5 × 10−2 Torr) and cooled down to room temperature (RT). The process used to obtain
the thin films described here is commonly used for synthesising the bulk-NCG subclass, as
designated in Ref. [4]. For better readability, the samples are herein referred to as NCGx,
where x represents the plasma growth time (in minutes) to each sample subjected to (i.e.,
NCG1, NCG2, NCG5, NCG15, NCG30, and NCG60).

2.2. Sample Characterization

The obtained samples were characterized from structural, optical, morphological,
vibrational (modes of molecules), and electrical points of view.
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Structural characterization was performed by XRD. The measurements were carried
out using the Rigaku Ultima IV equipment (RIGAKU, Tokyo, Japan), with Cu Kα radiation
(λ = 1.5405 Å) and a fixed power source (40 kV and 30 mA). The diffractometer was used in
the grazing incident X-ray diffraction (GIXRD) mode, with an incidence angle of α = 0.5◦.

Optical characterizations of the samples were performed by SE with a J. A. Woollam
VASE® ellipsometer (J. A. Woollam Inc., Lincoln, NB, USA). The measurements were
executed in the 280–1700 nm spectral range at three incident angles (65◦, 70◦, and 75◦)
and with a 10 nm wavelength step. Data acquisition and analysis were realised using the
WVASE® software package (version 3.92, J. A. Woollam Inc., Lincoln, NB, USA).

The surface morphology of the samples was analysed by SEM in FEG Quanta 3D
(Thermo Fisher Scientific, Waltham, MA, USA) operating at 15 kV. The average grain size
was determined by the linear intercept method using ten random straight lines through the
SEM micrographs and dividing the number of grain boundaries intersecting each line by
the actual line length.

The morphological features of the samples were analysed by AFM with the XE-100
microscope (Park Systems, Suwon, Korea) in true non-contact mode, using flexure-guided,
cross-talk eliminated scanners. All AFM measurements were performed with NCHR sharp
tips (NanosensorsTM, Neuchatel, Switzerland), with less than 8 nm tip radius, ~125 µm
length, ~30 µm width, spring constant of ~42 N·m−1, and ~330 kHz resonance frequency.
The topographical 2D AFM images were acquired over 8× 8 µm2 and 1× 1 µm2 areas. The
XEI Image Processing Program (v.1.8.0, Park Systems, Suwon, Korea) was used to display
the results and for subsequent statistical data analysis, including calculating the root mean
square (RMS) roughness.

The Raman spectra were recorded with a Horiba Jobin Yvon LabRam HR spectrometer
(Horiba Jovin Yvon, Paris, France) using a 325 nm He-Cd laser, with a spot size of around
1–2 µm, as a light source. The measurements were carried out under a microscope objective
of 40×magnification, and a Raman Shift range between 1000 and 3500 cm−1 was covered.
The positions (wG and wD) and maximum intensities (IG and ID) of the G and D Raman
bands were determined by fitting the raw spectra with Lorentzian peaks.

Electrical characterization was accomplished by Hall measurements based on the
Van der Paw effect with the HMS-5000 equipment from Ecopia (Anyang, Korea). The
measurements were conducted in direct mode at RT.

