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Abstract: In this study, duplex surface treatments were used to prepare a ZrO2/Cr bilayer coating
on zirconium alloy cladding for enhancing the wear and corrosion behaviors. The surface and
cross-section morphology of coated Zr-4 alloy was characterized; the results show that the Cr- and
ZrO2/Cr-coated samples had similar morphology, and more obvious surface undulates could be
observed on the ZrO2/Cr coating than the pure Cr coating owing to the rough surface of the plasma
electrolytic oxidation coating. Wear and electrochemical behavior in 1200 mg/L H3BO3 and 2.2 mg/L
LiOH solutions of original and coated Zr-4 alloy were investigated. The electrochemical corrosion
test indicated the coated Zr-4 alloy exhibited better corrosion resistance behavior than the original
Zr-4 alloy. The potentiodynamic polarization curves and corrosion morphology suggest the pitting
corrosion occurred on the surface of the original and coated Zr-4 alloy. The ZrO2/Cr-coated Zr-4
alloy had better corrosion resistance due to the dual protection of the PEO layer and Cr coating. The
wear behavior of the original and coated Zr-4 alloy was also investigated under a constant load of
5 N. The results reveal that the coated Zr-4 alloy had better wear resistance, and the PEO layer was
found to significantly enhance the wear resistance of the Zr-4 alloy.
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1. Introduction

The general public usually regards commercial nuclear power as a risk or unstable
process, and it is erroneously associated with radiation, nuclear weapons and nuclear safety
incidents. In fact, nuclear reactors generate electricity by using the heat energy released
when certain elemental atoms are split apart, according to Ref. [1], which play an important
role in energy conservation and emission reduction. Meanwhile, the safety of nuclear
reactors in the process of nuclear energy applications is becoming more of a concern.

Nuclear fuel cladding has been regarded as the first safety barrier in nuclear reactors.
After the Fukushima Daiichi nuclear accident, accident tolerant fuel (ATF)-coated Zr alloy
has attracted worldwide attention due to its higher safety under accident conditions
compared with the current Zr alloy cladding [2]. The potential ATF candidate coating
mainly includes the MAX phase, FeCrAl, Cr, etc. Among them, Cr coating is considered
the most promising material owing to its corrosion resistance, optimal high-temperature
oxidation resistance and low thermal expansion coefficient difference with the Zr alloy
matrix [3–7].

However, there are still some problems restricting the practical application of Cr
coating. During the rise to a high temperature, the formation of brittle intermetallic
compounds between the Cr coating and Zr alloy matrix can lead to cracks and spalling
of the coating and weaken the protective effect on Zr cladding [8,9]. Furthermore, the
eutectic reaction between Zr alloy and Cr coating (1330 ◦C and above) could lead to fast
Cr-Zr interdiffusion, which causes the mechanical degradation and early failure of the Cr
coating [10,11]. On the other hand, there is a large potential difference across the Zr alloy
and Cr coating (∆E = 0.809 V). When microcracks appear in the Cr layer, the bimetallic
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effect can accelerate the oxidation of the Zr alloy in the diffusion interface, and galvanic
corrosion easily occurs at the Cr/Zr interface [12,13].

To solve this problem, the current research demonstrates that the introduction of an
intermediate transition layer between zirconium alloy and Cr coating can effectively prevent
the generation of brittle intermediate compounds under high-temperature conditions, and
improve the high-temperature corrosion resistance of zirconium alloy [2,14]. Plasma
electrolysis oxidation (PEO) can in situ generate a ZrO2 layer on the surface of zirconium
alloy, which has attracted properties such as high-bonding strength and good compatibility
with zirconium alloy by adjusting parameters. Moreover, studies show a strong binding
force between the ZrO2 transition layer and Cr coating, which also maintains integrity
after a long time at high temperatures. Furthermore, the thermal expansion coefficient of
ZrO2 matches Cr coating better than the zirconium substrate at about 1000 ◦C, as shown in
Table 1 [15–17].

