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Abstract: Bone tissue degeneration, caused by disease as well as trauma, is a problem affecting
many social groups in the 21st century. It involves pain and reduced patient comfort. Developments
in materials engineering allow for the design of novel, innovative materials that can be used in
therapies to promote bone regeneration. This work presents the preparation of a ceramic–polymer
coating modified with carbon nanotubes on a titanium alloy for biomedical applications. The
ceramic part is hydroxyapatite synthesized by the wet precipitation method using orthophosphate
and calcium hydroxide. The polymer of choice was polyethylene glycol. A UV light synthesis
method was successfully applied to obtain coatings characterized by continuity and full crosslinking.
Extensive physicochemical analysis and incubation studies were carried out. Interactions between
coatings and fluids mimicking artificial biological environments were analyzed for 9 days, i.e., in
fluids such as SBF solution, artificial saliva, and distilled water. During the in vitro incubation,
changes in pH values were measured by potentiometric tests, and ionic conductivity was measured
by analyzing conductometry. After incubation, the surface morphology was studied by scanning
electron microscopy (SEM) together with energy-dispersive (EDS) microanalysis, which made it
possible to determine the presence of individual elements on the surface, as well as to observe
the appearance of new apatite layers. Fourier-transform infrared (FT-IR) spectrometry was also
performed before and at the end of the incubation period. On the basis of the presented studies, it
was concluded that coatings that contain nanotubes are bioactive and do not negatively affect the
properties of the coatings. Bioactivity was confirmed microscopically by observing new apatite layers
after incubation in SBF, which were identified as phosphorus and calcium deposits. Degradation
of the polymer phase was observed in the artificial saliva. These materials require further study,
including safety analysis, but they demonstrate potential for further work.

Keywords: composites; coatings; polyethylene glycol; hydroxyapatite; carbon nanotubes

1. Introduction

The role of a supporting structure in the human body is played by bones, which
are connective and supportive tissues. They consist of three types of cells: osteoblasts,
osteoclasts, and osteocytes. In addition, they include collagen fibers and compounds
of elements such as calcium, phosphorus, and magnesium. The cells that create bone
are responsible for its remodeling, which is necessary to maintain its normal mechanical
properties [1].

Unfortunately, bone tissue can be destroyed by injury or disease. Bone overload
syndrome refers to bone tissue damage that occurs as a result of prolonged fatigue. It
is characterized by the appearance of cracks or fractures, accompanied by pain. Stress
fractures are associated with overtraining, so the groups most often affected are athletes [2].

In the aging population, more people are suffering due to osteoporosis. This disease
causes a decrease in the strength of bone tissue, causing bone fragility. Lack of adequate
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micronutrient supplementation, insufficient exercise, and advanced age increase the risk of
this disease [3].

In order to accelerate bone regeneration and to fill defects caused by degradation, a fre-
quently used material is hydroxyapatite (HA), with the chemical formula Ca10(PO4)6(OH)2.
Thanks to its calcium and phosphorus content, HA is a highly biocompatible material and
is biomimetic to the inorganic part of natural tissue [4]. Its advantages also include its
bioactivity. Hydroxyapatite bonds well to bone tissue and promotes cell adhesion [5–7].
In addition, HA combines well with other biomaterials, forming a combination with high
bioactive properties [8].

Polyethylene glycol (PEG) is a synthetic polymer belonging to the polyether group, formed
by ethylene oxide polymerization [9]. It is biocompatible, non-toxic, non-immunogenic, and
amphipathic, which makes it useful for biomaterials research and as a drug carrier [10]. Its long
hydrophilic chain helps biodegrade the composite [11].

To improve the mechanical properties of a ceramic–polymer interface, the recom-
mended additive is a titanium (90%) aluminum (6%) vanadium (4%) alloy (Ti-6Al-4V). It
has excellent biocompatibility and corrosion resistance in physiological environments, as
well as a low modulus of plasticity. Thanks to these properties, Ti-6Al-4V alloy is often used
as a load-bearing implant following the reduction of shielding stress [12–16]. Therefore,
it has found applications in orthopedic surgery [17,18]. Furthermore, titanium improves
cell adhesion and supports cell proliferation [19,20]. This is a very important aspect in the
creation of a material to promote bone tissue regeneration. Positive effects of combining
Ti-6AL-4V with HA have also been reported [8].