3. Results and Discussions
3.1. X-ray Diffraction

The structural variation of the NCG thin films with respect to various growth times,
investigated by GIXRD, is presented in Figure 1. The LTO-coated Si wafer was also analyzed,
and its diffraction pattern is shown alongside the NCGs’ as a reference. The XRD spectra
serve only for a qualitative evaluation of the NCG films due to the overlapping of the broad
line of the amorphous SiOx (LTO) and that of the C (002) crystal plane of graphene. The
intensity and width of diffraction lines are related to the number of layers and the variations
in the interlayer distance [12]. In addition to the diffraction line around 26◦, corresponding
to the C (002) crystal plane, two broad and diffuse diffraction lines can be observed at
around 43◦. The latter two are attributed to contributions of the C (100) and C (101) planes,
which are often denoted as the C (10) single reflection. The intensity of the NCG diffraction
lines increases as the plasma growth time is extended from 1 to 60 min, which corresponds
to a restacking/overlapping of the graphitic domains. The structural parameters, La and
Lc, representing carbon crystallites’ stacking weight and lateral crystallite size, cannot be
calculated from the recorded XRD data due to the above-mentioned overlapping around
26◦, the low intensity, and the signal-to-noise ratio. Therefore, La was calculated solely
from the intensities ratios of the Raman G and D bands, and the results are presented in
Section 3.5.
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Figure 1. X-ray diffractograms of the low-temperature oxide (LTO) reference wafer and the nanocrys-
talline graphite (NCG) samples grown at different time periods. (Inset: enhancement of the dotted
square, evidencing the C(10) peak at 2θ = 43◦). The spectra are smoothed with the Savitzky-Golay
method over an 11-point window, with a second-order polynomial, for better differentiation of the lines.

3.2. Spectroscopic Ellipsometry

To determine the films’ thickness and their optical constants, the ellipsometric mea-
surements were analysed using a four-layers model (i.e., roughness/NCG/SiOx/Si). A
Cauchy equation was initially used for the approximation of the NCG layer’s thickness,
while the roughness was modelled with the Effective Medium Approximation (EMA). In
the next step, the thickness fit parameter was maintained fixed, and a General Oscillator
layer was used to describe the optical behaviour of the NCG layers. In this approach, the
best fit was obtained using a few Tauc–Lorentz oscillators. To illustrate the efficiency of our
chosen model, both the raw experimental data and the calculated data for the amplitude
ratio (Ψ) and phase difference (∆) at an incidence angle of 70◦ are presented in Figure 2.
As observed from the overlapping of the presented spectra, a very good agreement was
reached between the modelled and experimental data. Furthermore, the lowest value of
the Mean Square Error (MSE) obtained by the Levenberg–Marquardt regression algorithm
(~6 for the thickest sample) further supports that the model used for fitting was correct.
Finally, the thickness and the optical constants of each sample were extracted from the best
fit of the SE measurements and are showcased in Figures 3 and 4, respectively.
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We noticed that, while the film thickness varies relatively linearly with respect to
deposition time for large growth periods (Figure 3a), for the first three samples (NCG1,
NCG2, and NCG5), the film thickness varies based on a second-order polynomial function
(Figure 3b). This change in variation reveals the transition from the nucleation stage in the
NCG’s development to the actual growth and lateral expansion of the layers [5,6].

The results of the optical constants of the investigated NCG films (Figure 4) demon-
strate that NCG5 exhibits the highest refractive index. This possibly indicates that the
homogeneity of the graphitic thin film is attained at a deposition time of around 5 min.
Further increasing the plasma exposure time leads to a higher thickness of the deposited
NCG layer and, consequently, slightly lower values of the refractive index. This observation
is supported by the fact that the growth rate appears to stabilise after 5 min of growth, as
evidenced in the already presented thickness evaluation and other studies [6]. As graphene
and graphene-derived materials can be obtained through several methods and in various
nanostructures, their optical properties vary accordingly. To better showcase the variance
of graphene-based materials’ optical constants, we extracted some of the optical constants
presented in a few recent literature studies regarding graphene’s optical constants obtained
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by SE measurements. The constants mentioned above, together with those from our present
work, are displayed in Table 1 for a direct comparison. From the multitude of articles pub-
lished on this topic, the ones that describe synthesis by the CVD method and measurements
performed on SiO2/Si substrates were mainly chosen.

Table 1. Recent studies of graphene and graphene-derived materials’ optical constants, refractive
index (n) and extinction coefficient (k), obtained by spectroscopic ellipsometry analysis.

Synthesis
Method Substrate

Number of
Graphene

Layers or Film
Thickness

Measurement
Wavelength

Range

Optical
Constants

(λ = 630 nm)
Ref.

