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Abstract: In this work, the corrosion behavior of a Ti-6Al-4V alloy prepared using selective laser
melting (SLM) in a 0.1 mol/L NaOH solution was studied by means of corrosion electrochemical
testing, X-ray diffraction analysis and X-ray photoelectron spectroscopy (XPS), and its corrosion
process was compared with the commercially forged Ti-6Al-4V alloy. The results show that the
corrosion resistance of the commercially forged Ti-6Al-4V alloy was higher than the SLMed Ti-6Al-4V
alloy, which is closely correlated with the presence of more active spots on the alloy surface and more
defects in the passive films.
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1. Introduction

Additive manufacturing (AM) can precisely control the internal structure of com-
ponents and their complex shape without geometric constraints [1]. Compared with
traditional casting and forging processing methods, AM has several advantages, including
no requirements for large forging instruments or dies, a fast fabrication speed, low cost,
high integration and high flexibility [2–4], which can make AM capable of being widely
used in biomedicine, aerospace and marine fields, especially when required to fabricate
alloy parts with complex shapes.

The mechanical properties of materials prepared using AM are highly dependent on
their chemical composition and heat treatment. Edwards et al. [5] found that the fatigue life
and fatigue strength of Ti-6Al-4V prepared by selective laser melting (SLM) were 23% and
~20% lower, respectively, than those of traditionally forged Ti-6Al-4V. Zhang et al. [6] found
that both the strength and toughness of the Co–Cr alloy fabricated by AM were improved
compared with the traditional Co–Cr cast alloy due to the decrease in the thermal expansion
coefficient. Lu et al. [7] prepared an Inconel 718 alloy by laser cladding amplification and
found that its strength and elongation were greatly increased after proper heat treatment.
All the studies mentioned above suggest that the application of proper heat treatment
to these materials prepared using different AM processes can effectively optimize their
strength, plasticity and toughness.

On the other hand, the corrosion performances of these materials made by AM also
vary with materials, corrosive media and AM methods. In a phosphate buffer solution, the
corrosion resistance of a Ti-6Al-4V alloy prepared by electron beam melting was higher
than that of a forged Ti-6Al-4V alloy [8]. Tang et al. compared the corrosion behavior of a
718 alloy prepared by selective laser melting (SLMed 718) in a 3.5% NaCl solution to the
rolled 718 alloy and found that the SLMed 718 alloy has a superior corrosion resistance
as compared with the rolled 718 alloy. This can be attributed to the higher Cr2O3 content
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and lower donor/acceptor density in the passive film [9]. In a 6% FeCl3 solution, a 316L
stainless steel prepared by SLM had a better corrosion resistance than an as-cast 316L alloy,
although the corrosion pit was deeper [10]. This is closely correlated with the more rapid
formation of a passive film on the SLMed 316L stainless steel. The presence of ultra-high
subgrain boundaries in the SLMed 316L stainless steel increased the nucleation sites to form
a passive film, and the microgalvanic coupling of a subgrain boundary with an internal
subgrain also accelerated the corrosion, leading to the deposition of a thicker passive film
on the surface [11]. It is consistent with the results in the previous study, indicating that the
content of Cr2O3 in the passive film formed on the surface of the SLMed 316L stainless steel
was twice that of the forged one in a simulated deep-sea environment (8 MPa, 5 ◦C) [12]. In
a 10% sulfamic acid solution, the corrosion resistance of a Ti-6Al-4V alloy depended on the
AM method, yielding that the SLMed Ti-6Al-4V alloy had the lowest corrosion rate than
the ones prepared using spark plasma sintering and electron beam melting (EBM) [13].

Although the goals of these works above tried to utilize AM to fabricate components
with complex shapes without sacrificing their mechanical and corrosion properties [1–14],
their results are contradictory. Therefore, more studies are required to be conducted on the
optimization of the AM method and characterization of the passive films formed [11,12].
Since the corrosion performance of a Ti-6Al-4V alloy in service relies on the composition,
structure and property of the passive film formed on its surface and it can easily passivate
in alkaline solutions (e.g., 0.1 M NaOH), the aim of this present work was to investigate the
corrosion behavior of an SLMed Ti-6Al-4V in a 0.1 mol/L NaOH solution and to compare
it with that of a commercially forged counterpart to find the proper AM method as well as
the optimized AM parameters. The passive films formed on the surfaces of the SLMed and
commercially forged Ti-6Al-4V alloys were characterized in detail to study how the SLM
method changed the composition, structure and property of the passive film.

