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Abstract: Co40Fe40B10Dy10 thin films, with thicknesses varying between 10 nm and 50 nm, were
grown on a Si(100) substrate. Subsequently, they underwent a 1 h annealing process in an Ar atmo-
sphere at temperatures of 100 ◦C, 200 ◦C, and 300 ◦C. The oxide characteristic peaks of Dy2O3(440),
Co2O3(422), and Co2O3(511) were revealed by X-ray diffraction (XRD). The low-frequency alternating
current magnetic susceptibility (χac) decreases with frequency. Due to thickness and the anisotropy of
the magnetic crystal, the maximum χac and saturation magnetization values rise with thicknesses and
annealing temperatures. As the thickness and heat treatment temperature rise, the values for resistiv-
ity and sheet resistance tend to fall. The results of atomic force microscopy (AFM) and magnetic force
microscopy (MFM) show that average roughness (Ra) lowers as the annealing temperature increases,
and the distribution of strip-like magnetic domain becomes more visible. As thickness and annealing
temperature increase, there is a corresponding rise in surface energy. Nano-indentation testing shows
that hardness initially decreases from 10 nm to 40 nm, followed by an increase at 50 nm. Notably,
annealing at 300 ◦C leads to a significant hardening effect, marking the highest level of hardness
observed. Young’s modulus increased as thicknesses and annealing temperatures increased. The
magnetic, electric, and adhesive characteristics of CoFeBDy films are highly dependent on surface
roughness at various annealing temperatures.

Keywords: Co40Fe40B10Dy10 thin films; annealing treatment; surface roughness; magnetic domain;
low-frequency alternating current magnetic susceptibility (χac); optimal resonance frequency (fres);
surface energy; adhesion; nano-indentation

1. Introduction

The development of magnetic recordings has long been the trend in information
storage. The advancement of semiconductor technology has facilitated the development
of numerous low-cost, high-performance information storage systems, such as magnetic
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random access memory (MRAM), static random access memory (SRAM), and flash mem-
ory [1–3]. Spin-transfer moment magnetic random access memory (STT-MRAM) has
recently been recognized as the next generation of reliable MRAM due to its excellent
thermal stability, non-volatility, low write power, and low-frequency switching current [4].
The magnetic tunnel junction (MTJ) is the basic storage unit of MRAM. It comprises an in-
sulating barrier layer situated between two ferromagnetic metal layers [5,6]. The tunneling
magnetoresistance (TMR) ratio of MTJ, critical switching current density of magnetiza-
tion, power consumption, and other features are all strongly related to the ferromagnetic
layer type and structure, as well as the preparation procedure [7,8]. The best options for
ferromagnetic layers are soft magnetic materials with high saturation magnetization (Ms)
strength, high Curie temperature (Tc), low coercivity (Hc), high permeability (µ), and
low magnetostriction (λs) in order to achieve magnetization reversal at a low energy cost.
Particularly, it has been widely reported that MTJ performance can be enhanced by soft
magnetic materials based on transition metals. Ellis and Elmen discovered the cobalt-iron
(CoFe) alloy at an early stage [9]. Due to its favorable characteristics, such as high Ms, low
Hc, and highµ, CoFe alloy has been studied by a large number of researchers [10]. However,
when the annealing temperature reaches a critical level, the CoFe alloy experiences a loss of
magnetic anisotropy, which prevents the magnetic component from functioning properly.
As a result, boron (B) and dysprosium (Dy) are added to CoFe alloys as a third or fourth
element. The mechanical properties and magnetic spin-exchanging coupling of B can be
enhanced by grain refinement [11–13]. The magnetic thermal stability of a Dy doped alloy
was enhanced [14,15]. The addition of an additional or third element can result in the
formation of nanocomposite materials, which can improve specific features [16–22].

