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Highlights:

• The structural and elastic properties of (Fe, Cr, W)7C3 were investigated by first principles.
• Tungsten doping can improve the ductility and the indentation modulus of (Fe, Cr)7C3 carbides.
• The elastic anisotropy of M7C3 became weaker after tungsten doping.
• A new carbide (Fe3.27Cr2.99W0.74) C3 was found to be a combination of mechanical properties.

Abstract: Tungsten doping is critical for the wear resistance and application of High-Chromium Cast
Iron (HCCI). A series of investigations of (Fe, Cr, W)7C3 carbides were performed by first principles
calculations and experimental analysis. The calculated results showed that with the increase in
tungsten content in M7C3, the equilibrium cell volumes and the density gradually increased, and
the formation energy of M7C3 carbides gradually decreased. The TEM results showed that the (Fe,
Cr, W)7C3 carbides were (Fe3.27Cr2.99W0.74) C3 with a hexagonal structure after adding 2.13 wt %
tungsten into laser cladding coatings of High-Chromium Cast Iron with a composition of Fe-26.8 wt %
Cr-3.62 wt % C. These results from calculations and in situ nanoindentation show that tungsten doping
could improve the ductility and indentation modulus of (Fe, Cr)7C3 carbides, and the composition
of (Fe, Cr, W)7C3 was expected to be a high hardness and softness material. The wear test results
showed that the wear resistance of tungsten-bearing HCCI was better than ordinary HCCI.

Keywords: (Fe, Cr, W)7C3; HCCI; first principles calculations; laser cladding coatings; nanoindentation

1. Introduction

Hypereutectic High-Chromium Cast Iron (HCCI) is an important wear resistance ma-
terial, widely used in the mining and crushing field due to its easy production, low cost and
excellent wear resistance [1–3]. The microstructure of HCCI primarily contains hard M7C3-
type carbides (with a high hardness of 1300–1800 HV) and martensitic matrix [4]. There are
three types of HCCI: hypoeutectic HCCI, eutectic HCCI and hypereutectic HCCI [5]. For
hypereutectic HCCI, the M7C3 eutectic carbides solidify firstly, and could improve the hard-
ness and the wear resistance of HCCI. HCCI could be prepared by casting [6], an Electrother-
mal Exial Plasma Accelerator (EAPA) [7] and so on. Heydari et al. [6] prepared HCCI with
22% Cr, 10%–12% tungsten by casting. The results showed that the coarse chromium
carbides are distributed in the matrix when the carbon content was low (2.3 wt %). With
the increase in carbon content, the carbides will become finer. Efremenko et al. [7] studied
the effect of layered morphology and heat treatment on the microstructure and hardness
after the pulsed plasma deposition of Fe-C-Cr-W coating on HCCI. Post-deposition heat
treatment resulted in the precipitation of M7C3 carbides, the carbide precipitation led to a
substantial increase in the coating hardness to 1240–1445 HV0.05. Thus, M7C3 carbides are
important for HCCI.

M7C3 (M = Fe, Cr or other element) carbides are the main hardening phases in HCCI,
showing a high hardness, a high strength, a high elastic moduli and a ductile property [8].
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Furthermore, M7C3 carbides enhance the mechanical properties and oxidation resistance of
HCCI at high temperatures [9]. The effect mechanism of alloy elements on the structure
and mechanical properties of M7C3 has been comprehensively studied by first principles
calculations [10–14]. Experiments from Coronado [15] showed that M7C3 carbides in HCCI
were rod-like single crystals with strong anisotropy. The abrasion resistance of the M7C3
carbides in the transverse section ([0001] direction) was higher than in the longitudinal sec-
tion (non-[0001] direction) [15]. Moreover, the wear resistance of ZTAP/HCCI composites
with a honeycomb structure was higher than High-Chromium Cast Iron [16,17]. Therefore,
the extensive application of M7C3 multi-component carbides is of great significance to
future wear-resistant materials.