CVD * SiO2/Si Bilayer 218–1200 nm n = 2.95
k = 1.78 [13]

CVD * Si
PET

Monolayer
Bilayer
Trilayer

0.38–6.2 eV
0.38–5.2 eV
4.00–5.2 eV

n = 1.36
k = 0.06 [14]

CVD * Glass Quartz
SiO2/Si Monolayer 240–1000 nm n = 2.7

k = 1.48 [15]

CVD * SiO2/Si 0.334 nm 250–1100 nm n = 2.16
k = 1.06 [16]

Drop casting SiO2/Si r-GO film
1500–2500 nm 193–1690 nm n = 1.86

k = 0.83 [17]

CVD * Fused silica 0.335 nm 0.7–9.0 eV n = 2.91
k = 1.51 [18]

Exfoliation SiO2/Si 0.34 nm 210–1000 nm n = 2.73
k = 1.26 [19]

Exfoliation
SiO2/Si

Amorphous
quartz

0.335 nm 240–750 nm n = 2.8
k = 1.45 [20]

PECVD SiO2/Si
bulk-NCG
thin films

3.4–167 nm
280–1700 nm

NCG5:
n = 2.29, k = 0.84

NCG15:
n = 2.13, k = 0.71

NCG30:
n = 2.03, k = 0.71

This
work

* The graphene samples prepared by CVD were initially grown on Copper foils and transferred onto the
respective substrate.

For a better depiction, the refractive index of NCG5, NCG15, and NCG30 is graphically
represented in Figure 5 alongside some of the results [13,16,17] listed in Table 1, over the
full investigated wavelength range. The additional experimental data sets were extracted
from the literature using the WebPlotDigitizer software (Version 4.5) [21]. As can be
observed from Figure 5, even the optical constants’ behaviour of graphene is slightly
different in the published literature. This occurs due to some independent factors, such as
the preparation method, the use of other substrates for the graphene deposition, and the
number of graphene layers, or could even be linked to the investigation methods.

3.3. Scanning Electron Microscopy

The granular morphology of the NCG films is more visible from the SEM micrographs
of the NCG15, NCG30, and NCG60 films (Figure 6) than those of the thinner samples. This
is because the average grain size slightly increases with the deposition time, ranging from
~19 nm for NCG15 to ~21 nm for NCG60. As the grain size shows an increasing trend
with deposition time and due to the low RMS roughness of the samples, the grains for the
thinner films are harder to distinguish by top-view SEM micrographs. Hence, all samples’
topography was further evaluated by AFM.
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3.4. Atomic Force Microscopy

The AFM images of the NCG samples and the substrate used for deposition (SiO2/Si)
are displayed in Figure 7, together with their respective height histograms. The AFM
topography was recorded at an 8 × 8 µm2 and an 1 × 1 µm2 scale. The images recorded at
8 × 8 µm2 were registered to check the uniformity of the NCG deposition or the existence
of defects induced during NCG layer formation. After 1 min of plasma growth, a few
droplets of deposited material appear on the sample’s surface, visible as rounded white
spots in Figure 7a (middle). These droplets, marked by yellow arrows in Figure 7b (left),
become more visible after 5 min of NCG deposition as new carbonic layers nucleate and
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expand laterally on the already formed NCG layers. Otherwise, no other defects, such
as cracks or exfoliations, are visible in the recorded AFM images. The lower 1 × 1 µm2