Over the past few decades, there has been a growing interest in the extraction and
reclamation of rare earth elements (REs) due to their critical role in various industrial
applications [23]. Currently, researchers are exploring the impact of incorporating RE ions,
including Dy, gadolinium (Gd), ytterbium (Yb), lanthanum (La), and cerium (Ce), on the
structural, magnetic, optical, and electrical properties of magnetic ferrite thin films [24–27].
As a result, introducing a third element to improve the distinct attributes can solve the
problem of efficiency for diverse application contexts. According to literature studies,
rare earth addition induces modifications in the microstructure, phase composition, and
magnetic performance of the CoFe material [28,29]. Within MTJ configurations, CoFeB
thin films are routinely incorporated, serving as either a free or pinned layer, and their
contribution is vital for achieving a substantial TMR ratio [30,31]. The thickness selection
is investigated in the range of 10–50 nm when the free layer or pinned layer thickness is
typically quite thin [32]. Substituting a CoFeB seed or buffer layer with CoFeBDy films
significantly enhances the thermal stability of these materials, making them a more viable
choice for real-world MTJ applications. Additionally, annealing of magnetic components is
typically carried out at temperatures near 350 ◦C, a critical factor in assessing their ability
to withstand thermal stress [33]. In this study, it was chosen to investigate a temperature
range from 100 ◦C to 300 ◦C, with 100 ◦C intervals, to evaluate the maintenance of magnetic
properties. This approach aligns with our team’s previous research conducted at the same
annealing temperature. It is crucial to consider the nature of the material under examination
when determining the suitable annealing temperature. For the aforementioned reasons,
it is crucial to research the distinct properties and thermal stability of CoFeBDy films at
annealed temperatures ranging from 100 ◦C to 300 ◦C. The primary approach in this study
involved employing a uniform B/Dy ratio for the fabrication of CoFeBDy films, with the
aim of improving magneto-thermal stability and several key physical attributes.

This study aims to assess the structural and magnetic properties of CoFeBDy thin films
in relation to their thickness. Additionally, it explores the behavior of annealed CoFeBDy
thin films at elevated temperatures. Given these considerations, investigating the incor-
poration of a third or fourth element, like Dy and B, into the CoFe alloy is a worthwhile
avenue of exploration. It is profitable to invest in the unique qualities of CoFeBDy films
by adding Dy and B into CoFe alloys. Surface roughness is a significant factor to take
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into account when using the magnetic component at both room temperature (RT) and
during annealing processes. It exerts a substantial impact on the physical properties of
ultrathin films. Roughness has been studied in terms of magnetic, electrical, and optical
qualities by researchers [34–37]. The novelty of this study lies in the introduction of Dy
and B into CoFe alloy, forming quaternary alloys, and the exploration of surface roughness.
This research aims to elucidate the relationship between surface energy and the magnetic
properties of CoFeBDy thin films at varying thicknesses and under different annealing
temperatures. Co40Fe40Dy10B10 was deposited onto a Si(100) substrate with a thickness of
10–50 nm and then annealed at 100, 200, and 300 ◦C in this work. Finally, following the
established parameters, the study comprehensively investigated the film’s structure, mag-
netic properties, surface energy, and nano-mechanical features post-annealing. Moreover, a
significant endeavor has been made to explore the interplay between surface energy and
magnetic properties at different thicknesses and during various annealing temperatures of
CoFeDyB thin films.

2. Materials and Methods

Sputtering and annealing conditions: CoFeBDy thin films, with thicknesses ranging
from 10 to 50 nm, were fabricated on a Si(100) substrate using direct current (DC) magnetron
sputtering. The Si(100) substrate is square-shaped, with dimensions of 1 cm on each
side and a thickness of 1 mm. The films were fabricated under four distinct conditions:
room temperature (RT), subsequent annealing at 100 ◦C for 1 h, subsequent annealing at
200 ◦C for 1 h, and subsequent annealing at 300 ◦C for 1 h. It featured a 1.65 W/cm2 power
density and a 50 W sputtering power. The chamber base pressure was 3.54 × 10−7 Torr,
while the working pressure for the Ar gas was 3.09 × 10−3 Torr. The loader rotated at
20 rpm and the flow rate of the Ar gas was 20 sccm. Following deposition, the samples were
subjected to controlled annealing for 1 h, with temperatures ranging from 100 ◦C to 300 ◦C
and controlled heating rates of 30 ◦C/min, accompanied by cooling rates of 0.5 ◦C/min.
Throughout the annealing process, the vacuum chamber pressure was consistently held at
2.5 × 10−3 Torr.

