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Abstract: AISI 304 has high-tensile strength and excellent corrosion resistance, which is widely
needed in the energy industry and equipment manufacturing industry. However, the tools for cutting
AISI 304 are easy to wear and have short service life. In order to improve tool life, micro grooves are
designed on the rake face of the tool for the machining of AISI 304. Through the single factor cutting
experiment, it is found that under the same cutting parameters, the micro groove tool has less cutting
depth resistance than the initial tool; the main cutting force and feed resistance are reduced by more
than 15%. The shear energy is reduced by more than 13%; the surface roughness and the hardening
degree of the workpieces are reduced. Through the durability test, it is found that the service life of
the micro groove tool is 57% longer than that of the initial tool, and the abrasive wear, bonding wear,
and oxidation wear of the tool are significantly less. Through cutting experiments and theoretical
analysis, the cutting performance of the micro groove tool has been improved.

Keywords: micro groove tool; cutting force; energy; wear; surface quality

1. Introduction

AISI 304 has good comprehensive mechanical properties and is widely used in the
field of equipment manufacturing. However, due to its good plasticity and high toughness,
the tool wear is faster in the process of cutting; hence, the service life of the tool is short,
and the use cost of the tool is higher. To solve this problem, the paper has carried out an
innovative optimization design of the tool to reduce the cutting force and tool wear and
improve the service life of the tool.

Tool micro texture design is an important subject of tool optimization design.
Duong et al. [1–3] verified the feasibility of the micro texture tool through numerical
analysis and verified by relevant experiments. Deng et al. [4] used femtosecond laser tech-
nology to prepare a groove-shaped micro texture on the surface of cemented carbide tools
and deposited tungsten disulfide solid lubricating coating on the rake face of texture tool.
The influence of texture tool on cutting performance during dry cutting was studied by
using three tools, including the original tool, the texture tool with solid lubricant deposited,
and the texture tool without solid lubricant. The results show that the cutting temperature,
cutting force [5], and the friction coefficient of the tool chip interface of the texture tool are
significantly lower than that of the original tool, and the texture tool with tungsten disulfide
solid lubricating coating is the best in improving the cutting performance. Micro texture
can improve the friction characteristics between two friction pairs [6–8]. Micro-texture
can change the friction conditions between tool and workpiece [9]. Sugihara et al. [10–12]
prepared different textures on the rake face of the tool and studied the effect of texture
on the rake face during cutting. The results show that the micro texture can reduce the
friction between the tool and the chip and reduce the wear of the rake face of the tool.
Johannes et al. [13,14] designed different micro textures to improve the adhesion between
the tool and the chip and found that the textured tool has a good effect on reducing the
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adhesion behavior and the tool chip friction. Micro-textured tools perform well in reducing
tool wear [15].

The surface quality of the workpieces is directly related to the usability and reliability
of workpieces. Yang et al. [16] used a micro texture milling tool to mill titanium alloy
and found that the micro texture tool can improve the hardening degree of the titanium
alloy surface, especially if the surface roughness of the workpiece has a high correlation
with the diameter and depth of the micro texture. Wang et al. [17] applied the rounded
micro groove tool to cut composite materials and found that the micro groove tool can
improve the surface quality of the workpiece. Pan et al. [18] prepared a linear micro groove
texture and a V-shaped micro groove texture on the rake face of the milling tool. Through
milling experiments, it is shown that both textures can reduce the surface roughness of
the workpiece, and the surface roughness of the V-shaped micro groove texture decreases
more. Zhang et al. [19] compared the cutting performance of textured tools and traditional
tools in cutting AISI 1045. The experimental results show that the micro texture of the tool
can effectively reduce the surface roughness of the workpiece, and the effect is better under
lubrication conditions. When cutting 304 stainless steel, Ahmed et al. [20] found that the
surface roughness of the workpiece processed by the square texture tool is smaller, and the
surface hardening degree of the workpiece is lower.