2. Experimental Details

The materials used in this work were commercially forged Ti-6Al-4V and SLMed Ti-
6Al-4V alloys. The chemical compositions of the two Ti-6Al-4V alloys are shown in Table 1.
The commercially forged Ti-6Al-4V was received in the form of a sheet at a thickness of
10 mm. The SLMed Ti-6Al-4V alloy was a round bar with a diameter of 14 mm.

Table 1. Chemical composition of the two tested Ti-6Al-4V alloys (wt.%).

Alloy Al V Fe O Ti

Forged 5.98 4.03 0.33 0.08 Bal.

SLMed 6.02 3.97 ~ 0.06 Bal.

The samples of the commercially forged Ti-6Al-4V alloy sheets were cut into coupons
at dimensions of 10 mm × 5 mm × 2 mm, and their tested surfaces were perpendicular
to the forging direction. The samples of the SLMed Ti-6Al-4V rod were cut into discs at a
diameter of 14 mm and a thickness of 2 mm. After these specimens were sealed with epoxy
resin, they were then ground using emery paper, mechanically polished using 1.5 µm
grinding paste and dried using hot air. The exposed areas of the forged and SLMed
Ti-6Al-4V alloy samples were 0.5 cm2 and 1.54 cm2, respectively. The samples were
successively ground to 2000-grit emery paper, etched using Kroll reagent (3 mL HF,
9 mL HNO3 and 88 mL H2O) and then rinsed using distilled water and ethyl alcohol
and dried using hot air.

Electrochemical measurements were carried out in a 1.5 L glass electrolytic cell using
a traditional three-electrode system, in which a saturated calomel electrode (SCE) was
used as the reference electrode, a platinum sheet with an area of 30 cm2 as the auxiliary
electrode and the tested samples as the working electrode. The schematic diagram is
shown in Figure 1. The solution used in this work is a 0.1 mol/L NaOH solution, which
was prepared using analytically grade NaOH and distilled water. The temperature of the
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solution was controlled at 25 ± 0.5 ◦C. To ensure the reproducibility of the experimental
results, all electrochemical tests were repeated at least three times.
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Figure 1. Schematic diagram of electrochemical test.

The electrochemical tests were carried out by using a Gamry Reference 600+ elec-
trochemical workstation (Gamry Instruments, Inc., Philadelphia, PA, USA). The samples
were placed in a tested solution for 1 h at an open circuit potential to attain a steady
state. Electrochemical impedance spectroscopy (EIS) measurements were conducted in a
frequency range from 105 Hz to 10−2 Hz at a sinusoidal signal with an amplitude of 20 mV.
The potentiodynamic polarization tests were scanned from 0.5 V below the open circuit
potential (OCP) to 2 VSCE at a scanning speed of 0.5 mV/s. Prior to the Mott–Schottky
test, the samples were immersed in a 0.1 mol/L NaOH solution at OCP for 1 h. The Mott–
Schottky curve was then measured by scanning the potential from −0.5 VSCE to 2 VSCE
at a scan rate of 20 mV/s at a frequency of 103 Hz. The local electrochemical impedance
spectroscopy (LEIS) test was carried out using a scanning electrochemical workstation
(Princeton VersaSCAN, AMETEK Advanced measurement technology, USA). The working
electrode is the Ti-6Al-4V alloy, the calomel electrode was the reference electrode and the
Pt plate was the counter electrode. The LEIS microprobe was a platinum double electrode
that moves along two axes at a speed of 50 µm/s to adjust the working electrode surface to
quantify the local potential gradient in the solution between the alloy surface and the probe,
and then the iloc (the local alternating current density in the system) was connected. AC
interference with a amplitude of 10 mV was applied to the working electrode with respect
to an open circuit potential.

