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Abstract: This study demonstrated the epitaxial growth of single-phase (111) CoO and (111) Co3O4

thin films on a-plane sapphire substrates using an atmospheric pressure mist chemical vapor depo-
sition (mist-CVD) process. The phase structure of the grown cobalt oxide films was manipulated
by controlling the growth temperature and process ambient, confirmed through X-ray diffraction,
Raman spectroscopy, and X-ray photoelectron spectroscopy. Furthermore, the electrical properties of
Co3O4 films were significantly improved after thermal annealing in oxygen ambient, exhibiting a
stable p-type conductivity with an electrical resistivity of 8.35 Ohm cm and a carrier concentration of
4.19 × 1016 cm−3. While annealing CoO in oxygen atmosphere, the Co3O4 films were found to be
most readily formed on the CoO surface due to the oxidation reaction. The orientation of the atomic
arrangement of formed Co3O4 was epitaxially constrained by the underlying CoO epitaxial layer.
The oxidation of CoO to Co3O4 was largely driven by outward diffusion of cobalt cations, resulting
in the formation of pores in the interior of formed Co3O4 films.

Keywords: cobalt oxide films; epitaxial growth; p-type metal oxide semiconductor; mist chemical
vapor deposition

1. Introduction

Metal oxide semiconductors are regarded as promising, next-generation, functional
materials due to their various functionalities, including transparency, electrical conductivity,
ferroelectricity, ferromagnetism, and superconductivity [1–4]. Thus, they are in demand for
a wide range of applications, including transparent electronics, gas sensors, energy storage,
thin film transistors, photodetectors, solar cells, catalysis, memory devices, etc. Most metal
oxide semiconductors exhibit n-type conductivity, such as Al-doped ZnO, Sn-doped In2O3,
and Sn-doped Ga2O3. However, several metal oxide semiconductors demonstrate p-type
conductivity, including cobalt oxide, nickel oxide, and copper oxide [5]. Among these
materials, cobalt oxide, studied in this work, has attracted intensive attention in the view
of its applications in various fields, including photovoltaics devices [6,7], catalysis [8],
gas sensors [9], water splitting [10], resistive switching [11], rechargeable batteries [12],
supercapacitors [13], photodetectors [14], and spintronic devices [15]. There are two stable
cobalt oxide phases: CoO (rock-salt structure, a = 0.426 nm) and Co3O4 (normal spinel
structure, a = 0.808 nm). Both phases are direct band gap p-type semiconductors. CoO
has a cubic rock-salt structure with high-spin Co2+ cations occupying the octahedral sites.
Co3O4, on the other hand, has a normal spinel structure, with the mixed Co2+ and Co3+

cations occupying the tetrahedral and octahedral sites, respectively.
To date, cobalt oxide thin films have been successfully prepared through various

methods, such as radio frequency reactive sputtering [7], spray pyrolysis [16], sol–gel [17],
pulsed laser deposition (PLD) [18], molecular beam epitaxy (MBE) [19], atomic layer depo-
sition (ALD) [20], and metalorganic chemical vapor deposition (MOCVD) [21]. The cobalt
oxide thin films of both CoO and Co3O4 can be synthesized selectively by various thin film
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deposition technologies by controlling the process temperature and the composition of
the reactive atmosphere during thin film deposition [18,22]. Furthermore, the increasing
interest in the cobalt oxide thin films has prompted the development of epitaxial growth
technology for obtaining high-quality single-crystalline films. In contrast to the polycrys-
talline films comprising randomly oriented grains, epitaxial film having well-ordered
structures is essential to developing high-performance cobalt-oxide-based spintronic or
optoelectronic devices. Although the epitaxial growth of cobalt oxide thin film can be imple-
mented through PLD [18], MBE [19], ALD [20], and MOCVD [21], the processes mentioned
above still need to adopt a high vacuum pumping system, complex gas transport system,
or flammable and toxic organometallic precursors. In this study, we employed atmospheric
pressure solution-processed mist chemical vapor deposition (mist-CVD) to perform the
epitaxial growth of cobalt oxide films on sapphire substrates. Mist-CVD possesses the
advantages of a non-vacuum system, low cost, low energy consumption, and non-toxicity.
Furthermore, different works have shown that various functional metal oxide epitaxial
films, including ZnO, Ga2O3, ZnGa2O4, In2O3, and SnO2, can be successfully grown using
mist-CVD [23–27]. Therefore, the mist-CVD technique has great potential for application
in the epitaxial growth of high-quality metal oxide thin films. However, to the best of our
knowledge, less attention has been given to the study of the mist-CVD growth of cobalt
oxide epitaxial films. Moreover, the selective epitaxial growth of single-phase CoO and
Co3O4 films using mist-CVD by controlling growth conditions, such as temperature and
ambient, has not been explored yet. This work demonstrated selective epitaxial growth of
single-phase CoO and Co3O4 films on sapphire substrates via the atmospheric pressure
mist-CVD process. In addition, the influence of post-annealing treatment on the electrical
and structural properties of grown cobalt oxide films was also investigated in this work.