Many studies show that the micro textured tool can reduce the contact length between
the tool and the chip and reduce the abrasive wear, adhesive wear, and oxidation wear
caused by the contact stress and high temperature of the tool [21–23]. Singh et al. [24]
studied the wear behavior of textured tools when cutting Ti6Al4V in different environments
and found that the mixed graphene lubrication conditions, the crater wear, and the bond
wear of the textured tools decreased. Liu et al. [25] studied the protective effect of nano
texture on the non-worn surface and pointed out that nano texture reduces the flank wear of
the tool. Sarvesh et al. [26] found that the micro texture tool reduces the friction coefficient
and reduces the abrasive wear of the tool. Yang et al. [27] used laser processing to prepare
micro texture on the rake face of cemented carbide tools and used micro texture tools to
carry out milling titanium alloy to study the effect of micro texture parameters on the wear
of tool rake face. The results show that the micro texture parameters have a significant
impact on the wear of the tool rake face. Fang et al. [28] evaluated the effect of micro texture
on tool wear and adhesion during longitudinal turning of Inconel 718. The experimental
results show that micro textured cutting tools can generally reduce the flank wear and
crater wear compared with non-textured cutting tools. Musavi et al. [29] carried out cutting
experiments of the original tool and the micro groove tool under MQL conditions. The
result showed that the cutting performance of the micro groove tool was better than that of
the original tool. It was found that the groove spacing had the greatest impact on the tool
wear and surface roughness.

The above research shows that the micro texture design can improve the comprehen-
sive cutting performance of the tool, but few researchers study the cutting performance of
the micro texture tool in different cutting parameters, which can provide useful data for
many factories. In this paper, the cutting performance of the micro groove tool is analyzed
under different cutting parameters. At the same time, the tool durability experiment was
carried out to study the tool wear.

2. Materials and Experimental Process

The tools used in this paper are provided by a manufacturer, which is called tool A for
short. The tool with micro grooves on the rake face is called tool B, and both tools A and B
are cemented carbide. The workpieces to be processed are AISI 304. Tools A and B have the
same geometric angle, as shown in Table 1.
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Table 1. Geometric angles of the tools.

Geometric Angle Tool Angle εr Rake Angle γ0 Flank Angle α0 Main Edge Angle Kr End Edge Angle Kr’ Inclination Angle λs

Value (◦) 80 8 7 95 −5 −5

First, through the special cutting simulation software (version Deform 11.0), Deform,
the cutting AISI 304 simulation is carried out by tool A; the cutting parameters are: cutting
speed, v = 120 m/min, feed rate, f = 0.15 mm, and cutting depth, ap = 1.5 mm. Through the
cutting simulation test, the design of tool B is carried out based on the theory of temperature
field [30,31]. Both tools A and B are cemented carbide with WC as the main body, and their
surfaces are coated with TiAlN coating. The matrix element content of AISI 304 is shown in
Table 2.

Table 2. Chemical composition of AISI 304 (wt%).

Si Mn P S Ni
Cr C

Fe

0.75 1.64 0.045 0.03 8.56
18.87 0.08

70.025

2.1. Three-Dimensional Cutting Force Analysis

Within the range of cutting parameters and based on the needs of actual production,
each enterprise will choose different cutting parameters. Based on the combination of cut-
ting parameters of most enterprises cutting AISI 304 and taking into account the operability
of the experiment, the paper designs the experiment of single factor cutting parameter
changes of cutting AISI 304 with tools A and B.

The cutting experiment was carried out on the C2-6136hk CNC lathe (the favgol,
Chongqing, China). In the cutting process, the three-dimensional cutting force of the
tool was tested by the force measuring instrument, Kisler-9257b (kisler-9257-b, kisler
Instrumente AG, Winterthur, Switzerland). Tools A and B and the test instruments are
shown in Figure 1.
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The total length of the workpiece bar is 220 mm. During the single factor experiment,
the cutting length of each parameter combination is 15 mm, and the cutting is carried out
continuously until the experiment is completed. The experimental design scheme is shown
in Tables 3 and 4, which contain the measured cutting force values.