One method to improve the hardness and the wear resistance would be to add alloying
elements in HCCI, such as vanadium, tungsten, titanium and niobium [18]. As a strong
carbide-forming element, tungsten could improve the wear resistance of HCCI [19]. The
extensive experiments on the effect of tungsten on microstructure and properties of HCCI
have been published over the past few decades [18–21]. Cortés-Carrillo et al. [18] analyzed
the effects of tungsten on the microstructure, hardness, microhardness and abrasive wear
of High-Chromium Cast Iron with 17 wt % Cr. The results showed that when tungsten
content was 4 wt %, the hardness of the alloys increased due to the dispersion of tungsten
into the matrix and the M7C3 carbides. When the added amount of tungsten exceeded
4 wt %, M2C and M6C carbides appear in the microstructure of the alloy. The work from
Lv et al. [19] found that tungsten considerably improved the wear resistance of HCCI,
and the wear resistance of HCCI with 1.03 wt % W increased by 205% compared to HCCI
without tungsten. Results from Anijdan et al. [20] also showed that the wear resistance of
High-Chromium Cast Iron increased after adding the tungsten. The experimental results
from Guerra et al. [21] verified that tungsten partially distributed in the different phases,
increasing the microhardness and refining the eutectic carbides. However, the effects of
tungsten on the structure and mechanical properties of M7C3 are not yet clear and should
be further explored to reveal the mechanism.

First principles calculations are an effective way to reveal the mechanism. Zhang
et al. [8] investigated the optimization of mechanical properties of Fe7-xCrxC3 carbides by
first principles calculations, including Fe6CrC3, Fe4Cr3C3, Fe3Cr4C3 and FeCr6C3, but they
ignored M7C3 carbides. Chong et al. [22] designed the anisotropic mechanical properties of
M7X3 (M = Fe, Cr, W, Mo. X = C, B) by multi-alloying. The results showed that the ductility
could be increased by doping of W + B and W + Mo without sacrificing the mechanical
modulus of Cr4Fe3C3, and the hardness of Cr4Fe3C3 could be improved by doping of
Mo + B and Mo + W + B with a finite decrease in ductility. The anisotropy of M7C3 carbides
is important in the performance of High-Chromium Cast Iron [23]. However, the effect
of tungsten on the anisotropy has not been researched and the mechanism is not clear to
date. In addition, unfortunately, the stability, properties and electronic structure of M7C3
(M = Fe, Cr, W) carbides are seldom comprehensively investigated in the literature.

Therefore, the electronic structures, stability, chemical bonds and existing form of M7C3
(M = Fe, Cr and W) in Fe—26.8 wt % Cr—3.62 wt % C—2.13 wt % W High-Chromium Cast
Iron were thoroughly investigated by first principles calculation experiments, which are
helpful to improve the whole performance of HCCI.