An interesting material that blends very well with HA and synthetic or natural poly-
mers are carbon nanotubes (CNTs) [21–23]. Made of graphene, the thinnest material in
existence, they are classified into single-walled nanotubes (SWCNTs) and multi-walled
nanotubes (MWCNTs), and they find applications in many scientific fields [24,25]. They
are characterized by very good mechanical properties, such as high strength and flexibil-
ity [22,26]. The use of carbon nanotubes in tissue engineering is made possible by their
biocompatibility and lack of toxicity in their interactions with cells [27,28]. When CNTs are
placed in contact with bone tissue, not only cell adhesion but also support of osteoblast
growth has been reported [29–32]. Due to their conductive properties, CNTs help stimulate
osteoblastic cells during bone regeneration [33].

The global demand for biomaterials is growing every year. According to Stradvierd
Research (the Market Research Report), the total size of the biomaterials market will reach
$123 billion in 2021. By 2028, the market is expected to be worth $219 billion. According to
the Market Research Report, the orthopedic biomaterials market will be worth USD 19.2
billion in 2022. The compound annual growth rate (CAGR) is expected to remain at 7.8%
until 2030.

One of the reasons for the growing demand is the increasing proportion of the aging
population. According to the World Health Organization, by 2022, there were more elderly
people over the age of sixty than children under the age of five. There has also been an
increase in the number of sports injuries. According to National Safety Statistics, there was
a 20% increase in injuries in 2021 compared to the previous year.

Among the orthopedic material categories, ceramics was the most popular segment,
along with bioglass. This segment accounted for 32.7% of revenue in 2022. The second-
fastest growing and currently second-most popular group is polymers, which accounted
for the most revenue in 2021. It is expected to dominate the biomaterials market in the
coming years.

In addition to the traditional use of biomaterials in orthopedics, the concept of using
biomaterials for the early detection of disease is being developed to prevent further pro-
gression of the disease. Furthermore, biomaterials used for diagnostics and theragnostics
can incorporate scaffolds or nanoparticles, which expand the range of applications [34].

The aim of the presented paper was to determine the composition and conditions for
the synthesis of hybrid ceramic–polymer coatings with the characteristics of biomaterials.
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The polymeric phase was enriched with MWCNTs to determine the potential of their use
as a modifier. Physicochemical analysis, as well as incubation studies, were carried out.
These coatings are novel, and so far, no material described in the literature with the same
composition and preparation method has been found.

2. Materials and Methods
2.1. Materials

Polyethylene glycol (PEG, Mn = 8000) (Acros Organic, Geel, Belgium) was used for the
synthesis of the coatings, poly(ethylene glycol) diacrylate (PEGDA, Mn = 700) was used as
a crosslinking agent, and 2-hydroxy-2-methylopropiophenone (Darocur 1173) was used as
a photoinitiator (Sigma Aldrich, Darmstadt, Germany). MWCN > 98%, O.D. × L 6–13 nm
× 2.5–20 µm (Sigma Aldrich, Darmstadt, Germany) were suspended in a polymer matrix.
The components used to create HA were: calcium hydroxide (Ca(OH)2), phosphoric acid
V(H3PO4 85%), and ammonia water (NH4OH 25%) (POCH S.A., Gliwice, Poland).

2.2. Methods
2.2.1. Preparation of Hydroxyapatite

The hydroxyapatite used to form composite coatings was obtained using the wet
precipitation method. A detailed description of the formation of HA, together with a
detailed physiochemical analysis of the powder, was given previously [35].

2.2.2. Preparation of Coatings

A PEG (20%) solution was prepared by mixing the polymer powder with distilled
water. Then PEGDA was added to the resulting solution as a crosslinking agent, as well as
HA in powder form. The exact addition rates of the substrates used are demonstrated in
Table 1. The received solution was homogenized using a Polytron PT 2500 E homogenizer.
A photoinitiator was added during the homogenization process using an automatic pipette.
Then, 200 µL of the solution obtained was applied and distributed using an automatic
pipette to rectangular titanium plates with dimensions of 2 cm × 3 cm. The coatings were
exposed to the photocrosslinking process using a Medilux UV 436 HF (Medilux, Korntal-
Münchingen, Germany) lamp for 3 min. After the crosslinking process, the coatings were
prepared for further testing.