An X-ray diffractometer (XRD) was used to identify the phases present in these two
Ti-6Al-4V alloys using a D/Max 2400 X-ray diffractometer (Rigaku Corporation, Tokyo, Japan)
and Cu Kα radiation as the X-ray source. The scan rate was 6◦/min. A Keyence VHX-
700 (Keyence Co. Ltd., Osaka, Japan) was used to observe the optical microstructure. The
preparation methods and the equipment used in the Electron Backscattered Diffraction (EBSD)
test in this work were described in detail in the literature [15]. The samples used for the XPS
test were soaked in a 0.1 mol/L NaOH solution for 3 h, then cleaned with ethanol and dried
using hot air. XPS (ESCALAB 250Xi T, ThermoFisher Scientific, Waltham, MA, USA) was then
performed to characterize the compositions of the passive films formed on the surfaces of
these samples. Peak 4.1 software was used to fit the XPS data.
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3. Results and Discussion
3.1. Microstructure Characterization

The XRD results of these two Ti-6Al-4V alloys are shown in Figure 2. It can be seen
that both the two Ti-6Al-4V alloys were composed of α-Ti and β-Ti phases. However, it is
noted that the α phase was the dominant phase in these two alloys with the presence of the
weak diffraction peaks for the β-Ti phase. Compared to the commercially forged Ti-6Al-4V
alloy, the (110) peak intensity of the β-Ti in the SLMed Ti-6Al-4V alloy decreased and the
(200) peak of the β-Ti appeared, which is consistent with the results shown in the previous
work [16].
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Figure 2. X-ray diffraction (XRD) patterns of the tested Ti-6Al-4V alloys.

The microstructure of the Ti-6Al-4V alloy is displayed in Figure 3. It can be clearly
seen from Figure 3a that the microstructure is composed of a bright primary α phase (αp)
and dark β transformed structure (βt). In addition, there are also αp phases dispersedly
distributed within the βt phase. As seen in Figure 3b, a large amount of a lath secondary α
phase (αs) is observed within the βt matrix.
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Figure 4 presents the microstructure of the SLMed Ti-6Al-4V alloy, showing different
microstructural features from the commercially forged one. A large amount of acicular α′

martensite as well as the presence of defects are evident in Figure 4a, and the formation of
the α’ martensite was related to the rapid cooling rate. Figure 4b is the TEM microstructure
of the SLMed Ti-6Al-4V alloy. It can be seen that a large amount of αp, αs and β phase
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is observed. The α′ lamellae contain a large number of dislocations introduced by the
martensitic phase transformation. The β phase within the αp is all uniformly oriented, indi-
cating that this orientation has the lowest growth energy and is suitable for transformation.
Figure 4c shows the EBSD grains orientation distribution of the SLMed Ti-6Al-4V alloy.
The microstructure of the SLMed Ti-6Al-4V alloy consists of long laths-like or acicular-like
α′ lamella.
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3.2. Electrochemical Corrosion Behavior

Figure 5 presents the EIS of these two tested Ti-6Al-4V alloys in a 0.1 mol/L NaOH
solution. It can be seen from Figure 5a that the Nyquist plots of the two tested alloys
showed the capacitive characteristics, which are the typical impedance spectra of passive
materials such as stainless steel and titanium alloy in corrosive media [9,17]. Since the
impedance spectra of the two tested alloys are of a similar shape, the corrosion behavior
of the two alloys in the 0.1 mol/L NaOH solution was expected to be similar [18] and the
passive films formed on the alloy surfaces were expected to provide good protection [19].
The radius of the capacitive arc for the commercially forged alloy was slightly larger than
the SLMed alloy, suggesting a higher corrosion resistance. The Bode plots of the two
tested alloys are shown in Figure 5b. It can be seen that the impedance expressed the
characteristics of the CPE and was composed of one time constant. At the frequency limit
of 10−2 Hz, the total impedance resistance, |Z|, of the commercially forged Ti-6Al-4V alloy
was slightly larger than that of the SLMed Ti-6Al-4V alloy, indicating that the passive films
formed on the surface of the commercially forged Ti-6Al-4V alloy had a better protective
performance. The phase angle in the intermediate frequency region was close to –80◦,
which indicates that the stable passive films were formed on the surfaces of the two tested
alloys in the 0.1 mol/L NaOH solution [20]. The equivalent circuit shown in Figure 6 was
used to fit the electrochemical impedance spectra, in which Rs is the solution resistance,
Rp is the polarization resistance of the passive films and the constant phase angle element
(CPE) represents the capacitance of the passive films. Due to the dispersion effect caused
by the non-planar interface and the inhomogeneity of the mass transfer process on the
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electrode surface, the CPE is usually used instead of the pure capacitance (C) to explain the
corrosion process [21,22]. The impedance of the CPE (ZCPE) is expressed as Equation (1):