2. Experimental Details
2.1. Calculation Details

First principles calculations are an effective way of investigating the electronic struc-
tures, stability and chemical bonds of M7C3 carbides in HCCI. The Density Functional
Theory (DFT) calculation based on the pseudopotential plane-wave within the Generalized
Gradient Approximation (GGA), as implemented in the Cambridge Serial Total Energy
Package (CASTEP), was performed in the present work. The Broyden–Fletcher–Goldfarb–
Shanno (BFGS) algorithm [24] was applied in the relaxation process of models to optimize
the structures. In the structural optimization process, the maximal displacement was
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11.0 × 10−3 Å, the largest force was 0.03 eV/Å and the energy change convergence value
was less than 1 × 10−5 eV/atom. After convergence tests, the cutoff energy of 360 eV
and k-point of 8 × 8 × 8 were selected for these carbides. Although Fang et al. [25]
demonstrated that orthorhombic Fe7C3 is more stable than an orthorhombic or hexagonal
structure, Chong et al. [22] found that the crystal structure of (Cr, Fe)7C3 carbides is hexag-
onal with the space group of P63mc (No. 186) by XRD and TEM analysis. Therefore, a
hexagonal structure was selected in this work. Zhang et al. [8] investigated the mechanical
properties of Fe7−xCrxC3 carbides based on first principles calculations, including Fe6CrC3,
Fe4Cr3C3, Fe3Cr4C3 and FeCr6C3, but they neglected to calculate the other type, M7C3 car-
bides. Therefore, the properties of Fe5Cr2C3, Fe2Cr5C3 and Fe3Cr4C3 (the crystal structure
shown in Figure 1) were calculated by first principles, and the results were compared to the
calculated results from references [8,22]. To study the influencing mechanism of tungsten
on the structure and mechanical properties of M7C3, different amounts of tungsten were
doped into M7C3 carbides. The M7C3 structures consist of nonequivalent Fe (Cr) atoms,
and the lattice parameters, elastic moduli, etc., depend strongly on the substitution sites.
We calculated all the formation energy of various sites of doped atoms in the unit cell, and
then the unit cell obtained by the minimum formation energy was selected as the final
result. Some unit cells of M7C3 carbides with crystal structures were built, including of
Fe3Cr3.5W0.5C3, Fe3Cr3W1C3, Fe3Cr2.5W1.5C3 and Fe3Cr2W2C3, as shown in Figure 1.
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with a laser beam size of 5 mm × 5 mm. The parameters were as follows: powder feeding 
rate k = 15 g/min, scanning speed ν = 4 mm/s, laser power P = 2000 W, flow rate of high-
purity argon shielding gas = 15 L/min. 

The microstructures were observed using a JEM-2100F Transmission Electron Micro-
scope (TEM, manufacturer, city, country) with an energy-dispersive X-ray (EDX, manu-
facturer, city, country). TEM samples were prepared by ion milling. The wear resistance 

Figure 1. Unit cells of M7C3 carbides with crystal structures: (a) Fe5Cr2C3; (b) Fe3Cr4C3; (c) Fe2Cr5C3;
(d)Fe3Cr3.5W0.5C3; (e) Fe3Cr3W1C3; (f) Fe3Cr2.5W1.5C3; (g) Fe3Cr2W2C3.

2.2. Experimental Data

In this work, Q235 carbon steel with a chemical composition of Fe-0.18% wt % C-
0.22% wt % Si-0.45% wt % Mn-0.02% wt % P-0.02% wt % S was used as the substrate, and
the cladding materials were High-Chromium Cast Iron powders and tungsten powders
(70 wt % W and 29 wt % Fe). The diameter of the above powders was 75–105 µm. The
cladding layer was made by an IPG fiber laser system (YLS-6000) with a continuous wave,
with a laser beam size of 5 mm × 5 mm. The parameters were as follows: powder feeding
rate k = 15 g/min, scanning speed ν = 4 mm/s, laser power P = 2000 W, flow rate of
high-purity argon shielding gas = 15 L/min.

The microstructures were observed using a JEM-2100F Transmission Electron Micro-
scope (TEM, manufacturer, city, country) with an energy-dispersive X-ray (EDX, manufac-
turer, city, country). TEM samples were prepared by ion milling. The wear resistance of the
cladding layer was tested by a MM-200 block-on-ring wear testing machine (manufacturer,
city, country, the working principle of machine can be found in reference [26]). In situ
nanoindentation experiments were performed using the NanoFlip InForce 50 (manufacturer,
city, country) to investigate the hardness and modulus of M7C3 carbides.