Table 1. Composition of the coatings.

Sample Symbol PEG 20% [mL] PEGDA [mL] HA [g] Photoinitiator [µL] MWCNTs [g]

10

10 1.8

-

200

-
20

0.5

-
41 0.01
42 0.02
43 0.03

In total, the compositions of one polymer and four composite coatings with increasing
MWCNTs were developed. Carbon nanotubes were added to the polymer solution in solid
form and mixed thoroughly to distribute them evenly in the polymer using a homogeniza-
tion technique. Homogenization ensured good mixing of all components as well as the
uniformity of the samples. The MWCNTs were added before adding the hydroxyapatite.
The limit value of MWCNTs was 0.03 g, because above this amount, it was not possible to
obtain fully crosslinked materials.

Figure 1 presents a scheme for obtaining a composite coating on a Ti-6Al-4V alloy and
a photo of an example of the resulting coating.
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Figure 1. Scheme for obtaining a coating biomaterial.

2.2.3. In Vitro Incubation

The obtained coatings were incubated in vitro at the temperature of 36.6 ◦C in a POL-
EKO incubator, model ST 5 B SMART (Wodzisław Śląski, Poland) for 9 days in artificial
saliva, SBF solution, or distilled water. The artificial saliva and SBF compositions are
presented in Table 2.

Table 2. Compositions of artificial biological fluids [36].

Artificial Saliva

Component Amount [g/L]

NaCl 0.400
KCl 0.400

CaCl2·H2O 0.795
Na2S·9H2O 0.005

Na2HPO4·H2O 0.780
CH4N2O 1.000

SBF

Component Amount [g/L]

NaCl 8.035
NaHCO3 0.355

KCl 0.225
K2HPO4·3H2O 0.231
MgCl2·6H2O 0.311

1 M HCl 39 mL
CaCl2 0.292

Na2SO4 0.072
Tris 8.118

Potentiometric analysis to control the pH value of individual fluids was carried out
to evaluate the bioactivity of the resulting composite coatings. Conductometric analysis,
measuring the ionic conductivity of the fluids, was carried out simultaneously.

The purpose of these studies was to confirm the interactions occurring between the sample
and the incubation medium. An increase in conductivity values suggests ion exchange between
the biomaterial and the fluid. This can cause changes in the pH. However, pH changes can also
be caused by leaching of individual components from the coatings.

Coatings applied to Ti6Al4V plates were placed in sterile containers filled with fluids.
The pH and conductivity values were measured using an Elmetron CX-701 multifunctional
device (Zabrze, Poland). Five replicates were performed for each composition.

2.2.4. Morphology Analysis

Morphological studies were carried out on the resulting coatings before and after the
incubation period in SBF. A Hitachi TM3000 (Tokyo, Japan) tabletop scanning electron
microscope (SEM) equipped with a Quantax 400 V EDS system was used to perform
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the morphological analysis. In order to visualize the morphology of the coatings and to
capture the potential deposits formed on top of the samples, an EDS microanalysis was
also performed. Before SEM measurement, a layer of gold was sputtered onto the surface
of the dried sample. However, during the EDS measurement, the presence of Au was not
considered in the analyses. Spot EDS analysis was performed to determine the percentage
of each element as well as to perform surface mapping.

2.2.5. FT-IR Analysis

Fourier-transform infrared spectroscopy (FT-IR) was used to determine the functional
groups and analyze the composition before and after incubation. A Thermo Scientific
Nicolet iS5 FTIR (Loughborough, UK) spectrophotometer equipped with an iD7 was
used. Due to the monolithic diamond crystal, there is a high optical contact between the
sample and the diamond, leading to a clear spectrum. The wavelength range recorded was
4000–400 cm−1. The study was performed at room temperature with conditions of 32 scans
at 4.0 cm−1 resolution. The FT-IR spectra were collected for three random locations on the
surface of each sample.