ZCPE =
1
Q
(jω)−n (1)

where j is the imaginary part a, ω is the angular frequency,ω = 2πf (f is frequency), n is the
CPE index, which represents the degree of deviation from the pure capacitance (C) and Qdl
represents the CPE constant. The fitting results of each element in the fitting circuit are shown
in Table 2. The value of Rp for the commercially forged alloy was 7.36 × 104 Ω·cm2, and the
Rp of the SLMed alloy was 4.47 × 104 Ω·cm2, suggesting that the passive film formed on the
surface of the SLMed Ti-6Al-4V alloy has a lower protection ability and inferior corrosion
resistance. This might be correlated with the formation of the sandwiched structure of the
α and β phase in the SLMed Ti-6Al-4V alloy, which can easily establish the microgalvanic
coupling corrosion.
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Table 2. The fitted EIS data of the forged and SLMed Ti-6Al-4V alloys.

Alloy Rs
(Ω·cm2)

Rp
(Ω·cm2)

Qdl
(Ω−1·Sn·cm−2) n Ceff/(F·cm−2) dox/(nm)

Forged 20.98 7.36 × 104 3.28 × 10−5 0.93 3.50 × 10−5 15.2
SLMed 23.15 4.47 × 104 4.65 × 10−5 0.92 4.96 × 10−5 16.5

Qdl-constant phase element (CPE) of passive film, n-exponent of Qdl.

The average thickness of the passive films formed on the two tested alloys can be
calculated by Equations (2) and (3) [23,24]:

Ceff = Qdl
1/nRp

(1−n)/n (2)

Ceff =
εε0 A
dox

(3)
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where Ceff is the equivalent capacitance of the passive film, ε is the dielectric constant, ε0 is
the dielectric constant of vacuum (8.8542 × 10−14 F·cm−1), A is the sample area and dox
is the thickness of the passive films. Since the passive film formed on the surface of the
Ti-6Al-4V alloy is mainly composed of TiO2 and the dielectric constant of TiO2 is 65 [25,26],
the calculated thickness of the passive films on the surface of the commercially forged and
SLMedTi-6Al-4V alloy was about 15.2 nm and 16.5 nm, respectively, as shown in Table 2.

Figure 7 is the potentiodynamic polarization curves of these two tested Ti-6Al-4V
alloys in the 0.1 mol/L NaOH solution. It can be seen that the corrosion behaviors of these
two alloys are basically the same, showing a typical active–passivation behavior. In the
passive region, the passive current density of the commercially forged Ti-6Al-4V alloy
was lower than that of the SLMed Ti-6Al-4V alloy. The results of the corrosion potential
(Ecorr), corrosion current density (icorr), passive potential interval (∆Ep) and passive current
density (ipp) are listed in Table 3. These results showed that the corrosion potential and
passive potential range of these two alloys were basically the same, but the corrosion
current density of the SLMed Ti-6Al-4V alloy was 2.4 times that of the commercially forged
counterpart, suggesting a lower corrosion resistance, which is consistent with the EIS
results and the average film thickness calculation. When the potential was higher than
−0.35 VSCE, these two alloys transferred from active dissolution to a passive state. In the
passive region, the passive current density of these two alloys gradually decreased with the
increase in the applied potential. Dai et al. [15] also found that the passive current density
of the SLMed Ti-6Al-4V in a 3.5% NaCl solution was 2.16 times that of the commercial Gr. 5
alloy. The current density of the SLMed Ti-6Al-4V was 2.78 times that of the commercially
forged alloy by taking the current density in the middle of the passive zone. When the
potential was higher than 0.65 VSCE, the current densities of these two alloys increased
again. Chiu et al. [27] also found that the Ti-6Al-4V alloy exhibited this phenomenon in
simulated body fluid, and they attributed this to the occurrence of oxygen evolution on the
alloy surface [28].
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Table 3. Tafel fitting results derived from the polarization curves.