For the wear resistance of HCCI, the reported value of weight loss is the average of
five results. All data graphs were drawn by Origin 8.0 software, and show the formation
energy, mechanical properties, hardness and modulus and weight loss.
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3. Results and Discussion
3.1. The Equilibrium Lattice Constants and Stability

To ensure the accuracy of the calculation, the optimized lattice constants were calcu-
lated, and the calculated results were compared to other calculated results and experimental
values, as shown in Table 1. The optimized lattice constants of Fe3Cr4C3 were 6.8358, 6.8358
and 4.5471 Å, which are similar to other calculated values [8] and experimental values [9]
(error less than 1.2%). Considering the differences in experimental equipment and calcula-
tion methods, it was proved that the parameters adopted were reliable. With the increase in
Cr content, the equilibrium lattice parameter a increased and c decreased, meaning that a de-
creases when c increases, which is consistent with the conclusion of reference [22]. With the
increase in tungsten content, the equilibrium lattice parameters a and b gradually increased.
The calculated result of equilibrium cell volume (185.61 Å) for Fe3Cr4C3 was similar to the
calculated values (181.09 Å) from Zhang et al. [8] (error less than 3%). With the increase in
tungsten content, the equilibrium cell volumes and the density gradually increased.

Table 1. The lattice parameters of different M7C3 carbides.

Species Space
Group a (Å) b (Å) c (Å)

Volume
(Å3)

Density
(g/cm3)

Fe5Cr2C3 P63mc (186) 7.0054 7.0054 4.3188 183.00 7.61
Fe2Cr5C3 P63mc (186) 6.7795 6.7795 4.6500 187.21 7.23
Fe3Cr4C3 P63mc (186) 6.8358 6.8358 4.5471 185.61 7.37

Fe3Cr4C3 [11] P63mc (186) 6.8258 6.8258 4.4948 180.0 7.48
Fe3Cr4C3 [8] P63mc (186) – – – 181.09 –

Fe3Cr4C3Exp. [11] P63mc (186) 6.9 – 4.52 – –
Fe3Cr3.5W0.5C3 P63mc (186) 6.7556 6.7558 4.8070 190.12 8.34

Fe3Cr3W1C3 P63mc (186) 6.8609 6.8609 4.8098 195.45 9.23
Fe3Cr2.5W1.5C3 P63mc (186) 6.8998 6.9721 4.7962 199.98 10.12

Fe3Cr2W2C3 P63mc (186) 6.9818 6.9818 4.8382 203.78 11.00

In order to predict whether M7C3 (M = Fe, Cr and W) carbides were easy to compound,
the formation energy was calculated by the following equation [8]:

∆EM7C3 (M = Fe, Cr, W) = Etot(M7C3) − xEtot(Fe) − yEtot(Cr) − zEtot(W) − 3Etot(C) (1)

where Etot(M7C3), Etot(Fe), Etot(Cr), Etot(W) and Etot(C) are the total energies of M7C3
carbides, Fe, Cr, W and C systems, respectively. ∆EM7C3 (M = Fe, Cr, W) is the formation
energy of M7C3 carbides. The formation energy can describe the relative stability of these
carbides. If ∆EM7C3 > 0, the crystal is unstable or metastable; if ∆EM7C3 < 0, the crystal
can exist stably [27]. Additionally, if the stability of carbides is better, the carbides may be
synthesized easily; if the M7C3 carbides are not stable, it may not be easy to compound them
in the experimental stage [28]. According to Equation (1), the formation energies of M7C3
carbides were calculated, as shown in Figure 2. Except for Fe7C3, the formation energies of
other carbides are less than zero, indicating that they are stable crystal structures. With the
increase in W and Cr content, the formation energy was increased gradually, indicating
that the stability of carbides increased with W and Cr content.