3. Results
3.1. In Vitro Incubation
3.1.1. pH Metric Analysis

During in vitro incubation, pH changes were measured in the solutions to determine
the stability of the coatings under conditions similar to the human body. The exact results
of the test are demonstrated in Figure 2. It was observed that coatings with HA had a more
alkaline character than unsupplemented ones. This is related to the washing-out process of
hydroxyapatite, which results in a hardly soluble precipitate [35].
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On the basis of the MWCNTs-containing samples tested, it was found that the presence
of nanotubes in the coating caused changes in the pH value of the solutions. The only rapid
change in pH level observed was in the SBF solution during the 3 days of incubation, and
its value was the highest at that point. For all three samples, the pH level remained between
7.939 and 7.955. However, a stabilization of the process was observed at later stages.

In the artificial saliva solution, the pH value increased gradually throughout the
incubation. Samples immersed in distilled water exhibited a slight change in pH throughout
the entire incubation. This is due to the high purity of the water, which results in a low
concentration of free ions reacting with the coating and causing significant pH changes.
Spikes in pH values in water are likely due to leaching of residual uncrosslinked polymer
from the interior of the material. Smaller pH shifts in SBF may be due to its buffering nature.
On this basis, it was concluded that the addition of MWCNTs caused a slight increase in
pH value.

The stability of the resulting coatings in all solutions was also observed due to a lack of
large pH changes throughout the entire incubation process. An interesting behavior of the
materials was observed for SBF, as the pH value curves for coatings without MWCNTs, i.e.,
10 and 20, almost completely overlap, while the pH values for coatings containing MWCNTs,
i.e., 41, 42, and 43, also overlap, but reach slightly higher values. This suggests that despite
the buffering properties that SBF possesses, even a small presence of carbon nanotubes affects
the pH change. However, the values are still within safe limits for the body.

3.1.2. Conductivity Analysis

The incubated samples were subjected to an electrolyte conductivity test. The exact
results are presented in Figure 3. This test is based on the changes in the ion concentration
in the solution.
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saliva, or (c) SBF solution.
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Measurements for samples 10 and 20 demonstrated that the addition of HA resulted
in a minimal improvement in stability and, in the case of distilled water, a slight decrease
in conductivity. For coatings containing MWCNTs, in distilled water, the samples revealed
very strong stability throughout the incubation process. This is due to the low concentration
of free ions in the distilled water. Minimal conductivity changes were observed in the
SBF solution, but these were low enough to conclude that the materials were stable in
this solution. The same conclusion was reached with the artificial saliva solution. The
conductivity of the sample increased minimally without sudden changes. This is related to
the degradation process, which is more intense than in the other solutions.

3.2. Morphology Analysis
3.2.1. Coatings Morphology before Incubation

Figure 3 presents images of the surface morphology before incubation in artificial
saliva and SBF solution. Figure 4b demonstrates a change in the surface morphology due to
HA crystals suspended in the polymer area, while surface Figure 4a is completely smooth.
On the surfaces Figure 4c–e, these crystals are also visible. The surface areas for Figure 4a,b
were also compared to an earlier publication with l-cysteine modified coatings [35].
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3.2.2. Coatings Morphology after Incubation

After the incubation process, changes were observed in the coatings of the samples containing
MWCNTs. Images after incubation of the samples are demonstrated in Figures 5 and 6.
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The formation of pits and grooves was observed on the surfaces, indicating the recrys-
tallization process of the apatite. In all samples containing CNTs incubated in SBF solution,
the appearance of large agglomerations of apatite crystals was noted. This is related to the
specificity of the SBF solution, which simulates a human plasma environment with a high
ion concentration. Calcium ions react with negative HA, later involving a phosphorus ion.
This results in the compound being converted into apatite [33]. In biomaterials incubated
in artificial saliva, the formation of a visible accumulation of apatite crystals was observed,
as in the SBF solution.

Along with the morphological examination, an EDS microanalysis was performed.
Its purpose was to identify the elements present and to determine their abundance in the
coating. The exact results of the microanalysis are presented in Tables 3 and 4. The most
frequent elements present were C and O. This indicates the chemical composition of the
polymer that was used. Na and Cl ions were also observed. This appears to indicate that
the biomaterial reacts with the solution in which it is incubated. The presence of Ca and P
in the biomaterial results in the coatings having a bioactive property. The presence of Ca
and P in material 10 after the incubation period is due to the composition of the incubation
fluids, as the fluids contained trace amounts of these elements.