Ecorr (VSCE) icorr (A/cm2) ∆Ep (VSCE) ipp (A/cm2)

Forged −0.68 ± 0.01 (9.33 ± 0.12) × 10−7 1.04 ± 0.02 (1.63 ± 0.01) × 10−6

SLMed −0.67 ± 0.01 (2.24 ± 0.08) × 10−6 0.99 ± 0.01 (4.54 ± 0.02) × 10−6
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The published works [25,29] reported that the corrosion products of the titanium
alloys in the activation zone were mainly Ti3+, and the reactions were as follows:

Ti + H2O↔ Ti(H 2 O)ad (4)

Ti(H 2 O)ad ↔ Ti(OH−)ad+H+ (5)

Ti(OH−)ad ↔ (TiOH)ad+e− (6)

Ti(OH)ad ↔ (TiOH)ad
++e− (7)

Ti(OH)ad ↔ (TiOH)2++e− (8)

(TiOH)2++H+ ↔ Ti3++H2O (9)

In the passive region, TiO2 is usually formed on the surface of the titanium alloy [25,30],
and its formation process is below [29]:

(TiOH)ad
+ ↔ Ti(OH)ad

2++e− (10)

H2O+(TiOH)ad ↔ [Ti(OH)2]ad
2++H++e− (11)

H2O+(TiOH)ad ↔ [Ti(OH)2]
2++H++e− (12)

[Ti(OH)2]ad
2+ ↔ [Ti(OH)2]

2+ (13)

[Ti(OH)2]ad
2+ ↔ TiO2 + 2H+ (14)

It is clear that the microstructure and grain size of the Ti-6Al-4V alloy could influence
the composition, semi-semiconductor properties and electrochemical properties of the
passive film [8,31], thus affecting its corrosion resistance.

3.3. Mott–Schottky Curve

Since the passive film formed on the surface of the titanium alloy has semiconductor
characteristics, there are different types of defects presented in the passive film, including
interstitial ions and vacancies, which can determine the semiconductor type and conductiv-
ity [32,33]. The Mott–Schottky theory can be used to analyze the relationship between the
space charge layer differential capacitance Csc and the potential E [34]. The relationship
between the Csc and semiconductor properties of the passive film can be expressed by
Equation (15) [32,35,36]:

1
C2

sc
=

2
εε0eN

(E− Efb −
kT
e
) (15)

in which ε is the dielectric constant of the passive film (mainly composed of TiO2) and is
65, ε0 is the vacuum dielectric constant (8.8542 × 10−14 F·cm−1), e is the electron charge
(1.60 × 10−19 C), N is the carrier density of the passive film, k is the Boltzmann constant
(1.38× 10−23 J·mol−1·K−1), T is the absolute temperature (K) and E and EFB are the potential of
the electrode and the flat band potential, respectively.

Figure 8 shows the Mott–Schottky curves of the passive films formed on the surfaces
of the two Ti-6Al-4V alloys after immersion in the 0.1 mol/L NaOH solution for 3 h. The
slopes of these two curves shown in Figure 8 were positive in the measured potential range,
indicating that the passive film formed was an n-type semiconductor [37–39]. Wu et al. [40]
showed that the passive film formed on the surface of the Ti-6Al-4V alloy in artificial
seawater was an n-type semiconductor, and its carrier (ND) was the oxygen vacancy
and/or interstitial atoms [32,35]. In this work, the ND density was related to the formation
rate of the oxygen vacancy at the metal/film interface and their annihilation rate at the
film/electrolyte interface [40]. The higher the carrier density was, the more defects were
present in the passive film and the more unstable the film was. Under this circumstance,
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it is easier to allow ions to penetrate the passive film, resulting in film thinning or defect
formation in the passive film [20]. The value of ND can be calculated by Equation (16):

ND =
2

kεε0e
(16)

where k is the slope of the linear part of the Mott–Schottky curve. Since the composition
and structure of the passive films varied with the alloys, the accurate value of ND cannot
be obtained by calculation, but ND was inversely proportional to k. In Figure 8, the k value
of the SLMed Ti-6Al-4V alloy was smaller, suggesting the higher ND value. This indicates
that more defects in the surface passive film formed on the SLMed Ti-6Al-4V alloy, i.e., a
lower corrosion resistance, which is consistent with the results of the polarization and EIS
measurements.
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3.4. XPS Characterization