Compositions: A new chemical element CoFeBDy alloy has appeared, consisting of
40% Co, 40% Fe, 10% B, and 10% Dy. The CoFeBDy target is a commercially manufactured
alloy sourced from pure metals supplied by Gredmann Taiwan Ltd. The target is positioned
30 cm away from the substrate and has dimensions of 2 mm in thickness and 3 inches in
diameter. To create the desired composition, a powder mixture consisting of 99.9% pure
elements Co, Fe, B, and Dy was prepared. The target’s composition ratio has been validated
through original factory certification for composition testing. Any disparity between the
target’s composition and the actual composition arises due to Ar ion bombardment and
sputter deposition ion angles [38].

Techniques and characterizations: The structure of the CoFeBDy thin films was an-
alyzed using Grazing Incidence X-ray Diffractometer (GIXRD) patterns obtained from
Cukα1 (Panalyticalx’pertPROMRD, Philips, Amsterdam, The Netherlands) and low-angle
diffraction incidence, approximately 2◦. Energy dispersive X-ray spectroscopy (EDS, Zeiss,
UltraPlus, Oberkochen, Baden-Württemberg, Germany) was employed for elemental com-
position analysis of the thin films. The structure of the CoFeBDy thin films was examined
through Grazing Incidence X-ray Diffractometer (GIXRD) patterns acquired using Cukα1
(Panalyticalx’pertPROMRD) and low-angle diffraction at around 2◦. Elemental composition
analysis of the thin films was conducted using energy dispersive X-ray Spectroscopy (EDS,
Zeiss, UltraPlus) system. Using a low-frequency alternate-current magnetic susceptibility
(χac) analyzer (MagQu, acQuan II, New Taipei City, Taiwan), the χac of Co40Fe40B10Dy10
thin films was examined. Measurement of the external magnetic field 50 mG, χac was used
to calibrate standard sample. Testing of the samples was performed using a χac analyzer,
with a frequency range spanning from 10 Hz to 25,000 Hz, and χac was determined based
on the magnetization strength. To prevent demagnetization, all samples are the exact same
size 0.5 cm × 0.5 cm and square form. Since the exchange results are comparisons to the
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samples that serve as the reference standard, the χac valves are expressed in arbitrary units
(a.u.). The frequency of the highest χac is found by the χac analyzer by finding the best
resonance frequency (fres). The hysteresis loop of the CoFeBDy films was assessed using
a vibrating sample magnetometer (VSM, NanoMagnetics, Banbury, UK). Atomic force
microscopy (AFM, NanoMagnetics Instruments, ezAFM, Banbury, UK) was employed to
evaluate the surface morphology of the films, and magnetic force microscopy (MFM) was
used to characterize the magnetic domains of the films. AFM is assessed in non-contact
mode with average area evaluation using three scanning repeats at RT. It is used Ra to
measure roughness. Ra is a shortened term representing the arithmetic mean deviation,
which was employed to evaluate the surface area. 20 µm × 20 µm is the size of the scanning.
The precise thickness was additionally calibrated using AFM and the height difference
approach. Through the use of a Four Point Probe Tester (Sadhudesign, Hsinchu City, Tai-
wan), the correlation between electrical resistance and film thickness was found. Deionized
(DI) water and glycerin were used to measure the contact angle. Every contact angle
measurement was conducted three times to ensure precision, and the resulting average
contact angles were then calculated. A contact angle measuring device (CAM-110) from
Creating Nano Technologies in Tainan City, Taiwan, was utilized to gauge the contact
angle, facilitating the calculation of surface energy [39–41]. The hardness (H) and Young’s
modulus (E) of Co40Fe40B10Dy10 films were measured using an MTS (Mechanical Testing &
Simulation) Nano Indenter XP (MTS, Minneapolis, MN, USA) with a Berkovich tip and the
continuous stiffness measurement (CSM) technique. After the load has been decreased to
10% of its maximum value, withdrawing the indentation from the surface at the same rate
followed. Each sample was subjected to ten repetitions of measurements using the probe.
The indentation load was incrementally increased over 40 stages, and the indentation depth
was recorded at each increment. Six indentations from each sample were analyzed, and the
averaged standard deviations were used to enhance the accuracy of the statistical data. The
mechanical characteristics were computed using Oliver and Pharr’s method.