Table 3. Three-dimensional cutting force value of the tool A.

Variation of Cutting Force of Tool A with Cutting Parameters

Vc (m/min) f (mm/r) ap (mm) Fx (N) Fy (N) Fz (N)

100 0.15 1.5 103 512 283
120 0.15 1.5 110 530 290
140 0.15 1.5 114 562 302
160 0.15 1.5 121 578 315
180 0.15 1.5 129 628 327
120 0.11 1.5 103 501 252
120 0.13 1.5 108 516 271
120 0.15 1.5 110 530 290
120 0.17 1.5 115 549 334
120 0.19 1.5 117 564 365
120 0.15 1.1 83 497 274
120 0.15 1.3 95 510 280
120 0.15 1.5 110 530 290
120 0.15 1.7 125 551 302
120 0.15 1.9 137 589 324

Table 4. Three-dimensional cutting force value of the tool B.

Variation of Cutting Force of Tool B with Cutting Parameters

Vc (m/min) f (mm/r) ap (mm) Fx (N) Fy (N) Fz (N)

100 0.15 1.5 89 461 204
120 0.15 1.5 90 488 216
140 0.15 1.5 93 517 243
160 0.15 1.5 98 532 262
180 0.15 1.5 98 567 268
120 0.11 1.5 86 463 190
120 0.13 1.5 88 476 204
120 0.15 1.5 90 488 216
120 0.17 1.5 90 514 232
120 0.19 1.5 94 537 272
120 0.15 1.1 80 451 204
120 0.15 1.3 85 462 210
120 0.15 1.5 90 488 216
120 0.15 1.7 97 498 221
120 0.15 1.9 115 524 241

To comprehensively compare the cutting performances of tools A and B under the
same conditions and more clearly describe the change of the three-dimensional cutting
force of tools with cutting parameters, this paper draws the change diagram of cutting
force with cutting speed, feed speed, and cutting depth, as shown in Figures 2–4.
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Figure 3. (a) Cutting depth resistance changes with feed speed, (b) main cutting force changes with 
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Figure 2. (a) Cutting depth resistance changes with cutting speed, (b) main cutting force changes
with cutting speed, (c) feed resistance changes with cutting speed.
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As shown in Figure 2a, when the feed rate and cutting depth rate remain unchanged,
the cutting depth resistances of the tools A and B increase with the increase of cutting speed,
and the cutting depth resistance of the tool B changes more smoothly with the increase of
cutting speed. The cutting depth resistance of the tool A is slightly higher than that of the
tool B. It can be seen from Figure 2b that the main cutting forces of tools A and B increase
with the increase of cutting speed. At the same cutting speed, the main cutting force of the
tool A is more than 10% higher than that of the tool B. It can be seen from Figure 2c that the
feed resistance of the tools A and B increase with the increase of the cutting speed. Under
the same conditions, the tool B has smaller feed resistance.

As shown in Figure 3a, when the cutting speed and cutting depth rate remain un-
changed, the cutting depth resistance of the tool A increases with the increase of feed speed,
and the cutting depth resistance of the tool B increases slowly with the increase of feed
speed. In general, the cutting depth resistance of the tool A is higher than that of the tool B.
It can be seen from Figure 3b that the main cutting forces of the tools A and B increase with
the increase of the feed speed. At the same feed speed, the main cutting force of the tool B
is reduced by more than 10% compared with the tool A. It can be seen from Figure 3c that
the feed resistances of the tools A and B increase with the increase of the feed speed. At the
same feed speed, the feed resistance of the tool B is more than 10% lower than that of the
tool A.

