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Today, countries all over the world, faced with a global energy crisis and the effects of
climate change, are looking for alternatives to fossil fuels. Thus, there is a renewed interest
in nuclear energy, considered a much cleaner alternative with significantly lower carbon
emissions. Given the global situation, an international cooperative alliance was created in
2001 to study the practicality and performance of Generation IV (GEN IV) reactors to ensure
a global, safe, innovative, sustainable and economic energy source [1]. This international
alliance—the Generation IV International Forum or GIF—selected six emerging nuclear
technologies are classified by their cooling agents as follows: gas-cooled reactors (GFR and
VHTR), molten metal-cooled reactors (LFR), molten salt reactors (MSR), sodium-cooled
reactors (SFR) and supercritical water-cooled reactors (SCWR) [1]. They believed that these
innovative nuclear reactors can guarantee the low-carbon, long-term, safe and economical
production of energy.

Since these nuclear systems use very harsh coolants, the main challenge lies in the
identification of suitable structural materials and fuel claddings to withstand the various
combinations of high temperatures, high pressures and radiation [2,3]. Although each reac-
tor has its own challenges in terms of structural materials, there are some common issues,
such as resistance to uniform and localized corrosion, dimensional stability to creep at high
temperatures and resistance to radiation damage [4,5]. To select appropriate materials for
nuclear reactor components, many types of commercial alloys (martensitic, austenitic and
Ni-based alloys) or newly developed alloys such as oxide dispersion strengthened alloys
(ODS), refractory alloys, ceramics, carbides, nitrides, coatings and high entropy alloys
have been tested under simulated operating conditions [6]. In the case of the LFR system,
structural materials compatible with Pb or Pb–Bi at high operation temperatures (520 ◦C)
are essential, because liquid lead is more damaging to structural steel than other coolants
such as helium or sodium [7].

In low-temperature LFR, the main components could be composed of austenitic AISI
316 stainless steel for lower radiation doses, while for high doses, martensitic steels are
recommended due to their resistance to void swelling under radiation [8,9]. On the other
hand, in high-temperature LFR, refractory metals or ceramics would be more appropriate,
but so far there are limited results on the performance of these materials. Thus, to improve
the swelling resistance of austenitic steels, the microstructure can be stabilized with appro-
priate alloying elements [10]. At the same time, anticorrosive barriers, such as Al2O3 (or
other ceramics), deposited on the metal substrate [11] or the addition of aluminum to the
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alloy composition (the so-called austenitic alumina forming steels) are proven to be very
effective in the prevention of corrosion by liquid lead [12,13].

The GFR system is a GEN IV design combining the advantages of gas-cooled high-
temperature reactors and a fast neutron spectrum reactor. Helium is used as a coolant,
and the outlet temperature of the core is around 850 ◦C [14]. The main challenge for the
structural materials of this reactor vessel will be in its resistance to fast neutron irradiation
and high temperatures. Therefore, it is believed that ceramic materials, composite ceramics
or intermetallic compounds may be viable in this core [15]. For the fuel claddings of a GFR,
operating at temperatures beyond the current capabilities of heat-resistant alloys, advanced
refractory materials or SiCf/SiC composites, which maintain their strength and toughness
up to very high temperatures, may be employed [16]. For the other core components,
coated or uncoated ferritic-martensitic steels, austenitic steels and Fe–Ni–Cr alloys are
potential materials, while for the pressure vessel, heat resistant ferritic–martensitic 9%–12%
Cr and modified 2 1/4Cr-1Mo steels show promise.

As its name implies, the very high-temperature reactor (VHTR) system is designed
to operate at higher temperatures than GFR, which necessitates the use of materials with
further enhanced properties for the internal components [17]. It is estimated that the outlet
temperature of this type of reactor will be between 950 and 1100 ◦C, which will require
the development of superalloys based on Ni–Cr–W. Graphite with improved structural
strength is proposed for the core material, and for the other internal components, ceramic
materials such as C–C composites reinforced with fibers, ceramic, sintered SiC or oxide
composite ceramics are suggested [18–22].