3. Results
3.1. XRD Structure Property, Full Width of Half Maximum, and Composition Analysis

Figure 1a–d show the X-ray diffraction (XRD) results for the analysis of the as-
deposited and annealed Co40Fe40B10Dy10 films. From the literature, it was determined that
the crystalline phases of Co40Fe40B10Dy10 were represented by three metal oxide signature
peaks, which may be Dy2O3(440), Co2O3(422), and Co2O3(511), respectively, at 2θ = 47.8◦,
54.65◦, and 56.45◦ [42,43]. Even after reaching a vacuum level as low as 10−7 Torr, it is
possible for residual oxygen to remain within the sputtering chamber. The emergence of
oxidation peaks is ascribed to a combination of naturally occurring oxides present on the
Si(100) substrate and oxygen contamination on the sputtering target [44]. The presence
of oxides can be inferred from the affinities and negativities between each element and
oxygen [45]. According to Figure 1a–d, the total oxide peak intensities exhibited a distinct
decrease with increasing CoFeBDy thickness and annealing temperature. Conversely, a
decrease in film thickness led to an increase in the amount of oxides, as the oxidation
degree remained fairly uniform across various film thicknesses. Consequently, with the
increase in thickness and annealing temperature, the intensity of the oxide peaks exhibited
a continuous decline. As a result, the interference from the oxide peak is reduced, and the
film’s electrical and magnetic properties are enhanced.

Figure 2a,b illustrate the FWHM and intensity of diffracted peaks from the overall
oxides, underscoring the pronounced influence of lower annealing temperatures on oxi-
dation compared to higher annealing temperatures. The points in Figure 2 represent the
FWHM and XRD diffraction intensity of all oxides and thicknesses under various annealing
conditions. It is evident that lower annealing temperatures result in narrower FWHM
values and higher XRD intensities, highlighting the substantial impact of oxidation in these
specific conditions.
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Figure 1. The XRD patterns for Co40Fe40B10Dy10 films were recorded under various conditions: (a) at
RT, (b) post-annealing at 100 ◦C, (c) following annealing at 200 ◦C, and (d) after annealing at 300 ◦C.

The composition of the CoFeBDy alloy films was assessed at a thickness of 50 nm.
Figure 3 presents both the composition data and the corresponding EDS pattern generated
by an EDS spectrometer for the CoFeBDy films. Nonetheless, the EDS analysis could not
ascertain the B content due to the lightweight nature of boron atoms. The dispersion of sput-
tered atoms in multiple directions and angles leads to compositional non-uniformity [46].
The loss of atom content during film growth is caused by the bombardment of argon ions
during sputtering deposition, and the actual elemental composition of the samples differs
significantly from nominal Co40Fe40Dy10B10 in this way [47]. The target and obtained
compositions are also significantly different from one another, which results in a greater
contribution of Co atoms. According to XRD result, the Co is produced to Co2O3 oxide and
decreased the magnetic property.
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Figure 3. EDS patterns of Co40Fe40B10Dy10 thin films. (a) RT and (b) annealing 300 ◦C.