3.2. Mechanical Properties

M7C3 carbides are the main hard phases in wear-resistant material, so the elastic of
M7C3 compounds has an important role in the application of wear-resistant material. The
elastic constants Cij depend mainly on the response of the crystal to external forces, and
can be calculated by the bulk, shear and Young’s modulus, Poisson’s ratio, etc. The bulk
modulus and the shear modulus can be calculated by the following method [29]:

BV = (
1
9
) [2(C11 + C12) + 4C13 + C33] (2)
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GV = (
1

30
) [(C11 + C12 + 2C33 − 4C13 + 12C44 + 12C66) (3)

BR = [(C11 + C12) C33 − 2C13
2]/(C11 + C12 + 2C33 − 4C13) (4)

GR = (
5
2
) [(C11 + C12) C33 − 2C13

2] C44C66/{3BVC44C66 + [C11 + C12) C33 − 2C13
2] (C44 + C66)} (5)

B = (BV + BR)/2 (6)

G = (GV + GR)/2 (7)

E = 9BG/(3B +G) (8)

σ = (3B − 2G)/(6B + 2G) (9)

where B and G are the bulk modulus and the shear modulus, respectively. E and σ are
Young’s modulus and Poisson’s ratio, respectively. C11, C22 and C33 represent the uniaxial
deformation along the [1210], [2110] and [0001] directions, respectively. C44, C55 and C66
represent the pure shear deformation on (1210), (2110) and (0001) crystal planes, respectively.
C12 is the shear deformation on the (1100) crystal plane along the [1100] direction.
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For the hexagonal phase, the mechanical stability criteria are given by [29]:

C44 > 0, C11 > |C12|, (C11 + 2C12)C33 > 2C13 (10)

The calculated elastic constants of M7C3 carbides satisfied the above formula, indi-
cating that these M7C3 carbides were stable structures. Table 2 lists the calculated elastic
constants (Cij) of different M7C3 carbides, which showed good agreement with the data
of other researchers [22]. The largest C11, C12 and C13 appeared on Fe3Cr2W2C3, but the
largest C66 and C44 appeared on Fe2Cr5C3. Because the hardness of M7C3 carbides is large,
the relatively simple semi-empirical equation of hardness can be used, which is [30]:

HV = 1.92 K1.137G0.708, K = G/B (11)
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Figure 3 shows the mechanical properties of M7C3 carbides. The shear modulus and
Young’s modulus of Fe2Cr5C3 are the largest. With the addition of tungsten, the shear
modulus and Young’s modulus began to decrease, indicating that the alloying tungsten
decreases the strength of M7C3. Poisson’s ratio can reflect the flexibility; the larger Poisson’s
ratio is, the softer the material is. Poisson’s ratio of Fe3Cr2.5W1.5C3 is the largest, indicating
that the Fe3Cr2.5W1.5C3 compound is the softest. Pugh’s modulus ratio B/G and Cauchy
pressure (C11–C44) can explain the ductile/brittle properties. When G/B is smaller than
0.571, the M7C3 has good ductile property [8]. With the addition of tungsten, G/B is
reduced, indicating that tungsten can improve the toughness of M7C3. Cauchy pressure of
M7C3 carbides increased with tungsten content, as shown in Figure 3f, which indicates that
tungsten doping can improve the ductility of (Fe, Cr)7C3 carbides. The composition of (Fe,
Cr, W)7C3 is expected to be a high hardness and softness material; thus, the synthesis of
this carbide would be of great interest.

Table 2. The elastic constants (Cij, GPa) of different M7C3 carbides.

Species C11 C33 C44 C12 C13 C66

Fe5Cr2C3 534.6 560.8 123.8 193.5 255.4 152.3
Fe2Cr5C3 562.1 559.2 157.9 159.2 258.3 193.0
Fe3Cr4C3 549.2 531.6 122.5 179.6 248.1 179.6

Fe3Cr4C3 [9] 550.7 532.8 110.6 185.2 229.0 182.7
Fe3Cr3.5W0.5C3 546.1 523.6 100.9 251.5 246.0 166.5

Fe3Cr3WC3 543.2 504.9 99.1 236.8 243.6 155.8
Fe3Cr3WC3 [9] 565.5 415.4 87.8 252.0 249.2 156.8
Fe3Cr2.5W1.5C3 578.9 403.4 92.3 276.5 279.5 149.1