As shown in Figure 4a, when the cutting speed and feed rate remain unchanged, the
cutting depth resistances of the tools A and B increase with the increase of the cutting depth
rate. On the whole, the cutting depth resistance of the tool A is slightly higher than that of
the tool B. It can be seen from Figure 4b that the main cutting forces of the tools A and B
increase with the increase of the feed speed. Under the same conditions, the main cutting
force of the tool A is at least 10% higher than that of the tool B. It can be seen from Figure 4c
that the feed resistance of the tools A and B increase with the increase of the cutting depth
rate. Under the same conditions, the feed resistance of the tool A is more than 25% than
that of the tool B.

2.2. Research on Cutting Energy

In the process of metal cutting, the chip is deformed, broken, and separated by
continuous energy input. The total cutting energy includes: the shear energy in the
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first deformation zone, the friction energy in the second deformation zone, the surface
energy of the newly formed surface of the cutting workpiece, and the change energy
generated when the material passes through the shear surface. Generally, the proportion of
motion change energy and surface energy is very small, which is generally ignored in the
calculation process. Therefore, the paper mainly calculates the shear energy and friction
energy. According to the metal cutting theory and relevant geometric knowledge [31], the
following formula can be obtained:

tan γn = tan γ0 cos γs (1)

tan ϕn = tan
a/ac cos γn

1− a/ac sin γn
(2)

cos ηc = tc cos λs/aw (3)

tan ηs =
tan λs cos(ϕn − γn)− tan ηc sin ϕn

cos γn
(4)

vc =
sin φn cos λs

cos vc cos(φn − γn)
(5)

vs =
cos φn cos λs

cos vs cos(φn − γn)
(6)

where λs, ϕn, a, ac, tc, and aw are the inclination angle, normal shear angle, cutting thickness,
chip thickness, chip width, and uncut width, respectively, γ0 and γn are the rake angle
and normal angle, respectively, and ηc and ηs indicate chip flow angle and shear chip flow
angle, respectively. The three-dimensional model and two-dimensional cutting model
can be equivalently transformed by the angle transformation. To obtain the force of the
three-dimensional coordinate system, you can first rotate the angle, γn, around the axis, χ′,
and then rotate the angle, λs, around the z axis:F′x

F′y
F′z

 =

1 0 0
0 cos γn sin γn
0 − sin γn cos γn

cos λs − sin λs 0
sin λs cos λs 0

0 0 1

Fx
Fy
Fz

 (7)

Then the friction force and normal force on the rake face of the tool are respectively:

Ff =
√

F′2x + F′2z

=
√
((Fx cos λs − Fy sin λs)

2 + (−Fx sin λs sin γn − Fy cos λs sin γn + Fz cos γn)
2)

(8)

Fn = Fx sin λs cos γn + Fy sin γn + Fz cos λs cos γn (9)

The shear force on the shear surface is:

Fs = [(Fx cos λs − Fzsinλs)
2 + (Fx sin λs cos φn − Fy sin φn + Fz cos λs cos φn)

2]
1/2

(10)

In the cutting process, the cutting energy is mainly consumed by the shear energy, Nss,
and friction energy, Nsf, on the shear surface. Their calculation formula is as follows:

Nss =
Fsvs

vawa
= τs

vs

v sin φ
(11)

Ns f =
Ff vc

vawa
=

Fs

ξawa
(12)

In the process of the cutting experiment, the shear energy and friction energy can be
calculated by measuring the three-dimensional cutting force and chip thickness, combined
with the known parameters and Formulas (1) to (12) [31].
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As shown in Figure 5a, when the feed rate and cutting depth rate remain unchanged,
the shear energy of the tools A and B increase with the increase of the cutting speed.
Under the same cutting speed, the shear energy of the tool B decreases by more than 10%
compared to tool A. It can be seen from Figure 5b that the shear energy of the tools A and B
increase with the increase of the feed speed. Under the same conditions, the shear energy
of the tool B decreases by about 8% compared to tool A. It can be seen from Figure 5c that
the shear energy of the tools A and B increase with the increase of the cutting depth rate,
and the shear energy of the tool B is smaller under the same conditions. It can be seen from
the above that the shear energy of the tool B with different cutting parameters is smaller
than that of the tool A.
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Under the same conditions, the friction energy of the tool B decreases by about 7%. It can 
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crease of the cutting depth rate, and the friction energy of the tool B is smaller under the 
same conditions. In general, the friction energy of tool A with different cutting parameters 
is smaller than that of the tool A. 