Table 1. Thermal expansion coefficients of Zr, ZrO2 and Cr.

Property
Material Zr [15]

25–870 ◦C
ZrO2 [16]

25–1040 ◦C
Cr [17]

25–1020 ◦C

thermal expansion
coefficient (×10−6/K) 5.5 (a axis) 10.3 (a axis) 16.6

Note: a axis indicates the expansion coefficients along the a axis in hcp lattice of Zr and expansion coefficients
along the a axis of monoclinic ZrO2.

In the study of Wang et al. (2018) [18], ZrO2/FeCrAl double-layer coating was pre-
pared on the surface of Zr-4 alloy by using plasma electrolytic oxidation (PEO) combined
with magnetron sputtering. After steam oxidation at 1000 ◦C, it was found that the ox-
idation rate of ZrO2/FeCrAl-coated Zr-4 alloys was about 20 times lower than that of
uncoated and FeCrAl-coated Zr-4 alloys. As for the study of Wang et al. (2021) [2,19],
ZrO2/Cr double-layer coating was prepared on Zr-1Nb alloy by plasma electrolytic oxida-
tion combined with cathodic vacuum arc deposition. Their research results show that after
high-temperature steam oxidation at 900–1100 ◦C, the oxidation weight gain of the Zr alloy
with ZrO2/Cr coating was much lower than that of the Zr alloy with Cr coating.

However, the current research on zirconium alloy with ZrO2/Cr coating is predom-
inantly focused on its high-temperature oxidation resistance and fails to consider the
continuous scouring of high-temperature, high-pressure cooling water on cladding dur-
ing service, leading to wear of cladding, simultaneous suffering from corrosion through
chemicals and wear products in primary water, which will further aggravate the cladding
abrasion, and even lead to perforation, resulting in leakage of fission products, affecting
the safe operation and service life of the entire nuclear fuel assembly [20].

Considering the above, in this study, the ZrO2/Cr bilayer coating was prepared
on a Zr-4 alloy through duplex surface treatments—plasma electrolytic oxidation (PEO)
followed by multi-arc ion plating. The influence of the ZrO2 interlayer on the wear and
corrosion properties was investigated. Moreover, the wear and corrosion resistance of the
ZrO2/Cr bilayer coating was evaluated in comparison with the original and Cr-coated Zr-4
alloy. It is hoped that this study can provide some suggestions on the development and
application of ATF coating.

2. Materials and Methods
2.1. Materials and Preparation

Commercial Zr-4 alloy (Xi’an Western Energy Material Technologies Co., Ltd., Xi’an,
China) with a size of 20 mm × 20 mm × 1.5 mm was used as a substrate. The chemical
composition(wt.%) of the Zr-4 alloy was Sn 1.2%~1.7%, Fe 0.18%~0.24%, Cr 0.07%~0.13%, C
~0.027%, O ~0.16% and Zr balance. Prior to the coating process, the Zr-4 alloy was polished
with SiC sandpaper up to a 2000 grit size followed by polishing the mirror surface with
diamond paste, and then ultrasonic cleaning was carried out in acetone, anhydrous ethanol
and deionized water for 15 min.
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The ZrO2 PEO coating on the Zr-4 alloy was fabricated by a dual-pulse voltage power
(FLB-MAO200A, Xi’an Precision Technology Co., Ltd., Xi’an, China). The applied positive
and negative voltages were +500 and −60 V, respectively. A pulse frequency of 150 Hz
with a duty cycle of 6% was applied. The electrolyte contained 15 g/L NaAlO2, 1 g/L
KOH, 4 g/L Na2WO4 and 30 mL/L glycerol. The Zr-4 alloy was oxidized at a solution
temperature below 30 ◦C for 20 min. Finally, Cr coating on the Zr-4- and ZrO2-coated Zr-4
samples was deposited by using multi-arc ion plating (MA1210-2450, Xi’an, China) in an
atmosphere of Ar with a flow rate of 1800 sccm. The bias voltage was −120 V, and the
working pressure was kept at 1.5 Pa during the deposition. Cr target with 99.9% purity was
used to generate plasma at the 120 A arc current with a duty ratio of 50%, and the chamber
temperature was kept constant at 300 ◦C. The schematic diagram of the sample preparation
process is shown in Figure 1.
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Figure 1. The schematic diagram of sample preparation.