The passive films formed on the surfaces of these two Ti-6Al-4V alloys in the 0.1 mol/L
NaOH solution were studied using XPS. The XPS spectra of the passive films for the two
alloys are shown in Figure 9. The passive films on the surfaces of the two alloys were
composed of C 1s, Ti 2p, O 1s and V 2p peaks. The detailed XPS spectra of Ti 2p are shown
in Figure 10. It can be inferred that the preparation process had no obvious effect on the
passive films of these two alloys, and the peak of Ti was mainly composed of TiO2 and
Ti2O3. There was only 0.61% metallic Ti (Ti0) on the surface of the commercially forged
Ti-6Al-4V alloy, and the contents of TiO2 and Ti2O3 in the passive films of the two alloys
were basically the same. This is consistent with the results of Kong et al., showing that
there were no differences in the surface chemistry between the passive films formed on
the surface of the SLMed and commercially forged 316L SS [11]. The corrosion resistance
of the passive film on the titanium alloy is related to the fraction of TiO2 and Ti2O3. The
higher the TiO2 content in the passive film is, the denser the passive film is and the superior
the corrosion resistance is. It can be seen that the passive film of the commercially forged
Ti-6Al-4V alloy had a better corrosion resistance than the SLMed Ti-6Al-4V alloy. In the
0.1 mol/L NaOH solution, although the passive film formed on the surface of the SLMed
Ti-6Al-4V alloy was thicker than the commercially forged Ti-6Al-4V alloy, its corrosion
resistance was inferior, which may be correlated with the higher defect concentration in the
passive film.



Coatings 2023, 13, 150 10 of 13

Coatings 2023, 13, x FOR PEER REVIEW 10 of 13 
 

 

sistance of the passive film on the titanium alloy is related to the fraction of TiO2 and 

Ti2O3. The higher the TiO2 content in the passive film is, the denser the passive film is 

and the superior the corrosion resistance is. It can be seen that the passive film of the 

commercially forged Ti-6Al-4V alloy had a better corrosion resistance than the SLMed 

Ti-6Al-4V alloy. In the 0.1 mol/L NaOH solution, although the passive film formed on 

the surface of the SLMed Ti-6Al-4V alloy was thicker than the commercially forged 

Ti-6Al-4V alloy, its corrosion resistance was inferior, which may be correlated with the 

higher defect concentration in the passive film. 

200 400 600 800 1000 1200

SLMed T
i 

L
M

M
1

T
i 

L
M

M

O
 K

L
L

V
2

p
O

1
s

T
i2

p

In
te

n
s

it
y

 /
(a

.u
.)

Binding energy /(eV)

C
1

s

Forged

 

Figure 9. XPS analysis of passivation films on two Ti-6Al-4V alloys. 

452 454 456 458 460 462 464 466 468

(a) 

In
te

n
s
it

y
 /
(a

.u
.)

Binding energy /(eV)

 TiO2      67.89%

 Ti2O3    31.50%

 Ti          0.61%

 
452 454 456 458 460 462 464 466 468

In
te

n
s

it
y

 /
(a

.u
.)

Binding energy /(eV)

 TiO2      66.82%

 Ti2O3     33.18%

(b) 

 

Figure 10. Detailed Ti spectra in passive films on the surface of (a) forged (b) SLMed Ti-6Al-4V al-

loys. 

Figure 11 is the LEIS of these two Ti-6Al-4V alloys in the 0.1 mol/L NaOH solution. 

It can be seen from Figure 9a,b that, although the matrix impedance value Z of the 

commercially forged samples was about 500 Ω·cm2 and that of the SLMed samples was 

about 1000 Ω·cm2, the peak events of the commercially forged samples was obviously 

much less than that of the SLMed samples. It indicates that the passive films formed on 

the surface of the commercially forged Ti-6Al-4V alloy behaved more uniformly, show-

ing less active sites and a lower corrosion rate than the SLMed Ti-6Al-4V alloy. It is clear 

that the differences in the corrosion potentials of the α and β phase in the Ti-6Al-4V alloy 

drove the differences in the corrosion activities, and the unique sandwiched structure of 

the α and β phase in the SLMed Ti-6Al-4V alloy created more active corrosion events. 

Figure 9. XPS analysis of passivation films on two Ti-6Al-4V alloys.

Coatings 2023, 13, x FOR PEER REVIEW 10 of 13 
 

 

sistance of the passive film on the titanium alloy is related to the fraction of TiO2 and 

Ti2O3. The higher the TiO2 content in the passive film is, the denser the passive film is 

and the superior the corrosion resistance is. It can be seen that the passive film of the 

commercially forged Ti-6Al-4V alloy had a better corrosion resistance than the SLMed 

Ti-6Al-4V alloy. In the 0.1 mol/L NaOH solution, although the passive film formed on 

the surface of the SLMed Ti-6Al-4V alloy was thicker than the commercially forged 

Ti-6Al-4V alloy, its corrosion resistance was inferior, which may be correlated with the 

higher defect concentration in the passive film. 