scale (Figure 7c,d) offers a better view of the NCG samples’ morphology. The granular
morphology of NCG1 is not much different as an aspect from the SiO2 substrate, most
probably indicating the formation of just the first NCG nucleation sites. After 2 min of
deposition, the sample’s morphology is less uniform, revealing the appearance of parcels
with small particles and few material deposits. After 5 min of deposition, the film’s surface
is still covered only with small particles, with a few large deposits of material visible on
both NCG5 and NCG15 (marked by blue arrows in Figure 7d—left and middle). When
extending the deposition time to 15 and 30 min, these small particles start to nucleate
themselves, and the diameter of the surface particles increases. Some double-sized (or
larger) surface particles (marked by green arrows in Figure 7d—right) can be observed on
the surface of the thicker samples. The current AFM observations are consistent with the
previously presented top-view SEM micrographs, suggesting that larger grains are formed
as the films grow thicker. This complies with the PECVD synthesis of NCG films, as the
upper layers nucleate and grow on an already partially sp2 bonded carbon film and are
further away from the SiO2 substrate, which should allow for a better lateral expansion of
the nucleation sites [6].

The RMS roughness histogram (Figure 8a) pointed out a slight increase in roughness
values for the NCG films after 1 or 2 min of deposition, probably related to the formation of
the nucleation sites. As pointed out before, after 5 min, the film is formed and continuous,
and the appearance of some droplets of material (see Figure 7b—left) leads to an abrupt
increase in roughness. Further on, the thickness of the NCG films increases and the
films become more uniform, stabilising the RMS roughness around 4 nm after 60 min of
deposition (Figure 8b).

3.5. Raman Spectroscopy

In order to check the crystallisation of our samples and determine if the trend of
crystallite size matches the predictions from the SEM and AFM results of the PECVD
process’s evolution, Raman spectroscopy was conducted. Raman analysis of sp2 bonded
carbon nanostructures, such as ours, is typically conducted in the visible spectral range.
Nevertheless, we thought it would be interesting to analyse the Raman response of our
samples with a 325 nm He-Cd laser, as numerous investigations in the visible spectral
range of this type of carbonic film have already been published [4–6,22]. Although the
UV excitation causes dispersion of the D band and may suppress its intensity [23–26],
the acquired spectra can still be utilised as a qualitative comparison of each sample’s
crystallinity relative to each other. The extracted Raman parameters are listed in Table 2.
The spectra show the typical features of disordered graphitic carbon at ~1430 cm−1 (D
mode) and ~1600 cm−1 (G mode)—see Ref. [24] and references therein. The position of the
D and G bands, ωD and ωG, shifts to lower values as the deposition time increases and the
ID/IG ratio decreases from 0.59 for NCG2 to 0.36 for NCG60 (Table 2). This indicates the
growth of the typical width, La, of the nanographite domains along the hexagonal plane.
The lateral crystallite size values La were calculated according to Ref. [27], and they show
steady growth with respect to the deposition time (from 4.5 nm for NCG2 to 7.4 nm for
NCG60—see Table 2). The proportionality of this relation implies a higher crystalline order
of the nanographite domains as the films are grown for a larger period of time and further
reinforces the implications inferred from the SEM and AFM results.
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Table 2. Raman spectra parameters: ωD, ωG, ID/IG, I2D/IG and the calculated basal plane domain size.

Sample ωD (cm−1) ωG (cm−1) ID/IG La (nm) I2D/IG

NCG2 1441.7 1598.9 0.59 4.5 0.1041
NCG5 1437.4 1594.6 0.51 5.2 0.1020
NCG15 1431.4 1593.0 0.45 6.0 0.0869
NCG30 1430.0 1592.9 0.37 7.2 0.0729
NCG60 1429.2 1592.8 0.36 7.4 0.0581

The 2D band is present at ~2860 cm−1, and the I2D/IG ratio decreases with deposition
time from ~0.104 for NCG2 to ~0.058 for NCG60 (Table 2). The relative decrease in the 2D
band’s intensity is in agreement with the enhancement of crystalline order and indicates
the formation of layered nanographitic domains due to the superposition of single-layer
domains. Typical Raman spectra of the thinnest and thickest samples, together with the
Raman spectrum of commercial single-layer graphene, are presented in Figure 9 for a better
visual depiction of the NCG films’ transformation.
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3.6. Hall Measurements

The increasing degree of crystallinity of the presented samples should also involve
an increase in electrical conductivity. Therefore, to evaluate the electrical properties of
our samples and establish a relative dependence/trend with their growth time, Hall
measurements were performed. The obtained results for bulk and sheet concentrations,
resistivity, conductivity, and mobility are presented in Table 3.
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Table 3. The electrical properties of the NCG thin films resulted from Hall measurement.