2.2. Electrochemical Measurements and Wear Property Test

An electrochemical corrosion test was conducted by using a CS350M electrochemical
workstation (Wuhan CorrTest Instruments Co., Ltd, Wuhan, China). The original Zr-4 alloy
and coated Zr-4 alloy were used as the working electrode, a saturated calomel electrode
(SCE) was used as a reference electrode, and a Pt plate was used as a counter electrode. The
solution used in the electrochemical test was 1200 mg/L H3BO3 and 2.2 mg/L LiOH [21],
which simulated the solution in a reactor. The potential dynamic polarization (PDP) curve
test and electrochemical impedance spectroscopy (EIS) curves were tested after 90 min of
exposure at open-circuit potential (OCP). PDP tests were performed with a scanning rate
of 1 mV/s in the potential range of −1.5 to 1.5 V, and the EIS tests were carried out in the
frequency range of 102–105 Hz.

Wear property tests were carried out on the original and coated Zr-4 alloy using a
multifunctional friction and wear tester (MFT4000, Lanzhou Huahui Instrument Technology
Co., Ltd., Lanzhou, China) under dry sliding conditions. The tests were performed using
5 N of loading against a ZrO2 ball (6 mm diameter), a stroke length of 5 mm, and a sliding
speed of 50 mm/min with a wear time of 10 min. After the wear test, the wear surface
of wear track areas was measured, and the wear volume was calculated. The adhesion
strength of substrate–coating was tested by using a multifunctional friction and wear tester
(MFT4000). The scratch length was selected as 5 mm, and the progressive load ranged from
1 to 50 N with a speed of 25 N/min.
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2.3. Characterizations

The surface morphology and cross-sectional microstructure of the Cr-coated and
ZrO2/Cr-coated Zr-4 alloy were characterized by scanning electron microscopy (SEM,
ZEISS Gemini 300, Oberkochen, Germany). Chemical composition and line scanning of
the cross-section of the Cr-coated and ZrO2/Cr-coated Zr-4 alloy were measured by using
energy-dispersive spectroscopy equipment (EDS, OXFORD Xplore, Oxford, UK).

3. Results and Discussion

The results and analysis are presented as following. Surface and cross-section mor-
phology of Cr and ZrO2/Cr coating on the Zr-4 alloy was observed first, corrosion and
wear behaviors of Cr and ZrO2/Cr coating were then evaluated and compared.

3.1. Morphology

Figure 2a shows the surface morphology of the ZrO2 layer deposited by PEO; it could
be observed that there were many micropores, cracks and volcano-like structures on the
coating surface, which is a typical morphology of PEO coating, and a similar phenomenon
was reported in other research [21]. The generated micropores could be attributed to the
discharge breakdown on the surface of samples. In addition, in the process of plasma
electrolytic oxidation, the expansion coefficients and directions of each oxide phase are
different, and the melting and solidification of the sample surface is usually accompanied
by a certain volume change, which results in the generation of thermal stress and cracks.
Since the micropore is the center of stress concentration, the crack usually passes through
the micropores [21–23]. Figure 2b,c depict the surface morphology of the Cr layer and
ZrO2/Cr bilayer coating, showing similar morphology and indicating that a smooth and
dense Cr layer was deposited on the surface of the original and ZrO2-coated Zr-4 alloy,
while some small particles were observed on the surface. However, no obvious defects
such as micropores and cracks were observed. In addition, more obvious surface undulates
could be observed on the ZrO2/Cr coating than on the pure Cr coating, which may be
ascribed to the rough surface of the PEO coating.
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Figure 2. Surface morphology of the (a) ZrO2 layer, (b) Cr outer layer and (c) ZrO2/Cr bilayer coating.