Figure 5. (a) Shear energy changes with cutting speed, (b) Shear energy changes with cutting feed
speed, (c) Shear energy changes with depth rate.

It can be seen from Figure 6a that the friction energy of the tools A and B increase with
the increase of the cutting speed. Under the same conditions, the friction energy of the
tool A decreases by more than 8% compared to tool A. It can be seen from Figure 6b that
the friction energy of the tools A and B increase with the increase of the feed speed. Under
the same conditions, the friction energy of the tool B decreases by about 7%. It can be seen
from Figure 6c that the friction energy of the tools A and B increase with the increase of the
cutting depth rate, and the friction energy of the tool B is smaller under the same conditions.
In general, the friction energy of tool A with different cutting parameters is smaller than
that of the tool A.
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In the cutting process, the cutting energy input of tool B is reduced due to the place-
ment of micro grooves, which shows better energy consumption performance.
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2.3. Workpiece Surface Roughness Analysis

Surface roughness is a micro geometric feature with small spacing of less than 1 mm
formed on the surface of the workpiece due to the interaction between the tool and the
workpiece in the cutting process. It is an important technical index to evaluate the ma-
chining quality. Surface roughness not only affects the wear resistance, fatigue resistance,
and sealing performance of the parts, but also affects the service life of the workpiece. The
surface roughness measurement and calculation need to pay attention to many factors,
such as measurement noise and uncertainty evaluation [32–35]. The surface roughness is
measured by Mahr made in Germany, as shown in Figure 7.
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Figure 8. (a) Surface roughness changes with cutting speed, (b) surface roughness change with feed 
speed, (c) surface roughness changes with cutting depth range. 

Figure 7. Surface roughness measurement.

It can be seen from Figure 8a that when the feed rate and cutting depth remain
unchanged, the surface roughness of the workpiece by the tool A increases first, then
decreases, and then increases rapidly with the increase of cutting speed. The surface
roughness of the workpiece by the tool B increases with the increase of cutting speed. When
the cutting speed is 140 m/min, the surface roughness of the workpiece by the tool B is
slightly larger than that of the tool A. Under other speed conditions, the surface roughness
of the workpiece by the tool B is less than that of the tool A.
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Figure 8. (a) Surface roughness changes with cutting speed, (b) surface roughness change with feed
speed, (c) surface roughness changes with cutting depth range.

According to Figure 8b, the surface roughness of the workpieces cut by the tools A
and B increases with the increase of the feed speed. The surface roughness of the workpiece
cut by the tool B is lower. Figure 8c shows that the surface roughness of the workpieces cut
by the tools A and B increase with the increase of the cutting depth rate, Under the same
cutting conditions, the difference between the two surface roughnesses is very small.

In general, the cutting workpiece corresponding to tool B obtains lower surface roughness.
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2.4. Analysis of Workpiece Hardenability

The phenomenon that the surface hardness of the workpiece increases during machin-
ing is called work hardening. Work hardening will increase the surface brittleness of the
workpiece and reduce the impact resistance. At the same time, the hardening of the surface
metal will make continuous processing difficult, and the tool wear is serious. In the cutting
process of AISI 304, work hardening is a common phenomenon, which needs attention.
The test process is shown in Figure 9.
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Figure 9. Workpiece hardness measurement.

The hardness of the AISI 304 bar matrix used in this experiment is 240 HV. The
hardness change of the workpiece after the cutting experiment is shown in Figure 9. The
degree of hardening is expressed by Formula (13).

N =
H
H0
× 100% (13)

where H is the hardness value of the machined surface, and H0 is the hardness of the
matrix material.