Fe3Cr2W2C3 581.5 377.5 90.9 300.1 288.1 166.9

Anisotropy of M7C3 effects the wear resistance of HCCI [8]. Therefore, the analysis of
anisotropy is important for understanding the properties of M7C3 carbides. The anisotropy
of Young’s modulus for hexagonal M7C3 carbides along different directions is expounded
by the 3D surface contours, following [22]:

1/E = (1 − l12)2 S11 + l14S33 + l12 (1 − l12) (2S13 + S44) (12)

where Sij is the elastic compliance constant. Sij is the inverse matrix of Cij. l3 = cosϕ is the
directional cosine. The results are shown in Figure 4. In Figure 4a,b,d,e, it can be seen that
Fe5Cr2C3, Fe3Cr4C3, Fe3Cr3.5W0.5C3 and Fe3Cr3W1C3 showed strong anisotropy. As the
Cr content increased, the elastic anisotropy of (Fe, Cr)7C3 became weaker. Similarly, as
the tungsten content increased, the elastic anisotropy of (Fe, Cr, W)7C3 became weaker, as
shown in Figure 4f,g. The results indicate that alloying could weaken the elastic anisotropy
of M7C3 carbides, which is in agreement with other calculated results [22].

3.3. The Electronic Structures

As is known, the properties of carbides are associated with electronic states [31]. In
order to gain some insight into the nature of bonding in M7C3 carbides, the band structure
and the Partial Density of States (PDOS) were calculated. Figure 5 shows the band structure
of M7C3, and the dashed line indicates the Fermi level. All calculated M7C3 carbides in this
work exhibited metallic properties. Figure 6 shows the Total Density of States (TDOS) and
the Partial Density of States (PDOS). PDOS can analyze the electronic hybridization states
quantitatively with chemical bonding. Fe5Cr2C3, Fe3Cr4C3, Fe2Cr5C and Fe3Cr3W1C3
carbides show large shifts, because the up and down spin channels are not symmetric.
However, Fe3Cr3.5W0.5C3, Fe3Cr2.5W1.5C3 and Fe3Cr2W2C3 are symmetric, which may
indicate non-magnetic characteristics of these carbides. In Figure 6, the DOS on both sides
of the Fermi level were determined mainly by the Fe-d and Cr-d. From −15 to −10 eV,
TDOS mainly consists of C-s orbit, but from −7.5 to 10 eV, TDOS of M7C3 mainly consists
of W-d, Fe-d, Cr-d and C-p orbit, as shown in Figure 6d–g. From −7.5 to −2.5 eV, TDOS
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mainly consists of Fe-d, W-d and Cr-d orbit, and their peak shape and peak intensity are
similar, indicating that there is orbital hybridization. The d orbit of Cr, Fe, W and the p
orbit of carbon have strong hybridization, suggesting a covalent bond between the Cr, Fe,
W atom and carbon atom. The total electron density distribution is shown in Figure 7.
For an ideal single crystal, the magnitude of the mechanical modulus is related to the
chemical bond strength. In Figure 7a, Fe-C-Cr and Fe-C-Fe covalent chains can be observed
in Fe3Cr4C3 carbides, which is in agreement with other calculated results [8]. In Figure 7b,
Cr-W-C, Fe-C-Cr and Fe-C-W covalent chains can be observed in Fe3Cr2W2C3 carbides,
explaining the decrease in formation energy after adding tungsten.
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Figure 9a,b shows the indentation hardness HIT and the indentation modulus EIT of M7C3 
carbides, respectively. With indentation depths larger than 100 nm, EIT and HIT of M7C3 
phase reached a constant level, which indicated that the intrinsic material properties of 
the hard phases were measured in this experiment. Furthermore, the crack formation was 
not observed at an indentation depth of 200 nm, and the triangular indentations could be 
observed on M7C3 carbides, indicating that the credibility of the data is high. The indenta-

Figure 7. The valence electron density for (a) Fe3Cr4C3 and (b) Fe3Cr2W2C3.