2. Materials and Methods

The epitaxial growth of cobalt oxide thin films was performed using an atmospheric
pressure mist-CVD system. The details of the mist-CVD system can be found in our
previous works [28]. Prior to the growth of cobalt oxide thin films, as received, a-plane
sapphire substrates (12 mm × 12 mm) were cleaned ultrasonically in acetone for 10 min,
rinsed with deionized water, and then blown with dry nitrogen. For the mist-CVD growth
of cobalt oxide thin films, a precursor solution was prepared in a solution of 0.05 M cobalt
(II) acetate tetrahydrate (Co(CH3COO)2 4H2O, 98%, Showa) dissolved into a solution of
deionized water and acetic acid mixed in a 7:3 ratio. The precursor solution was atomized
to produce mist droplets using ultrasonic transducers at 2.4 MHz and transferred into
a reaction furnace, with a carrier gas of either nitrogen (N2, 99.99% purity) or oxygen
(O2, 99.99%, purity), at a flow rate of 2 L/min. The growth of cobalt oxide films on
sapphire substrates was implemented at the temperature of 450–500 ◦C for 60 min. The
post-annealing treatment was implemented using an ULVAC MILA-5000 annealing system.
The cobalt oxide films were annealed at 650 ◦C for 30 min under oxygen ambient.

The crystal structure of cobalt oxide films was analyzed using X-ray diffraction (XRD).
A X’Pert PRO-MPD (PANalytical) diffractometer, equipped with a hybrid monochromator,
was employed for conducting 2θ-ω scan measurements. Additionally, we used the D8
Discover (Bruker, Billerica, MA, USA) diffractometer for X-ray rocking curve (XRC) and
ϕ-scan measurements. The Raman spectra were recorded using a Horiba Jobin Yvon HR800
system, using a 633 nm He-Ne laser as an excitation source. The surface morphologies
of the grown films were examined through scanning electron microscopy (SEM, Hitachi,
Tokyo, Japan, S3400). The chemical state of the cobalt oxide films was analyzed through
X-ray photoelectron spectroscopy (XPS) using a JEOL JAMP 9500 F system. The electrical
properties of the cobalt oxide films were examined through Hall-effect measurement
(Ecopia, Anyang City, Republic of Korea, HMS-3000). The optical transmission spectrum
was obtained using a UV-visible spectrophotometer (UV-Vis, Thermo Scientific, Waltham,
MA, USA, Evolution 201). The microstructure of the cobalt oxide–sapphire interface
was characterized using cross-sectional transmission electron microscopy (XTEM, JEOL
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JEM-2100F). The XTEM specimen was prepared using a focused ion beam (FIB, FEI, Nova-
200 NanoLab). The high-resolution TEM (HRTEM) images were analyzed using Gatan
Digital MicrographTM version 3.10.1 (Pleasanton, CA, USA) software.