200 400 600 800 1000 1200

SLMed T
i 

L
M

M
1

T
i 

L
M

M

O
 K

L
L

V
2

p
O

1
s

T
i2

p

In
te

n
s

it
y

 /
(a

.u
.)

Binding energy /(eV)

C
1

s

Forged

 

Figure 9. XPS analysis of passivation films on two Ti-6Al-4V alloys. 

452 454 456 458 460 462 464 466 468

(a) 

In
te

n
s

it
y

 /
(a

.u
.)

Binding energy /(eV)

 TiO2      67.89%

 Ti2O3    31.50%

 Ti          0.61%

 
452 454 456 458 460 462 464 466 468

In
te

n
s
it

y
 /
(a

.u
.)

Binding energy /(eV)

 TiO2      66.82%

 Ti2O3     33.18%

(b) 

 

Figure 10. Detailed Ti spectra in passive films on the surface of (a) forged (b) SLMed Ti-6Al-4V al-

loys. 

Figure 11 is the LEIS of these two Ti-6Al-4V alloys in the 0.1 mol/L NaOH solution. 

It can be seen from Figure 9a,b that, although the matrix impedance value Z of the 

commercially forged samples was about 500 Ω·cm2 and that of the SLMed samples was 

about 1000 Ω·cm2, the peak events of the commercially forged samples was obviously 

much less than that of the SLMed samples. It indicates that the passive films formed on 

the surface of the commercially forged Ti-6Al-4V alloy behaved more uniformly, show-

ing less active sites and a lower corrosion rate than the SLMed Ti-6Al-4V alloy. It is clear 

that the differences in the corrosion potentials of the α and β phase in the Ti-6Al-4V alloy 

drove the differences in the corrosion activities, and the unique sandwiched structure of 

the α and β phase in the SLMed Ti-6Al-4V alloy created more active corrosion events. 

Figure 10. Detailed Ti spectra in passive films on the surface of (a) forged (b) SLMed Ti-6Al-4V alloys.

Figure 11 is the LEIS of these two Ti-6Al-4V alloys in the 0.1 mol/L NaOH solution.
It can be seen from Figure 9a,b that, although the matrix impedance value Z of the com-
mercially forged samples was about 500 Ω·cm2 and that of the SLMed samples was about
1000 Ω·cm2, the peak events of the commercially forged samples was obviously much less
than that of the SLMed samples. It indicates that the passive films formed on the surface of
the commercially forged Ti-6Al-4V alloy behaved more uniformly, showing less active sites
and a lower corrosion rate than the SLMed Ti-6Al-4V alloy. It is clear that the differences in
the corrosion potentials of the α and β phase in the Ti-6Al-4V alloy drove the differences in
the corrosion activities, and the unique sandwiched structure of the α and β phase in the
SLMed Ti-6Al-4V alloy created more active corrosion events.
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Figure 11. LEIS of (a) forged and (b) SLMed Ti-6Al-4V alloys in 0.1 mol/L NaOH. 

4. Conclusions 

(1) The electrochemical results showed that the corrosion resistance of the commer-

cially forged Ti-6Al-4V was superior to that of the SLMed Ti-6Al-4V alloy in the 0.1 

mol/L NaOH solution. The passive films on both alloys exhibited an n-type semi-

conductor, but the defect density in the passive film formed on the surface of the 

commercially forged alloy was lower. 

(2) The passive films formed on the surfaces of these two alloys were composed of TiO2 

and Ti2O3, whose contents in the passive films were similar. 

(3) The passive films formed on the surface of the commercially forged Ti-6Al-4V alloy 

possessed lower defect contents, leading to more uniform electrochemical response 

and lower corrosion rates. 
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Figure 11. LEIS of (a) forged and (b) SLMed Ti-6Al-4V alloys in 0.1 mol/L NaOH.

4. Conclusions

(1) The electrochemical results showed that the corrosion resistance of the commercially
forged Ti-6Al-4V was superior to that of the SLMed Ti-6Al-4V alloy in the 0.1 mol/L
NaOH solution. The passive films on both alloys exhibited an n-type semiconductor,
but the defect density in the passive film formed on the surface of the commercially
forged alloy was lower.

(2) The passive films formed on the surfaces of these two alloys were composed of TiO2
and Ti2O3, whose contents in the passive films were similar.

(3) The passive films formed on the surface of the commercially forged Ti-6Al-4V alloy
possessed lower defect contents, leading to more uniform electrochemical response
and lower corrosion rates.
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