Figure 3 illustrates the cross-section morphology and line scanning of Cr and ZrO2/Cr
coating on the Zr-4 alloy. Figure 3a shows that the Cr coating was uniform and dense with
a thickness of about 2.6 µm. Figure 3b suggests that the PEO layer of ZrO2/Cr coating
consisted of a dense inner layer with a thickness of about 3.7–5 µm and a porous outer
layer with a thickness of about 6.7–9 µm. Microcracks induced by volume shrinkage can be
observed in the inner layer, and micropores with a diameter of 0.3–0.45 µm appeared in the
outer layer. The Cr coating deposited on the PEO layer was dense and partly filled with
the defects and micropores in the PEO coating during deposition.
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Figure 3. Cross-section morphology of (a) Cr and (b) ZrO2/Cr coating on Zr-4 alloy.

3.2. Electrochemical Corrosion Measurement

Figure 4 shows the potentiodynamic polarization curves for the original, Cr-coated
and ZrO2/Cr-coated Zr-4 alloys. Corrosion current density (icorr) and corrosion potential
(Ecorr) of the original, Cr-coated and ZrO2/Cr-coated Zr-4 alloys were obtained using the
Tafel extrapolation method, and the results are exposed in Table 2. The Ecorr of the coated
Zr-4 alloy (−0.847 V for Cr-coated and −0.702 V for ZrO2/Cr-coated alloys) shifted to a
more positive region compared with that of original the Zr-4 alloy (−1.216 V), which can
be attributed to the presence of dense surface coating. The icorr of the coated Zr-4 alloy
(6.42 × 10−6 A/cm2 for the Cr-coated Zr-4 alloy and 1.86 × 10−6 A/cm2 for the ZrO2/Cr-
coated Zr-4 alloy) was lower than that of the original Zr-4 alloy (1.02 × 10−5 A/cm2),
which reveals the coated Zr-4 alloy exhibited better corrosion resistance behaviors than the
original Zr-4 alloy. The deterioration of corrosion performance is mainly ascribed to the
dense surface, which prevented corrosion during electrochemical corrosion. In addition,
the ZrO2/Cr-coated Zr-4 alloy had better corrosion resistance due to the dual protection of
the PEO dense inner layer and outer dense Cr coating. Moreover, the original and coated
Zr-4 alloys were passivated at the anode, and a sharp rise appeared in the anodic region,
which suggests the pitting corrosion occurred on the surface of the sample [24].
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Table 2. Corrosion parameters of the original, Cr-coated and ZrO2/Cr-coated Zr-4 alloy obtained
from polarization curves.

Sample Ecorr (V/SCE) icorr (A/cm2)