3. Results
3.1. Epitaxial Growth of CoO and Co3O4 Thin Films on Sapphire Substrates

Based on previous successful work on the growth of ZnO epitaxial films using mist-
CVD using the solution of zinc acetate dissolved into a solution of deionized water and
acetate acid [28,29], we replaced zinc acetate with cobalt acetate in this work. The cobalt
oxide thin films were grown at 450 and 500 ◦C using mist-CVD under nitrogen and oxygen
ambient, respectively. We performed XRD to identify the phase of the grown films. Figure 1
depicts the 2θ-ω scan profiles of cobalt oxide thin films grown under various conditions.
Figure 1b,c show the XRD profiles of the films grown under nitrogen ambient at 500 ◦C
(Figure 1b) and oxygen ambient at the temperature of 450 ◦C (Figure 1c), respectively,
revealing that the diffracted peaks at 2θ positions of 36.62◦ and 77.83◦ correspond to the
(111) and (222) planes of the CoO phase (JCPDS No. 48-1719) and the diffracted peak at
38.59◦ and 59.42◦ corresponds to the (222) and (333) plane of the Co3O4 phase (JCPDS No.
42-1467), together with intense peaks of sapphire substrate (2θ = 37.7◦). It is shown that CoO
and Co3O4 phases coexisted in both grown cobalt oxide films. Notably, the cobalt oxide
film grown under nitrogen ambient at the temperature of 450 ◦C solely exhibited a single
CoO phase, as shown in Figure 1a. On the other hand, only the Co3O4 phase was detected
in the cobalt oxide film grown at 500 ◦C under oxygen ambient, as shown in Figure 1d.
Nevertheless, all of the cobalt oxide thin films grown on sapphire substrates under various
conditions exhibited the <111> texture. The formation of CoO and Co3O4 significantly
depends on the growth temperature and ambient. In general, the usage of metalorganic
precursor containing only divalent Co2+ tends to favor the formation of a less stable CoO
phase containing cobalt cations in a lower oxidation state (Co2+) [21,30]. However, they can
still be used to grow the single-phase Co3O4 films comprising cobalt cations in two different
oxidation states, Co2+ and Co3+, by adjusting CVD growth conditions (temperature and
ambience). According to the abovementioned results, the use of divalent cobalt (cobalt (II)
acetate) precursors for mist-CVD growth facilitated the growth of CoO films at relatively
low temperatures in nitrogen (oxygen-deficient) atmosphere. On the other hand, the
relatively high temperature and oxygen-rich atmosphere were beneficial for maintaining
cobalt in its higher oxidation state, leading to the growth of single-phase Co3O4. The
crystallite sizes of grown CoO and Co3O4 films can be estimated using the Scherrer method
based on the results of the 2θ-ω scan [18,31]. Utilizing the Scherrer equation and the
full-width at half-maximum (FWHM) of diffracted peaks corresponding to CoO (222) and
Co3O4 (333), the average crystallite sizes of CoO and Co3O4 were determined to be 53 nm
and 30 nm, respectively. In addition, the out-of-plane strains in both films were calculated
from the 2θ positions of the diffracted peaks corresponding to CoO (222) and Co3O4 (333),
and they were found to be −0.32% and −0.1%, respectively. These negative strains along
the out-of-plane direction resulted from the presence of tensile in-plane strain in both of
the grown epitaxial films. Furthermore, we carried out Raman analysis to explore the
structural details in both of the cobalt oxide films grown at 450 ◦C in nitrogen ambient
for CoO and 500 ◦C in oxygen ambient for Co3O4, respectively. Figure 2a,b display the
corresponding Raman spectra of CoO and Co3O4 films. In Figure 2a, due to the NaCl-type
centrosymmetric lattice structure, CoO exhibited a weak Raman scattering [32,33]. Except
for the sharp peaks of sapphire substrates, as indicated by an asterisk, a broad asymmetric
band with weak intensity appeared at 530 cm−1, indicated by a square mark. Although the
first-order phonon scattering is forbidden based on the selection rules for the NaCl-type
lattice structure, the presence of cobalt vacancy or other structural defects in the CoO lattice
can lead to the emergence of the first-order phonon scattering. The broad band observed at
530 cm−1 can be attributed to this defect-induced one-phonon longitudinal optical (LO)
Raman scatter [32]. The Raman spectrum of the Co3O4 film (Figure 2b) reveals the presence
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of five sharp peaks, which are located at 194, 482, 521, 619, and 691 cm−1. These peaks are
in good agreement with the five Raman active phonon modes (A1g + 3F2g + Eg) associated
with the spinel Co3O4 reported by Hadjiev et al. [34]. In comparison to CoO, the Co3O4 film
exhibits lower optical transmittance at 633 nm, leading to the absorption of most incident
lasers. However, CoO has higher optical transmittance and weaker Raman scattering due
to its NaCl-type centrosymmetric lattice structure. This behavior is likely responsible for
the appearance of Raman scattering corresponding to the underlying sapphire substrate.
Based on the results of the XRD 2θ-ω scan and Raman scatter analysis, single-phase CoO
and Co3O4 films can be obtained by controlling growth temperature and ambience during
the mist-CVD process.
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The corresponding surface morphologies of the CoO and Co3O4 films were observed
through SEM, as shown in Figure 3a,b; both as-grown cobalt oxide films possessed uniform
surface morphologies. The CoO film exhibited a flat and smooth surface morphology;
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however, the triangular-shaped grains could be observed on the surfaces of the Co3O4
films. The thicknesses of the CoO and Co3O4 films, which were grown for one hour,
were approximately 294 nm and 180 nm, respectively, as shown in Figure 3c,d. In this
work, the growth rates of single-phase CoO and Co3O4 epitaxial films were 294 nm and
180 nm/h, respectively, which were slower than those grown using other CVD processes
(230–920 nm/h) [21,35]. The cross-sectional SEM image shown in Figure 3d reveals the
presence of the columnar grain growth of Co3O4 on the sapphire substrate. The grain sizes
measured from the cross-sectional SEM image ranged from 57 to 150 nm. Remarkably, the
grain sizes observed through SEM are not equivalent to crystallite sizes estimated from
XRD peak widths using the Scherrer equation because a grain may be composed of two or
more crystallites.
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Based on the results of XRD 2θ-ω scans, regardless of the growth conditions (growth
temperature or ambient), the cobalt oxide films grown on a-plane sapphire substrates
using mist-CVD exhibited <111> preferred orientation. To characterize the orientation
relationship between cobalt oxide films and a-plane sapphire substrates, the XRD ϕ-scan
measurement of CoO and Co3O4 films was performed, respectively. Figure 4a,b show the
XRD ϕ-scan profiles of CoO and Co3O4 films grown on a-plane sapphire substrates. Re-
markably, the XRD ϕ-scan profiles of {200} reflection of CoO film as well as {400} reflection
of Co3O4 film exhibited six peaks separated by 60◦, consisting of two sets of three-fold
symmetric peaks separated by 60◦, due to the crystal structures of rock salt CoO and spinel
Co3O4 having three-fold symmetry along the <111> direction. This confirms the presence
of 60◦-rotated twin domains in either CoO or Co3O4 films grown on a-plane sapphire
substrates. A single grain of CoO or Co3O4 can contain multiple twin domains, resulting
in the small crystallite sizes determined using the Scherrer equation. Based on the results
of XRD ϕ-scans, the obtained CoO films were epitaxially grown on sapphire substrate
with the following epitaxial orientation relationship of (111)[110]CoO||(1120)[0001]Al2O3;
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however, the epitaxial relationship between Co3O4 film and sapphire substrate was deter-
mined as (111)[112]Co3O4||(1120)[0001]Al2O3, indicating the rotation of the in-plane axis of
Co3O4 film on sapphire substrate through an angle of 30◦ with respect to that of the CoO
film. Moreover, the epitaxial qualities of cobalt oxide films were evaluated through the
XRD rocking curve (XRC). Figure 4c,d show the XRC profiles of the CoO (111) plane and
Co3O4 (222) plane, respectively. It was found that the FWHM values of both XRCs were
0.25◦, determined by fitting a single pseudo-Voigt function, indicating that the epitaxial
quality of the cobalt oxide films grown using atmospheric pressure mist-CVD was compa-
rable to those grown using the conventional vacuum-based processes [18,20,35–38]. The
threading dislocation densities of epitaxial films can be determined from the XRD rocking
curves. The dislocation density (D) can be calculated using the measured FWHM of the
XRC with the following equation [39]:

D = FWHM2/
(

2πln(2)·b2
)

(1)

where b is the Burgers vector of dislocation. The Burgers vectors in both rock-salt and
spinel structures are a0/2〈110〉 [40,41]; hence, the Burgers vectors of CoO and Co3O4 are
0.304 nm and 0.5716 nm, respectively. Thus, the dislocation densities in the CoO and Co3O4
epitaxial films were estimated to be 4.7× 109 cm−2 and 1.3× 109 cm−2, respectively.
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The optical properties of CoO and Co3O4 epitaxial films were examined through
UV-visible (UV-Vis) spectroscopy. Figure 5a,c are the UV-Vis transmission spectra of
CoO and Co3O4 epitaxial films. The transmittance spectrum of the CoO film shows an
absorption edge between approximately 400 and 500 nm. The average transmittance of
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CoO film in the visible region was in the range of 30–40%. For the Co3O4 epitaxial film,
the corresponding UV-Vis spectrum (Figure 5c) shows an increase in the transmittance
as the wavelength increases, with two absorptions at approximately 600 nm and 800 nm,
respectively. The optical absorption coefficient (α) can be estimated from the transmittance
(T) by the following equation:

α = −ln(T)/d (2)

where d is the film thickness. The optical bandgap (Eg) can be determined from (αhν)2