The same problems with the selection of materials resistant to higher outlet tempera-
tures also exist in the case of the molten salt reactor (MSR). The temperature of the coolant
(fluorine salts) is from 700 ◦C (at very low pressure) up to 800 ◦C [23]. For MSR systems
operating under these conditions, mainly preexisting alloys have been proposed, namely
Ni-based alloys, Nb–Ti alloys, modified Hastelloy N and graphite. Graphite can function
as both a structural material of the core and the moderator. However, there are challenges
associated with the use of graphite, such as dimensional changes induced by irradiation,
salt penetration into graphite and absorption of xenon. To date, tests carried out in fluoride
salts at temperatures up to 800 ◦C have proven that modified Hastelloy N is resistant to
corrosion under these harsh conditions [23]. Additionally, nickel-based alloys have proven
to be suitable structural materials for MSRs due to their strong, stable, corrosion resistant
and good welding characteristics.

Another proposed reactor is the sodium-cooled reactor system, which will have an
outlet temperature of 550 ◦C, requiring the use of alloys resistant to high temperatures and
a sodium environment, for example, alloys hardened by oxide dispersion (ODS). Another
material proven to be resistant to high temperatures and creep in sodium environments is
ferritic steel with 12% Cr [24].

The supercritical water-cooled reactor (SCWR) is a promising Gen IV design, as it offers
an enhanced thermal efficiency in comparison to light water reactor (LWR) technologies
currently in operation. In addition, the abundant experience gained from PWR, BWR and
supercritical fossil plant operation can be exploited in the development of this system [25].
Despite the promised advantages, a high pressure (25 MPa) and high temperatures (up to
620 ◦C) lead to changes in the physicochemical properties of water, which in combination
with radiation becomes a harsh environment for SCWR component materials. Therefore,
research carried out in this field aims to combat general corrosion; testing stress corrosion
cracking of different non-irradiated and irradiated alloys. The evaluation of the effect of
radiolysis and the establishment of water chemistry are also interesting research areas in
this field. Additionally, through tests under simulated operating conditions, it was possible
to evaluate the dimensional and microstructural stability, strength, embrittlement, creep
resistance of the candidate alloys and perform thermo-hydraulic analyzes of the SCWR [26].
The alloys proposed as candidate materials for SCWRs are commercial alloys such as
austenitic steels (series 3xx), nickel-based alloys, ferritic-martensitic alloys and ODS alloys
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with a ferritic or austenitic structure. On the other hand, to improve the corrosion resistance
of the materials used in the internal components of the reactor, coatings (e.g., CrN and
NiCrAlY) are proposed as possible solutions [27]. Future research should be targeted to fill
existing gaps in the knowledge, with a precise focus on materials used in the temperature
range of 280–620 ◦C and in the irradiation dose ranges of 10–30 displacements per atom
(dpa) (thermal spectrum) and 100–150 dpa (fast spectrum) [28]. GIF meet bi-annually
to review the status of SCWR project plans, report on the research and development
activities—including benchmarking exercises and interlaboratory projects—and engage
with international collaborators. For example, the ECC-SMART project [29] connects
research institutes from Europe, Canada and China to develop supercritical water-cooled
small and modular reactors. The main objective of this collaboration is to identify the
design requirements for this technology and to establish the pre-licensing and guidelines
to ensure the safety of further technological developments.

Following the analyses carried out, only a few classes of materials described have the
potential to support the operating conditions of Generation IV nuclear reactors. Regardless
of the type of coolant in these systems, austenitic steels are suitable structural materials.
In addition, ceramics such as SiCf/SiC composites [30], Cf/C composites and alumina
protective coatings [30] may be attractive due to their proven high temperature stability
and resistance to wear, corrosion and erosion. Thus, materials such as aluminosilicates,
Al2O3, TiO2, ZrC, ZrN, ZrxSiy, B4C, WC, graphite and graphene are being explored for their
abilities to form surface modifications, surface coatings or alloys to improve the corrosion
resistance of ferritic martensitic steels. Surface coating technology presents another solution
to improve the corrosion resistance of candidate materials for next-generation nuclear
systems through various different methods [31]. Additionally, the ferritic alloy FeCrAl
has been intensively studied as an excellent substitute for zircaloy claddings [32,33]. The
modification of this material by oxide dispersion, forming so-called ODS-FeCrAl, may be of
interest in nuclear applications due to its resistance to irradiation, creep and corrosion [34].
Last but not least, it is believed that new fission reactors require the use a new class of
alloys altogether, with exceptional properties beyond those of conventional alloys, leading
to the development of high entropy alloys (HEAs) [35].

The development of nuclear technologies still faces challenges and continuing materi-
als research is crucial in order to find appropriate solutions.

Conflicts of Interest: The authors declare no conflict of interest.
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