Sample Current
(mA)

Bulk Conc.
nc (cm−3)

Sheet Conc.
ns (cm−2)

Resistivity
ρ (Ω·cm)

Conductivity
σ (S·cm−1)

Mobility
µ (cm2·V−1·s−1)

NCG 1 0.05 1.67 × 1020 1.25 × 1014 2.21 × 10−2 4.52 × 101 1.69
NCG 2 0.1 4.27 × 1020 2.99 × 1014 7.28 × 10−3 1.37 × 102 2.01
NCG 5 0.5 2.47 × 1020 3.70 × 1014 6.02 × 10−3 1.66 × 102 4.20
NCG 15 1 1.88 × 1020 7.52 × 1014 5.17 × 10−3 1.93 × 102 6.42
NCG 30 3 1.84 × 1020 1.57 × 1015 4.99 × 10−3 2.00 × 102 6.78
NCG 60 5 1.97 × 1020 3.36 × 1015 4.33 × 10−3 2.31 × 102 7.30

- - - ↑ ↓ ↑ ↑

All investigated samples possess a “p-type” conductivity, and their electrical properties
show improvement for higher deposition times. The carrier concentration (ns), electrical
conductivity (σ), and mobility (µ) increase from NCG1 to NCG60, while the resistivity (ρ)
decreases, from 2.2 × 10−2 Ω·cm (NCG1) to 4.3 × 10−3 Ω·cm (NCG60), showing better
conduction due to the improved crystallinity. The high values of the bulk concentration
(1020 cm−3) and transmittance make them suitable as transparent conducting materials for
solar cell applications.

For a better depiction of the electrical properties’ trend, the sheet concentration, mo-
bility, resistivity, and conductivity are plotted with respect to deposition time, and the
respective graphical representations are showcased in Figure 10. All electrical measure-
ments exhibit a trend consistent with the prior investigations presented in this work,
indicating a superior crystallisation for the samples grown for a larger period of time.
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4. Conclusions

A comprehensive study of the physical properties of PECVD NCG was conducted,
including establishing the spectral dispersion of the complex dielectric function and the
Raman response as a function of the incident wavelength. Firstly, a change in growth
rate after 5 min of plasma growth is found from the evaluation of film thickness by SE,
suggesting the transition from nucleation to film growth. This is further confirmed by
analysing the optical constants of the NCG films. SEM and AFM investigations show
an increase in grain size as the deposition time increases. Furthermore, the RMS surface
roughness investigations show a maximum value at a deposition time of 5 min, again
touching on the transition in growth at around the 5 min mark. The Raman analysis
of our samples reveals a layered structure of nanographitic domains with an improved
crystallinity for higher deposition times. The enhancement of crystallinity is also reflected in
the electrical properties of the NCG films, which become more conductive as the deposition
time is increased. Moreover, the process evolution before and after the 5 min mark is
further reflected in the films’ electrical properties, as can be seen in the respective graphical
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representations. All investigations of the presented samples show an increase in crystallinity
and improvement of electrical properties with higher deposition times. Additionally, we
conclude that the transition between the nucleation of the first few NCG layers and the
three-dimensional growth of the bulk-NCG film takes place around the 5 min mark in
the PECVD process under these specific parameters. As was shown in this study, the
physical properties of NCG thin films can vary considerably by only modifying their
growth time and so, the evolution of the NCG layer’s properties as a function of deposition
time is highly relevant from the perspective of application development (e.g., field emission,
electrochemical sensing, photodetectors, etc.).
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