Original Zr-4 alloy −1.216 1.02 × 10−5

Cr-coated Zr-4 alloy −0.847 6.42 × 10−6

ZrO2/Cr-coated Zr-4 alloy −0.702 1.86 × 10−6

The corrosion morphology of the original, Cr-coated and ZrO2/Cr-coated Zr-4 alloys
is shown in Figure 5. It can be clearly observed that pitting corrosion was present on the
surface of all samples, which is consistent with the results in Figure 4. For the original
Zr-4 alloy (Figure 5a), it can be seen that localized corrosion occurred except for the pitting
corrosion. In addition, such corrosion of coated samples is hard to observe owing to the
protection of the dense coating.
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Figure 6 shows the Nyquist and Bode plots of the original and coated Zr-4 alloys in
1200 mg/L H3BO3 and 2.2 mg/L LiOH. As shown in Figure 6a, Nyquist curves of the
original Zr-4 alloy display smaller capacitive loops compared with those of the coated Zr-4
alloy. A partially enlarged image of Nyquist curves is shown in Figure 6b, which shows
a small circle in the range of 1700 to 4800 Ω·cm2. Bode plots in Figure 6d suggest that
the impedance values of the coated Zr-4 alloy had orders of magnitude higher than those
of the original Zr-4 alloy, indicating a larger polarization resistance and better corrosion
resistance of the coated Zr-4 alloy. Moreover, Figure 6c shows that the phase angle reached
its maximum value at ~700 Hz. The higher phase angle of ZrO2/Cr-coated Zr-4 alloy
indicates the higher corrosion resistance should be attributed to the dense Cr coating and
PEO inner layer deposited on the Zr-4 alloy, which is regarded as a double barrier against
ion corrosion [25].
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The equivalent circuits and physical model of the original, Cr-coated and ZrO2/Cr-
coated Zr-4 alloys were conducted on the basis of electrochemical impedance spectrum
data. The fitting results obtained by using ZSimWin software (Version 3.50) are shown in
Table 3. Based on the EIS of samples in 1200 mg/L H3BO3 and 2.2 mg/L LiOH solution,
the equivalent circuit model Rs(CdlRct) was used to simulate the original Zr-4 alloy in
solutions (Figure 7a). The model consisted of resistance to the solution (Rs) and charge
transfer resistance (Rct) of the Zr-4 alloy, and the Cdl represented double electric layer
capacitance [26,27]. The equivalent circuit of the Cr-coated Zr-4 alloy is shown in Figure 7b;
Rs represents the solution resistance; Rc and Cc are constant phase elements and resistance
of Cr coating; and Rct and Cdl are charge transfer resistance (Rct) and the double electric
layer capacitance of the interface of the Cr coating and Zr-4 alloy. Equivalent circuits of the
ZrO2/Cr composite coating are shown in Figure 7c, comprising Rs, which corresponds to
the resistance of the solution; Rc and Cc, which are constant phase elements and resistance
of the Cr coating; Rp and Cp, which are resistance and constant phase elements of the PEO
porous (outer) layer; and Rct and Cdl, which are charge transfer resistance (Rct) and the
double electric layer capacitance of the interface of the PEO inner layer and Zr-4 alloy. As
shown in Table 3, the Rct of the coated Zr-4 alloy (9.48 × 108 Ω−1·cm2·s−n for the Cr-coated
Zr-4 alloy and 3.39 × 107 Ω−1·cm2·s−n for the ZrO2/Cr-coated Zr-4 alloy) increased by an
order of magnitude compared with that of the original Zr-4 alloy (9.25 × 104 Ω−1·cm2·s−n),
which indicates that the dense Cr coating plays an important role in improving the corrosion
resistance of the Zr-4 alloy. In addition, as exhibited in Table 3, Rc1 corresponds to resistance
of the PEO porous (outer) layer, providing dual protection for the Zr-4 alloy. Together with
Figures 4–6, it can be presumed that ZrO2/Cr has the most excellent corrosion resistance.
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Table 3. Fitted parameters to fit the experimental EIS data of the original, Cr-coated and ZrO2/Cr
coated Zr-4 alloys obtained from polarization curves.

Sample Rs
(Ω cm2)

Cdl
(Ω−1·cm2·s−n) n Rct

(Ω cm2)
Cc

(Ω−1·cm2·s−n) N Rc
(Ω cm2)

Cp

(Ω−1·cm2·s−n)
n

Rp

(Ω cm2)

Original 1177 2.73 × 10−5 0.61 9.25 × 104 - - - - - -
Cr-coated 1066 6.66 × 10−6 0.79 9.48 × 108 2.36 × 10−7 0.92 3180 - - -

ZrO2/Cr-coated 1109 6.18 × 10−6 0.97 3.39 × 107 3.5 × 10−9 0.89 3949 1.54 × 10−6 0.77 1.61 × 104
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3.3. Tribological Performance