3.2. Magnetic Properties

Figure 4a–d display the low-frequency alternating-current magnetic susceptibility (χac)
values of the films at RT and after annealing at 100 ◦C, 200 ◦C, and 300 ◦C. The graphs show
that χac values of the Co40Fe40B10Dy10 films, with or without heat treatment, exhibit an
upward tendency. The susceptibility peaks provide insights into the occurrence of magnetic
exchange coupling and spin sensitivity, particularly pronounced at low frequencies. This
holds profound physical significance. In the low-frequency realm, the alternating-current
(AC) magnetic dipole moment primarily arises from the oscillation of the volume magnetic
dipole moment within each domain. An applied AC magnetic field generates a driving
force, reigniting magnetic interactions between domains. This results in a resonant fre-
quency within the system, and this resonant frequency correlates with the oscillation of
the magnetic dipole moment within domains, intimately connected to the frequency of the
low-frequency magnetic susceptibility peak. Hence, the χac peak signifies the presence of
spin exchange-coupling interactions and the dipole moment of the frequency domain [48].
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Figure 4. χac at low frequencies was measured for Co40Fe40B10Dy10 films under the following condi-
tions: (a) at RT, (b) after annealing at 100 ◦C, (c) following annealing at 200 ◦C, and (d) subsequent to
annealing at 300 ◦C.
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Figure 5 illustrates that by increasing the thickness of the film deposition, the maximum
χac value can be attained, and, following heat treatment, the χac value shows a noticeable
increase. At an annealing temperature of 300 ◦C, a maximum χac value of 0.18 is achieved
for a 50 nm thickness. Comparatively, at RT, the χac value is 0.10 for 50 nm, 0.14 for 50 nm at
100 ◦C, and 0.15 for 50 nm at 200 ◦C. This increase in the maximum χac value is attributed to
both thickness and the magneto-crystalline anisotropy effect [49–51]. The graph illustrates
that the Si(100) substrate exhibits its peak χac value at the resonance frequency of 50 Hz.
However, with an increase in measurement frequency, there is a discernible decline in χac
values, likely stemming from the anisotropy inherent in the magnetic crystals [52].
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VSM carried out the in-plane hysteresis loop for 50 nm Co40Fe40B10Dy10 films. In-
plane hysteresis loops for 50 nm Co40Fe40B10Dy10 films are shown in Figure 6a, and the
plot of coercivity and saturation magnetization at different annealing temperatures is
shown in Figure 6b. Based on the results, the interplay of thickness and magnetic crystal
anisotropy led to an increase in the Hc and Ms values, transitioning from 6 Oe to 16 Oe
and 603 emu/cm3 to 810 emu/cm3 as the annealing temperatures escalated from RT to
300 ◦C [49–52]. Additionally, the Hc displays a lower value and suggests that Co40Fe40B10Dy10
films have a soft magnetic. The Co40Fe40B10Dy10 films with a thickness of 50 nm that were
annealed at 300 ◦C had low Hc and relatively high Ms, which led to enhanced soft magnetic
characteristics. These films are ideal for spintronics, microactuators, magnetic memory, and
storage devices.

Figure 7a,b present the findings for resistivity and sheet resistance across various
conditions. The results reveal that as thickness and annealing temperatures decrease, there
is a substantial increase in resistivity and sheet resistance, primarily due to the oxidation
effect associated with thinner thickness. Typically, finer grain distribution and increased
grain boundaries are characteristics of thinner films [53,54]. Because thinner films and
lower annealing temperatures have a higher proportion of oxides and grain boundaries,
which impair current carrier transport and raise resistivity and sheet resistance, they also
have thinner films and lower annealing temperatures [55,56]. The findings show that the
resistivity varied between 0.124 and 0.001 Ω cm while the sheet resistance varied between
12.36 × 104 and 0.014 × 104 Ω/sq. In addition, it is known from the AFM experiments
in Table 1 that the roughness decreases as the annealing temperature rises, the size of the
internal grains increases, and there are fewer grain boundaries after the annealing, all of
which will allow for easier current passage through the film and a consequent decrease in
the value of the value measured [57,58]. Higher annealing temperatures result in reduced
scattering of electrical carriers. Elevated annealing temperatures typically reduce the
negative impact of defects on electrical properties. Moreover, one can reasonably infer that
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when the mean free path of electrons approaches the film thickness, it becomes another
potential contributor to heightened resistivity in extremely thin film [59].

Table 1. Co40Fe40B10Dy10 50 nm films at different heat treatment temperatures with magnetic domain
and surface roughness.