3.4. TEM Analysis

To study the existence form of carbides after adding tungsten to HCCl, the microstruc-
tures of High-Chromium Cast Iron with a composition of 3.44C-26.7Cr-1.25Mn-2.3 wt %
W was characterized by TEM. Figure 8a shows the bright-field TEM micrographs, and
Figure 8b shows the Selected Area Diffraction Pattern (SADP) of M7C3. The results show
that the carbides are M7C3 phase with a hexagonal structure, and the space group is
P63mc (No. 186). According to the accurate measurement using EDX at 10 different ar-
eas of M7C3, the calculated analysis suggests that (Fe, Cr, W)7C3 has a stoichiometry of
(Fe3.27Cr2.99W0.74) C3. Moreover, the lattice constant of (Fe3.27Cr2.99W0.74) C3 carbides is
a = 0.6833 nm, b = 0.6833 nm, c = 0.4796 nm.
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3.5. Nanoindentation Experiments

The hardness and modulus of carbides were investigated by a NanoFlip InForce 50.
Figure 9a,b shows the indentation hardness HIT and the indentation modulus EIT of M7C3
carbides, respectively. With indentation depths larger than 100 nm, EIT and HIT of M7C3
phase reached a constant level, which indicated that the intrinsic material properties of
the hard phases were measured in this experiment. Furthermore, the crack formation was
not observed at an indentation depth of 200 nm, and the triangular indentations could
be observed on M7C3 carbides, indicating that the credibility of the data is high. The
indentation hardness values of (Fe, Cr)7C3 and (Fe, Cr, W)7C3 were 17.55 and 17.39 GPa,
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respectively. The indentation modulus values of (Fe, Cr)7C3 and (Fe, Cr, W)7C3 were 367.87
and 385.48 GPa, respectively.
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3.6. Wear Resistance

The wear resistance of HCCI was tested by a MM-200 block-on-ring wear testing
machine. It was apparent that the wear resistance of HCCI after adding tungsten exceeds
that of HCCI without tungsten. With the increase in wear load, the wear loss increased, as
shown in Figure 10. The wear resistance of HCCI was closely related to the hardness of
carbides, but also to the hardness of the matrix. Therefore, the abrasion resistance slightly
increased after tungsten was added.
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Figure 10. The wear resistance of HCCI.

To better reflect the wear resistance of HCCI after the addition of tungsten, the worn
surface was characterized by a JSM-6510 Scanning Electron Microscope (SEM) and a VK-
9710 color 3D laser scanning microscope. Figure 11a,b is the SEM images of ordinary HCCI
and HCCI with tungsten, respectively. Figure 11c,d is the 3D laser morphologies of the
worn surfaces of ordinary HCCI and HCCI with tungsten, respectively. Some obvious
scratches were found on the specimen surface, and the wear surfaces of both HCCIs were
consistent [32]. However, the groove scratches and fine wear of ordinary HCCI were
obviously deep, indicating that the wear resistance of HCCI is better after adding tungsten.
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4. Conclusions

In this work, we added tungsten to High-Chromium Cast Iron to investigate the
microstructures and properties of M7C3 carbides by first principles and experiments.

(a) With the increase in W and Cr content in M7C3 carbides, the formation energy of
M7C3 carbides gradually decreased. Tungsten doping can improve the ductility of (Fe,
Cr)7C3 carbides, and the composition of (Fe, Cr, W)7C3 is expected to be a high hardness
and softness material.

(b) TEM results showed that the (Fe, Cr, W)7C3 carbides are (Fe3.27Cr2.99W0.74) C3
with a hexagonal structure after adding 2.13 wt % W into Fe—26.8 wt % Cr—3.62 wt % C
High-Chromium Cast Iron.

(c) Wear test results showed that the wear resistance could be improved after adding
tungsten to HCCI.
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