The friction–load curves during the scratch test and panoramic view of the scratch
groove of the coatings for Cr and ZrO2/Cr are represented in Figure 8. Obvious cracking
and delamination of both coatings under loading forces were observed. As seen in Figure 8a,
the values of Lc of the Cr and ZrO2/Cr coatings were 23.46 and 17.74 N, respectively.
The adhesion strength of the coating–substrate is controlled by the hardness, modulus of
elasticity, microstructure, composition and thickness [28]. The lower value of Lc of ZrO2/Cr
coatings is ascribed to the high coating porosity of the PEO coating [29].
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Reciprocating friction and wear tests of the original and coated Zr-4 alloys were
performed using a multifunctional material surface performance tester (MFT 4000) with a
ball-on-disk contact configuration, and the coefficient of friction (COF) of the original and
coated Zr-4 alloy is shown in Figure 9a. For the original Zr-4 alloy, there was a rapid increase
in the COF at the initial stage, and it stabilized at 0.82. Compared with the original Zr-4
alloy, the COF of the Cr-coated Zr-4 alloy was slightly lower than the original sample due
to the increase in hardness [30]. For the ZrO2/Cr-coated Zr-4 alloy, the friction coefficient
decreased significantly, which can be ascribed to stable tetragonal zirconia, which is easily
formed on the surface of the Zr alloy in an aluminate electrolyte [31], and the ZrO2 hard
layer plays a good supporting role in the friction and wear process. On the other hand,
the deposition of the Cr coating filled the pores of the ZrO2 coating, making the surface
smoother than that of the ZrO2 coating, and the thickness of the composite coating was
much thicker than that of the Cr coating sample (as shown in Figure 3), thus showing
superior wear resistance.

Coatings 2022, 12, x FOR PEER REVIEW 9 of 12 
 

 

Reciprocating friction and wear tests of the original and coated Zr-4 alloys were per-
formed using a multifunctional material surface performance tester (MFT 4000) with a 
ball-on-disk contact configuration, and the coefficient of friction (COF) of the original and 
coated Zr-4 alloy is shown in Figure 9a. For the original Zr-4 alloy, there was a rapid in-
crease in the COF at the initial stage, and it stabilized at 0.82. Compared with the original 
Zr-4 alloy, the COF of the Cr-coated Zr-4 alloy was slightly lower than the original sample 
due to the increase in hardness [30]. For the ZrO2/Cr-coated Zr-4 alloy, the friction coeffi-
cient decreased significantly, which can be ascribed to stable tetragonal zirconia, which is 
easily formed on the surface of the Zr alloy in an aluminate electrolyte [31], and the ZrO2 
hard layer plays a good supporting role in the friction and wear process. On the other 
hand, the deposition of the Cr coating filled the pores of the ZrO2 coating, making the 
surface smoother than that of the ZrO2 coating, and the thickness of the composite coating 
was much thicker than that of the Cr coating sample (as shown in Figure 3), thus showing 
superior wear resistance. 

 
Figure 9. (a) Coefficient of friction and (b) linear wear depth of friction of the original, Cr-coated 
and ZrO2/Cr-coated Zr-4 alloys. 

From Figure 9b, it is can be seen that the wear depth of the Cr-coated Zr-4 alloy was 
much lower than that of the original Zr-4 alloy. This phenomenon can be attributed to two 
aspects; on the one hand, the higher hardness of the Cr coating reduced the generation of 
abrasive wear. From the SEM image of worn surfaces for the original and Cr-coated Zr-4 
alloys (Figure 10a,b), it can be seen that the abrasive wear on the worn area of the original 
samples, furrows and abrasive dust generate can be observed.t. For the Cr-coated Zr-4 
alloy, from the SEM image, serious plastic deformation can be observed in the worn area, 
but the spalling of the wear debris was not observed. On the other hand, the friction pair 
composed of the same metal material had a large adhesion tendency and was prone to 
adhesive wear. The Cr-coated Zr-4 alloy enhanced the adhesive wear resistance through 
avoiding similar friction pairs [32,33]. It was interesting to observe that the wear depth of 
the ZrO2/Cr-coated Zr-4 alloy was difficult to distinguish due to the surface roughness, 
but it can still be seen that the wear depth was significantly lower than that of the original 
sample. From the SEM images of the worn surface for the ZrO2/Cr-coated Zr-4 alloy (Fig-
ure 10c), the existence of plastic deformation can be observed, meaning the main wear 
mechanism is fatigue. 