Table 3. Elemental composition of the tested coatings after incubation in SBF solution.

Sample Mass Percentage [w%]

10 C: 45.88, O: 19.31, Cl: 19.06, Na: 14.00, Ca: 1.33, P: 0.42
20 O: 45.33, Ca: 24.87, C: 16.55, P: 9.45, Cl: 2.53, Na: 0.8
42 O: 41.14, Ca: 29.88, C: 13.87, P: 9.89, Cl: 4.39, Na: 0.74
43 C: 21.79, O: 42.48, Ca: 18.77, P: 8.58, Cl: 4.44, Na: 3.93

Table 4. Elemental composition of the tested coatings after incubation in artificial saliva.

Sample Mass Percentage [w%]

10 C: 40.29, O: 39.57, Ca: 11.03, P: 7.03, Cl: 1.68, Na: 0.39
20 O: 46.15, C: 28.64, Ca: 15.91, P: 7.12, Cl: 1.52, Na: 0.65
42 C: 43.69, O: 35.86, Ca: 13.14, P: 3.95, Cl: 2.31, K: 1.04, Na: 0.01
43 O: 47.94, C: 23.94, Ca: 17.56, P: 8.77, Cl: 0.96, Na: 0.82

Considering that in the context of orthopedic applications, behavior in the SBF fluid is
a more important indicator that provides information regarding the application potential,
EDS microanalysis with mapping of individual elements was performed, as can be observed
in Figure 6. Elements such as Ca and P were marked on the mapping, confirming the
presence of calcium phosphate, such as HA, in the material, as well as the formation of new
apatite layers on the surface due to interactions with SBF fluid. Figure 7a,b clearly illustrate
the overlap on the surface.

The presence of Na, Mg, or Cl is a direct result of the composition of the SBF fluid, as
these ions are present in the salts used to prepare it. The overlap of the spectrum of Mg
with Cl or Na with Cl may indicate the formation of chlorides. This is also evidenced by
the characteristic geometric shape of the crystals formed.



Coatings 2023, 13, 1813 10 of 15Coatings 2023, 13, x FOR PEER REVIEW 11 of 16 
 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 7. Elemental EDS microanalysis and determination of elements on the surface of material 43 
after incubation in SBF (a) calcium, (b) phosphorus, (c) sodium, (d) chlorine, (e) magnesium, and (f) 
oxygen. 

The presence of Na, Mg, or Cl is a direct result of the composition of the SBF fluid, as 
these ions are present in the salts used to prepare it. The overlap of the spectrum of Mg 
with Cl or Na with Cl may indicate the formation of chlorides. This is also evidenced by 
the characteristic geometric shape of the crystals formed. 

3.3. FT-IR Analysis 
3.3.1. Spectrum of Coatings before Incubation 

Using FT-IR spectrometric analysis to determine the chemical composition of the re-
sulting coatings, the biomaterial spectra are demonstrated in Figure 8. The spectra of the 
coatings presented are PEG, PEG with hydroxyapatite, and also coatings containing 0.01 
g, 0.02 g, or 0.03 g of nanotubes. The spectra of pure hydroxyapatite and pure PEG are 
presented in publications related to the studies performed and are described in this article 
[36]. For all samples that are shown, a peak was observed at a wavelength of 1100 cm−1 
and 3500 cm−1, originating from the OH group associated with the presence of the poly-

Figure 7. Elemental EDS microanalysis and determination of elements on the surface of material 43 after
incubation in SBF (a) calcium, (b) phosphorus, (c) sodium, (d) chlorine, (e) magnesium, and (f) oxygen.

3.3. FT-IR Analysis
3.3.1. Spectrum of Coatings before Incubation

Using FT-IR spectrometric analysis to determine the chemical composition of the
resulting coatings, the biomaterial spectra are demonstrated in Figure 8. The spectra of
the coatings presented are PEG, PEG with hydroxyapatite, and also coatings containing
0.01 g, 0.02 g, or 0.03 g of nanotubes. The spectra of pure hydroxyapatite and pure PEG
are presented in publications related to the studies performed and are described in this
article [36]. For all samples that are shown, a peak was observed at a wavelength of
1100 cm−1 and 3500 cm−1, originating from the OH group associated with the presence of
the polymer. In samples containing HA, a characteristic peak related to PO4

3− oscillation
was observed at a wavelength of 560 cm−1. In coatings containing CNTs, the featured
peaks were more pronounced. This behavior was observed at wavenumbers of 1030 cm−1

and 560 cm−1, respectively.
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Figure 8. FT-IR spectra of coatings before incubation.