As can be seen from Figure 10a, under the condition that the feed speed and cutting
depth rate remain unchanged, the surface hardness of the workpiece by the tools A and B
increase first, then decreases, and then increases rapidly with the increase of cutting speed.
Under the same conditions, the surface hardness of the workpiece by the tool B is smaller
than that of the tool A, and the degree of hardening is lower.
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feed speed, (c) workpiece hardness changes with cutting depth rate.
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According to Figure 10b, the surface hardness of the workpiece by the tools A and
B increase with the increase of the feed speed. Under the same conditions, the surface
hardness of the workpiece by the tool B is smaller, and the degree of hardening is lower
than the tool A. Figure 10c shows that the surface hardness of the workpiece by the tools A
and B increase with the increase of the cutting depth rate. The surface hardness of the
workpiece by the tool A is slightly higher than that of the tool B.

In general, the work hardening degree of the workpiece cut by tool B is lower.

3. Tool Durability Experiment and Analysis
3.1. Observation of Tool Surface Morphology

The above research shows that the tool B shows better cutting performance in different
cutting parameter ranges. To demonstrate the performance of the tool in the actual whole
cutting life stage, the paper designs an experiment on the cutting durability of the tools A
and B, mainly observing and analyzing the surface morphology and element distribution
of the tools. Based on the cutting test of tool durability and taking the wear of the flank
face of the tool reaching a wideth of 0.15 mm as the tool blunt standard, tools A and tool B
cut for 70 and 110 min, respectively.

An Olympus microscope was used to observe the morphology of the rake and flank
face of the tools after cutting, as shown in Figure 11. It can be seen from the figure that
when the wear width of the flank reaches 0.15 mm, the rake face of tool A is seriously worn,
and the cutting edge has collapsed. The cutting edge of tool B remains relatively complete.
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Figure 11. (a) The morphology of the rake face of tool A, (b) the morphology of the flank face of
tool A, (c) the morphology of the rake face of tool B, (d) the morphology of the flank face of tool B.

AISI 304 has good toughness, high plasticity, low-thermal conductivity, and serious
work hardening. In the cutting process, the tool–chip contact stress is very largem and the
temperature is high; thus, abrasive wear, bonding wear, and oxidation wear easily occur on
the rake and flank face of the tool.

After the cutting durability test, SEM and EDS analysis were carried out on the rake
and flank face of tools A and B, as shown in Figure 11.

It can be seen from Figure 12 that the abrasive line on the rake face of tool A is obvious,
and the vicinity of the cutting edge is white, indicating that the abrasive wear of the tool is
serious, while the abrasive line of tool B is slight, the white area of the cutting edge is small,
and the abrasive wear is small. From the flank face of tool A, the adhesive is very large, and
the bonding wear is serious; however, the adhesion on the flank face of tool B is not obvious,
and the bonding wear is relatively slight. From the microscopic morphology, it can be seen
that the abrasive wear and bonding friction of tool B are softer than that of tool A.
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Figure 13. Energy spectrum analysis of elements of cutting tools A and B. (a) Rake face of tool A, 
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It can be seen from the figure that the content of the W element in the K1 area of tool 
A is the highest, followed by the O element. Element W is the tool base material, which 
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Figure 12. Micro characteristics of tools A and B. (a) Rake face of tool A, (b) Local enlarged view
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3.2. Element Energy Spectrum Analysis

To accurately determine the status of tool wear in each area, the paper observed the
element energy spectrum of the typical wear area of the rake face of the tool, as shown in
Figure 13.
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(b) Rake face of tool B.

It can be seen from the figure that the content of the W element in the K1 area of tool
A is the highest, followed by the O element. Element W is the tool base material, which
indicates that the abrasive wear of tool A is serious, and the internal base material has been
exposed, while element O comes from the air, where tool A has oxidative wear. The content
of the K2, Al, and Ti elements in the similar area of tool B is higher, and the content of the
O element is lower than that of tool A. The coating material of the tool is TiAlN, which
indicates that the tool coating has not been polished, the abrasive wear is slight, and the
oxidation wear is also slightly more.