versus the hν plot (Tauc Plot), as shown in Figure 5b,d, where hν is the photon energy.
The extrapolation of the linear region of the Tauc plot led to the optical bandgaps of the
thin films. Based on Figure 5b, the optical bandgap of the CoO film was estimated to be
2.81 eV, consistent with that previously reported [18,22]. In contrast, the linearly fitted
segments in the Tauc plot of the Co3O4 film (Figure 5d) prove the presence of two energy
levels of the direct allowed transitions at 1.41 eV and 2.03 eV, respectively. As mixed
Co2+ and Co3+ cations occupy the tetrahedral and octahedral sites in the spinel Co3O4
lattice, the charge transfer process associated with the Co3+–Co2+ and an oxide ligand
(O2−) to metal (Co2+) transition, respectively, were identified. The bandgap of 1.41 eV
corresponds to the Co3+–Co2+ charge transfer transition, reported within the range of
1.4–1.5 eV [16,21,22,42]. The bandgap of 2.03 eV is interpreted as an oxide ligand (O2−) to
metal (Co2+) charge transfer transition, in agreement with the values (1.9–2.4 eV) reported
in earlier studies [16,21,22,42].
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The electrical properties of CoO films were evaluated using the Hall-effect measure-
ment. The electrical resistivities of the as-grown CoO and Co3O4 films were 1.8 × 105 Ω-cm
and 2.3 × 102 Ω-cm, respectively, which are consistent with the values reported by other
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studies (>104 Ohm cm for CoO; 1~103 Ohm cm for Co3O4) [22]. Based on the results
reported by previous studies, the electrical performance of various metal-oxide semicon-
ductor films can be further improved via annealing at the temperature higher than that
used in the film growth process [43,44]. Therefore, the annealing temperature of 650 ◦C,
being higher than that used in the mist-CVD growth process, was chosen to further modify
the electrical properties of the grown films. Notably, the electrical properties of CoO and
Co3O4 films can be further improved using a post-thermal annealing treatment at 650 ◦C
in oxygen ambient for 30 min. After thermal annealing, the electrical properties of an-
nealed Co3O4 film were significantly enhanced, showing that the electrical resistivity was
8.35 Ohm cm, and the carrier concentration, with a positive Hall coefficient sign, increased
from 1.5 × 1015 cm−3 to 4.19 × 1016 cm−3. In contrast, the as-grown CoO film behaved
almost as an electrical insulator due to its extremely high electrical resistivity and low
carrier concentration (2.3 × 1012 cm−3). When annealing the sample of CoO film in oxygen
ambient, the sample showed p-type conductivity with the electrical resistivity and carrier
concentration of 14.2 Ohm cm and 4.37 × 1016 cm−3. Annealing in an oxygen atmosphere
significantly improves the electrical properties of both cobalt oxide thin films, which can
increase carrier concentration to the order of magnitude of 1016 cm−3. When annealing
in an oxygen-rich environment, the cobalt vacancies are the dominant point defects in
cobalt oxide lattices and act as electron acceptors, which are the origin of hole carriers and
p-type conductivity [45]. For the annealing of CoO film, the oxidation of CoO to Co3O4
readily occurred while heating at 300–650 ◦C in the presence of oxygen [46]. Therefore, the
possible reason for improved electrical conductivity in the samples of annealed CoO film is
attributed to the transformation into the Co3O4 phase through an oxidation process.

3.2. Thermal Annealing of CoO Epitaxial Films

Although improved electrical conductivity in the samples of annealed CoO film can
possibly be attributed to the formation of the Co3O4 phase, the details of microstructural and
chemical information of Co3O4 converted from CoO was unknown. Thus, the main aim of
this study in this section is to explore the microstructural evolution during phase transition
from CoO to Co3O4. To further prove the phase transition of CoO to Co3O4 during thermal
annealing, XRD and Raman measurements were implemented, respectively, as shown
in Figure 6. The result of the 2θ-ω scan profile revealed that the phase corresponding
to the annealed sample of CoO film was Co3O4 (Figure 6a). The average crystallite size
of the corresponding Co3O4 film was 35 nm, which was estimated from the diffraction
peak width using the Scherrer equation. In addition, the Raman spectrum recorded from
the annealed sample was consistent with the typical characteristic Raman peaks of spinel
Co3O4 (Figure 6b). From the above results, it is shown that cobalt monoxide (CoO) was
fully converted to tricobalt tetroxide (Co3O4) through an oxidation reaction, labeled as
Co3O4(Oxid), during the annealing process in oxygen ambient. Figure 7 shows the top-view
and cross-sectional SEM images of the annealed CoO film (Co3O4(Oxid)). In contrast to
the flat surface of the CoO film before the annealing process (Figure 3a), the surface of
the annealed CoO film exhibited an undulating and uneven morphology (Figure 7a). The
average thickness of the annealed CoO film was approximately 300 nm. The density of
CoO (6.45 g/cm3) is higher than that of Co3O4 (6.11 g/cm3). Thus, while CoO films were
transformed into Co3O4 during thermal annealing, the volume (thickness) of the formed
Co3O4 films was slightly increased. Remarkably, the pore-like structures present in the
interiors of the films can be observed from the cross-sectional SEM image (Figure 7b). The
details regarding the microstructure need to be further characterized through TEM and
will be discussed in the following paragraphs.
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in oxygen ambience.