Finally, it is significant that FT-IR spectra were collected for three random locations on
the surface of each sample. The spectra overlapped, which suggests that all of the coatings
were homogeneous. Otherwise, the individual peaks would not have overlapped, or shifts
would have been observed.

3.3.2. Spectrum of Coatings after Incubation

After a 9-day incubation carried out in SBF solution, artificial saliva, or distilled water,
FT-IR analysis was carried out. Figure 9 shows the obtained spectra of the incubated
coatings. An increase in absorbance was observed for the peak at wavelength 1730 cm−1.
For samples 10 and 20 incubated in SBF solution, the vibration modulus increased in the
range of 700 cm−1–400 cm−1. In the spectra of coatings containing nanotubes, there was
a decrease in the number of visible peaks. It should be noted that the diagrams overlap
with the spectra obtained for the coatings before incubation. This suggests that as a result
of incubation, at the coating–incubation fluid interface, there are no potential degradation
or destruction processes of the composition.
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4. Discussion

The results of this study confirm that the ceramic–polymer coating containing nanotubes
can potentially be used as a biomaterial to support bone tissue regeneration. A 9-day in vitro
study was performed to determine the effect of the coatings on the environment of artificial
body fluids in terms of changing pH values and conductivity. The results of this study indicate
proper interactions of the coatings with the solutions in which they were incubated.

In samples containing hydroxyapatite, the pH value increased minimally in the alka-
line direction, which is related to the characteristics of the HA. A conductivity test verified
the interaction of the coating ions with the ions of the prepared solutions, indicating a
proper interaction without rapid changes throughout the incubation period. The changes
in the pH and conductivity values confirm that the developed coatings are not inert and
interact with the selected fluids. However, these interactions do not cause degradation or
destruction of the coating surfaces, as confirmed by the overlapping FTIR spectra.

Morphological studies, together with EDS microanalysis, were carried out to deter-
mine the changes in the coatings caused by the incubation, and to identify and quantify the
elements present. On the basis of this study, apatite agglomerations were found to appear
on the surface of the samples, formed due to ion reactions between the HA and the solu-
tion. The microanalysis confirmed the occurrence of calcium and phosphorus. Elemental
mappings in particular confirmed the formation of new calcium phosphate values. This
effect was likely further supported by the presence of these ions in the composition of the



Coatings 2023, 13, 1813 13 of 15

SBF fluid. The other elements appearing are related to the structure of the polymer and the
normal reactions of the coatings with the solutions.

FT-IR spectrometric examination confirmed the occurrence of the functional groups as-
sociated with the substrates used through the appearance of characteristic peaks, revealing
the chemical composition of the biomaterial.

The performed studies were compared with similar research in terms of the connection
between carbon nanotubes and hydroxyapatite. The selected studies had differences in the
method of coating synthesis. Despite the mentioned difference, similarities in the form of
proper bonding of HA to the surface of the nanotubes was demonstrated [37–39].

5. Conclusions

In the presented study, the synthesis of coatings that have the potential to support bone
tissue regeneration is reported. The technique developed was based on the use of UV light
and enabled us to obtain composite coatings on titanium plates under UV light. The selected
parameters, i.e., crosslinking time and the types of crosslinking agents and photoinitiators,
made it possible to obtain completed materials with satisfactory organoleptic properties
(without roughness or holes, fully continuous and crosslinked). This study confirmed
that the addition of nanotubes to a ceramic–polymer base had no negative effect on the
results during incubation in biological fluids. Coatings containing MWCNTs demonstrated
bioactivity, which is an important feature of a biomaterial. Bioactivity was confirmed by
observing new apatite layers that appeared following incubation. Further biological studies
should focus on the reactions of cells in contact with the coatings in order to determine
whether the biomaterial influences the adhesion and growth of bone tissue.
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