Figure 9. (a) Coefficient of friction and (b) linear wear depth of friction of the original, Cr-coated and
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From Figure 9b, it is can be seen that the wear depth of the Cr-coated Zr-4 alloy was
much lower than that of the original Zr-4 alloy. This phenomenon can be attributed to two
aspects; on the one hand, the higher hardness of the Cr coating reduced the generation of
abrasive wear. From the SEM image of worn surfaces for the original and Cr-coated Zr-4
alloys (Figure 10a,b), it can be seen that the abrasive wear on the worn area of the original
samples, furrows and abrasive dust generate can be observed.t. For the Cr-coated Zr-4
alloy, from the SEM image, serious plastic deformation can be observed in the worn area,
but the spalling of the wear debris was not observed. On the other hand, the friction pair
composed of the same metal material had a large adhesion tendency and was prone to
adhesive wear. The Cr-coated Zr-4 alloy enhanced the adhesive wear resistance through
avoiding similar friction pairs [32,33]. It was interesting to observe that the wear depth of
the ZrO2/Cr-coated Zr-4 alloy was difficult to distinguish due to the surface roughness,
but it can still be seen that the wear depth was significantly lower than that of the original
sample. From the SEM images of the worn surface for the ZrO2/Cr-coated Zr-4 alloy
(Figure 10c), the existence of plastic deformation can be observed, meaning the main wear
mechanism is fatigue.
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4. Conclusions

In this study, ZrO2/Cr bilayer coating was prepared using plasma electrolytic oxida-
tion (PEO) followed by multi-arc ion plating on Zr-4 alloy substrates. Wear and corrosion
resistance of Zr-4 alloy with Cr coating and ZrO2/Cr bilayer coating were evaluated and
compared, and the following conclusions can be summarized from this study:

1. Cr and ZrO2/Cr coatings have similar surface morphology. The more obvious surface
undulates on the ZrO2/Cr coating were due to the rough surface of the PEO coating.
Cross-section morphology showed that the thickness of the Cr coating was about
2.6 µm. The thickness of the ZrO2/Cr coating was about 15 ± 1.2 µm, and it was
observed that Cr partly filled in the PEO coating due to the existence of micropores.

2. Pitting corrosion occurred on the surface of the original and coated Zr-4 alloys during
the electrochemical corrosion. The ZrO2/Cr-coated Zr-4 alloy exhibited superior
corrosion resistance with an iorr value of 1.86 × 10−6 A/cm2, which is lesser than
that of the Cr-coated Zr-4 alloy with an iorr value of 6.42 × 10−6 A/cm2 owing to its
double-barrier construction and high thickness (15 ± 1.2 µm). The coating on the Zr-4
alloy had better corrosion resistance than that of the original Zr-4 alloy with an iorr
value of 1.02 × 10−5 A/cm2.

3. Critical loads of Cr and ZrO2/Cr coatings were 23.46 and 17.74 N, respectively, and
the lower critical load of ZrO2/Cr coatings is ascribed to the high coating porosity of
the PEO coating. The wear resistance of the coated Zr-4 alloy was enhanced due to
the increase in hardness. The wear depth of the coating on the Zr-4 alloy was much
lower than that of the original Zr-4 alloy, which is attributed to the change of the wear
mechanism from abrasive wear to fatigue wear.
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