To further investigate the valence and chemical state, X-ray photoelectron spectroscopy
was used to characterize as-grown CoO, Co3O4 converted from CoO (Co3O4(Oxid)), and
CVD-grown Co3O4 films. Figure 8 shows survey spectra of as-grown CoO, Co3O4 con-
verted from CoO (Co3O4(Oxid)), and CVD-grown Co3O4 films. These XPS spectra dom-
inantly show the element of Co and O along with the signal of carbon impurity (C 1s).
The corresponding atomic concentrations (at.%) of cobalt were 48.3, 35.7, and 35.1 at.%,
respectively, which were lower than those of cobalt oxides with stoichiometry (CoO: 50 at.%;
Co3O4: 42.9 at.%). This confirms that all of the cobalt oxide films were metal-deficient-type
oxides, indicating that cobalt vacancies were the dominant point defects in cobalt oxide
lattices. The Co 2p spectra of CoO, Co3O4(Oxid), and CVD-grown Co3O4, are shown in
Figure 8a–c. The Co 2p core level splits into 2p3/2 and 2p1/2 due to spin–orbit coupling.
For as-grown CoO film (Figure 9a), the spin–orbit doublet was observed at a binding
energy (B.E.) of 780 and 795.8 eV with a spin–orbit splitting of 15.8 eV between Co 2p3/2

and 2p1/2 core levels, along with an intense shake-up satellite peak at 786 eV, consistent
with the characteristic XPS spectrum of CoO reported by other literatures [22,47]. The
Co 2p spectrum of the Co3O4(Oxid) film (Figure 9b) was similar to that of the CVD-grown
Co3O4 film (Figure 9c). The two main peaks corresponding to Co 2p3/2 and Co 2p1/2

core levels were located at 780 and 795.1 eV with spin–orbit splitting of 15.1 eV, together
with a weak and broadened shake-up satellite peak located at 789 eV, consistent with the
characteristic XPS spectrum of Co3O4 reported by other studies [10,22]. The Co2+ and
Co3+ cations coexist in Co3O4; therefore, the Co 2p doublet peaks can be deconvoluted
into four subpeaks, where the fitting peaks at 779.6 and 794.8 eV are assigned as the Co3+
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state and the fitting peaks at 781 and 796 eV are ascribed to the Co2+ state. The signals
of Co3+ and Co2+ in the Co 2p spectra were numerically integrated to obtain the ratios of
Co3+/Co2+ cations of Co3O4(Oxid) and CVD-grown Co3O4 films, respectively, estimated to
be 0.50 and 0.89, respectively, which are both lower than the theoretical ratio of Co3+/Co2+