It can be seen from Figure 14 that the line scan is carried out on the area where the
cutting edge of the tools are seriously worn, and the element contents of Fe and O are
observed. It is found from the comparison in the figure that the contents of Fe and O of
tool B are low at the same position, which also shows that after the durability test, the
bonding wear and oxidation wear of tool B are relatively slight.
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4. Result and Discussion

Through the single factor cutting experiment, we find that the three-dimensional
cutting force of tool B is smaller than that of tool A. The main cutting force and feed force
decrease by more than 10%, and the shear energy decreases by more than 13%. The surface
roughness of the workpiece cut by tool B is smaller, and the work hardening degree is
lower. Through the durability test, it is found that the service life of the tool B is increased
by 57%, and the adhesive wear and oxidation wear are less.

In the cutting process, the friction of the tool–chip contact interface is mainly composed
of two parts: one is the internal friction zone near the tool tip, which is subjected to high
temperature and high pressure, and the chip bottom plastic material is severely deformed
and bonded with the tool front surface material, also known as the bonded friction zone.
The second is that the tool–chip contact area is far away from the outer friction area of the
tool tip. The pressure and temperature in this area are low, which obey the Coulomb’s law
of friction, which is called the sliding friction area.

It can be seen from Figure 15 that the placement of the micro groove of tool B changes
the contact between the tool and the chip, and the actual contact length between the tool
and chip is reduced. The length of the high-stress-bonding friction zone is about one-third
of that of the tool A. At the same time, due to the width of the micro groove, the width of
the sliding friction zone of tool B is only about one-half of that of tool A. Therefore, during
the cutting process of tool B, the friction state between the tool and the chip is improved, the
cutting heat and temperature is reduced, the cutting force is also reduced, and the bonding
friction and oxidation wear of the tool are alleviated. At the same time, the existence of the
micro groove makes the equivalent rake angle of the tool larger, the plastic deformation
of the chip smaller, the thickness smaller, the cutting energy input smaller in the cutting
process, and the cutting force and cutting temperature lower.
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Due to the effect of the micro groove on the rake face, the effective contact time
between the chip and the tool is reduced, and the heat generated by friction is reduced.
In addition, the micro groove makes the chip obtain sufficient extension space, the chip
deformation is reduced, and the chip deformation energy input is reduced.

5. Conclusions

During the process of cutting AISI 304, the tool is easy to wear, and the service life
is short. To improve the cutting performance of the tool, a micro groove is designed on
the rake face of the tool in this paper. The cutting single factor experiment and durability
experiment were carried out, the cutting force, cutting energy, workpiece surface quality,
tool wear element energy spectrum analysis in the cutting process were compared, and the
experimental phenomena were analyzed. The specific conclusions are as follows:

1. Through the single factor cutting experiment, the three-dimensional cutting force
of tool B is smaller than that of tool A. Among them, the cutting depth resistance
decreases by more than 10%, the main cutting force decreases by more than 10%, the
feed resistance decreases by more than 3%, and the shear energy decreases by more
than 10%.

2. The design of the micro groove is based on the principle of reducing the contact zone
between the tool and the chip and reducing the high-temperature area. Due to the
effect of the micro groove of the tool B, the toolchip contact length is reduced, the
cutting force is reduced, which leads to the reduction of the shear energy and the
sliding energy, and the cutting temperature is decreased.

3. During the cutting process of tool B, the cutting force is smaller, and the cutting
temperature is lower, which reduces the roughness and hardening degree of the
workpiece surface after cutting.

4. Through the observation of surface morphology, the abrasive wear of the rake and
flank face of tool B is lighter than that of tool A, and the wear marks are shallower.
At the same time, the distribution of the main elements of the tool and the energy
spectrum analysis of the local area show that the bonding wear and oxidation wear of
tool B are also less than that of tool A.

High-speed turning of difficult to cut materials is a great challenge to cutting tools. In
the next plan, the author will study the performance of high-speed turning stainless steel
with micro groove tool.
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