in Co3O4 (2:1). The Co3+ vacancies (VCo3+) at the octahedral sites in spinel Co3O4 were
indicated to dominate in both samples [45]. Remarkably, compared to CVD-grown Co3O4,
Co3O4(Oxid) thin films, converted from CoO to Co3O4, revealed a lower Co3+/Co2+ratio,
possibly due to the initial CoO phase solely comprising divalent cobalt. Theoretical and
experimental studies have proven that the formation of the cation vacancies in metal oxides
is favorable in an oxygen-rich environment [7,45,48]. Thus, the Co vacancies in Co3O4 were
regarded as the major origin of their p-type semiconducting properties. The O 1s spectra of
CoO, Co3O4(Oxid), and CVD-grown Co3O4, as shown in Figure 9d, are deconvoluted into
three components at approximately 530, 531.2, and 532.2 eV, which is attributed to oxygen
bonded with cobalt in the lattice (Olat), hydroxyl groups bonded to surface defects, such
as oxygen vacancies (OV), and weakly absorbed molecular water (Oabs), respectively. The
difference between the three O 1s core level XPS spectra recorded from CoO, Co3O4(Oxid),
and CVD-grown Co3O4 films was not obvious. The contribution of oxygen bonded to
cobalt in the lattice was estimated to be 72.8%, 72.0%, and 75.6%, respectively, indicating
that all of the cobalt oxide films retain more structural oxygen in the lattice. Considering
a water/acetate solution of cobalt acetate used as the cobalt source, the incorporation of
carbon from the source is still possible [49]. Therefore, the residual impurities, such as
carbon, in grown films were also detected through XPS. Although the signal of carbon 1s
core level emission was not detected from the sample after argon ion sputtering, as shown
in Figure S1 in Supplementary information, it is possible that the carbon content was below
the instrument detection limit. In future work, secondary ion mass spectroscopy (SIMS) is
needed for the detection of the residual impurity with low concentration.
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According to the studies reported on the oxidation of CoO to Co3O4, the formation
of the Co3O4(Oxid) layer initially occurs on the surface of CoO [50,51]. Therefore, the
crystallographic alignment of the Co3O4(Oxid) film formed through the oxidation reaction
is closely related to the orientation of the underlying CoO epitaxial film [50,51]. The X-
ray diffraction ϕ-scan and XRC analysis were employed to assess the relationship and
the crystalline quality of the formed Co3O4(Oxid) film. Figure 10a shows the XRD ϕ-
scan profiles for the Co3O4(Oxid) film detecting Co3O4 (400) and Al2O3 (1120) reflections.
The profile of the Co3O4(Oxid) film revealed six-fold symmetry with a spacing of 60◦,
indicating that the Co3O4(Oxid) film was in epitaxy with the sapphire substrate. Similarly,
the presence of 60◦-rotated twin domains in the Co3O4(Oxid) film was detected from the
X-ray diffraction ϕ-scan profile. Interestingly, the crystallographic relationship between the
Co3O4(Oxid) film and sapphire is (111)[110]Co3O4(Oxid)||(1120)[0001]Al2O3, rotated through
an angle of 30◦ with respect to that of CVD-grown Co3O4 film on sapphire substrate
((111)[112]Co3O4||(1120)[0001]Al2O3), as shown in Figure 4b. In Figure 10b, the Co3O4(Oxid)
presents a broader FWHM (0.62◦) of XRC for Co3O4 (222) diffraction. According to the
cross-sectional SEM observation (Figure 7b), there were several pore-like structures in
the interiors of the Co3O4(Oxid) films. These pore-like structures affected the growth of
crystallites during the annealing process and were possibly responsible for the broader
width of the XRC. The formation of the Co3O4 layer initially occurred on the surface of
CoO. Sequentially, the entire CoO layer was gradually converted into Co3O4 during the
oxidation process, as illustrated in Figure 11. The oxygen sublattices of the CoO and
Co3O4, both being fcc sublattices, are nearly identical, with a lattice mismatch of about
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5% [50]. Therefore, the oxygen sublattice of newly formed Co3O4(Oxid) inherited the original
framework of CoO and was epitaxially constrained by the lattice planes of the underlying
CoO, as illustrated in Figure 10.
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We performed cross-sectional TEM to gain insight into the microstructure of the
Co3O4(Oxid) film converted from CoO. Importantly, several pores present in the interior
of Co3O4(Oxid) films were observed from the low-magnification bright-field TEM image
(Figure 12a). During the oxidation of CoO to Co3O4, the growth of Co3O4 is initiated on the
surface of CoO. Then, the Co3O4 layer grows inward and outward simultaneously [52–54].
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In the case of outward growth, the formation of Co3O4 occurs due to the outward diffusion
of cobalt cations and electrons as a result of the following reaction [52–54]:

3Co··i + 6e′ + 2O2 → Co3O4 (3)

where Co··i and e′ denote the double ionized interstitial cobalt cation and a free electron,
respectively. The migrating interstitial cobalt cations reacted with oxygen on the surface to
form Co3O4. In the case of inward growth, the reaction occurred at the interface between
CoO and Co3O4, according to the displacement reaction [52–54]:

4CoO→ Co3O4 + Co··i + 2e′ (4)
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Figure 12. (a) Low-magnification bright-field transmission electron micrograph of the Co3O4(Oxid.)

film converted from the CoO epitaxial layer via oxidation reaction; (b) Corresponding selected area
electron diffraction (SAED) patterns recorded at the interfacial regions and viewed along the sapphire
[0001] zone axis. The normal and 60◦-rotated twin variants are indicated by green and yellow dashed
lines, respectively.

Based on the marker experiment for studying the oxidation of CoO, it was observed
that cobalt cations continued to diffuse outward through the Co3O4 layer during the
oxidation reaction [53,54]. Consequently, this resulted in the excessive concentration of
cobalt vacancies inside the film layer due to the directional diffusion cobalt cations (the
so-called Kirkendall effect). Thus, the thickness of formed Co3O4 films became thicker after
the annealing process. The formation of pores was the consequence of a supersaturation
of vacancies in the lattice brought about by the coalescence of cobalt vacancies [52,54]. In
Figure 12b, the pattern of the selected area electron diffraction (SAED) recorded from the
interface region shows the presence of two twinned variants in the formed Co3O4(Oxid) film,
designated by green and yellow dashed lines, both indexed as the normal and 60◦-rotated
twin variants, respectively. They were oriented epitaxially with respect to the sapphire
substrate. The epitaxial relationship between Co3O4(Oxid) and the sapphire substrate was
identified as (111)[110]Co3O4(Oxid)||(1120)[0001]Al2O3, which is consistent with the result of
the XRD ϕ-scan, as shown in Figure 10a. Despite the presence of numerous pore structures
in the formed Co3O4(Oxid) layer, the diffraction pattern of the Co3O4(Oxid) film remained
consistent throughout the entire film layer.

The microstructure near the film/substrate heterointerface was visualized using
HRTEM, as shown in Figure 13a. This view is along the sapphire [0001] zone axis. Re-
markably, the interface between the formed Co3O4(Oxid) layer and the sapphire substrate
is not atomically abrupt; instead, it appears intermixed. It is possible that during the
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annealing process at 650 ◦C for 30 min, the occurrence of slight interdiffusion between
the formed Co3O4(Oxid) film and the sapphire substrate is not ignored. Furthermore, the
corresponding fast Fourier transformation pattern (Figure 13b) of the HRTEM image was
consistent with the SAED pattern (Figure 12b). In Figure 13c, the Fourier-filtered image,
reconstructed using the Co3O4 222 and sapphire 2110 reflections, reveals a lattice-matched
interface, accompanied by several of the extra-half planes of misfit dislocations located
at the interface, indicated by black triangles, to accommodate the lattice mismatch. The
misfit dislocations at the interface region were not arranged in a periodic or evenly spaced
manner. It is evident that the paradigm of the domain match epitaxy does not seem to be
applicable to this intermixed interface. Limited by the spatial resolution of conventional
HRTEM, the atomic arrangement of different elements located near the interface cannot be
clearly identified. To explore the explicit mechanism governing this interface, achieving
sub-angstrom resolution high angle annular dark field (HAADF) imaging using scanning
transmission electron microscopy (STEM) with a spherical aberration corrector is highly
necessary in future research. Such imaging will help identify the position of atomic columns
at the interface region. Despite the presence of pores in the films, the lattice-matched in-
terface between the formed Co3O4(Oxid) film and sapphire substrate was confirmed by the
HRTEM image.
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Figure 13. (a) High-resolution transmission electron microscopic image of the Co3O4(Oxid) film–
sapphire interface visualized along the sapphire [0001] zone axis. (b) Corresponding fast Fourier
transformation pattern of (a). (c) Fourier-filtered image reconstructed using Co3O4 222 and sapphire
2110 reflections. The black triangles in the Fourier-filtered image indicate the position of misfit
dislocations.

4. Conclusions

In this study, we demonstrated selective epitaxial growth of the single-phase rock-salt
CoO and spinel Co3O4 thin films on sapphire substrates using mist-CVD by controlling
growth temperature and ambient, as confirmed by XRD, Raman, and XPS spectroscopy
measurements. The surface morphologies of the obtained CoO films exhibited a flat and
smooth surface morphology; in contrast, the triangular-shaped grains were observed
on the surfaces of the Co3O4 films. The epitaxial relationship of CoO and Co3O4 on
sapphire substrates was determined to be (111)[110]CoO||(1120)[0001]Al2O3 for CoO and
(111)[112]Co3O4||(1120)[0001]Al2O3 for Co3O4. The crystalline quality of both CoO and
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Co3O4 epitaxial films grown using atmospheric pressure mist-CVD was comparable to
those grown by the other vapor phase epitaxy in a vacuum environment. The CoO films had
a direct bandgap of 2.81 eV, and the two direct bandgap values at 1.41 eV and 2.03 eV were
observed for Co3O4. The electrical properties of Co3O4 epitaxial films could be enhanced
through thermal annealing in oxygen ambient, exhibiting a stable p-type conductivity with
an electrical resistivity of 8.35 Ohm cm and a carrier concentration of 4.19 × 1016 cm−3.
According to XPS analysis, cobalt vacancies, which functioned as acceptors and were
predominantly present in Co3O4 films, were found to facilitate the generation of hole
carriers. In addition, the phase transition of CoO to Co3O4 during the annealing process was
evidenced by XRD, Raman, and XPS spectroscopy measurements. Therefore, the oxidation
of CoO to Co3O4 primarily accounts for the improved electrical properties observed in the
annealed samples of CoO films. The crystallographic orientation of the Co3O4 film formed
via the oxidation reaction was epitaxially constrained by the lattice planes of the underlying
CoO epitaxial film, primarily because CoO and Co3O4 share a nearly identical oxygen
sublattice. The formation of Co3O4 films during the oxidation of CoO was predominantly
governed by the outward diffusion of cobalt cations. Therefore, the formation of the pores
within the interiors of Co3O4 films was attributed to the accumulation of excessive cobalt
vacancies. Despite the presence of several pores within the interiors of Co3O4 films, the
lattice-matched interface between the Co3O4 film and the sapphire substrate was confirmed
by the HRTEM image.
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