Temperature
(◦C) Magnetic Domain Surface Roughness

(nm)
Average Roughness, Ra

(nm)

RT
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3.3. Surface Roughness and Magnetic Domains

Table 1 depicts the magnetic domain and surface morphology at 50 nm for various
circumstances. This measurement is based on the 50 nm, primarily because it aligns with
the condition that yields the highest χac value. This correlation implies that the distribution
of magnetic domains is the most prominent feature in the image. The scanning range of the
samples is 20 µm × 20 µm. The magnetic domain form of Co40Fe40B10Dy10 films exhibits a
fine stripe feature. The average stripe magnetic domain increases about from 2 µm to 5 µm
in width size when the annealing temperature is elevated to 300 ◦C. The features of domain
structures are thought to have a substantial impact on magnetic behavior. The continuity
and contrast of magnetic domains experience enhancements following the annealing of
the film, primarily due to a slight improvement in exchange coupling [60,61]. The larger
area of the magnetic domain produces stronger magnetization, which is consistent with the
χac result. The surface roughness is observed using 3D graphs, and it is observed that the
surface roughness exhibits a slight improvement in smoothness. The average roughness
(Ra) was measured in a flat region. The Ra value was 2.73 nm at room temperature and
then reduced to 1.84 nm when the annealing temperature climbed to 300 ◦C. The contrast
between the color depth and the area shown in the image determines the magnetic area
pattern of the material. Maximum χac and surface roughness have a link in the results
of Figure 4 and Table 1, pointing towards the notion that increased surface roughness
has the potential to induce the pinning of domain walls, thus impeding their movement
and leading to a decrease in the χac value [62,63]. Furthermore, an increase in annealing
temperature results in diminished electric carrier scattering and mitigates the detrimental
impact of defects on electrical properties. As a consequence, this leads to a reduction in
both resistivity and sheet resistance.

3.4. Angle of Contact and Surface Energy

The contact angle measurements on a Si(100) substrate in both DI water and glycerol
are showcased in Figure 8a–d. It is clear that as the thickness increases at the same annealing
temperature, the contact angle consistently decreases. The contact angle likewise tends
to decrease with increasing annealing temperature for the same thickness. The contact
angles measured for the Co40Fe40B10Dy10 film in various solutions consistently register
below 90◦, confirming its hydrophilic characteristics. Surface roughness and grain size are
identified as two key factors influencing these contact angles. This study demonstrates
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that elevating the annealing temperature results in a decrease in surface roughness and a
corresponding reduction in the contact angle during AFM measurements conducted at the
same film thickness [64–66].

Figure 9 provides a visual representation of the variation in surface energy as the
annealing temperature increases from RT to 300 ◦C. Notably, as both thickness and anneal-
ing temperature are heightened, the surface energy experiences an increase, attaining a
higher level. The surface energy values range from 25.31 mJ/mm2 to 32.38 mJ/mm2. At
300 ◦C, 32.38 mJ/mm2 was the surface energy with the greatest 50 nm. Stronger adhesion
is observed when the films possess higher surface energy. Furthermore, it is essential
to take into account both surface energy and adhesion, as the Co40Fe40B10Dy10 film can
serve various roles, such as a seed or buffer layer, ensuring compatibility with other layer
in double-layer and multi-layer systems. It can also function as a free or pinned layer,
facilitating diverse magnetic processes. Increased surface energy enhances liquid absorp-
tion and reduces the contact angle. This effect arises from the stronger attraction between
liquid molecules and solid atoms, surpassing the intermolecular forces within the liquid.
Additionally, higher surface energy corresponds to lower surface tension in the liquid.
Therefore, higher surface energy leads to easier wetting and better adhesion [67]. Because
of this, the 50 nm Co40Fe40B10Dy10 film displayed better adhesive characteristics than the
others after being annealed at 300 ◦C, which may theoretically be attributed to its less
rough surface [68]. Overall, the surface roughness of CoFeBDy films at various annealing
temperatures has a considerable impact on their magnetic, electric, and adhesive properties.
It is simpler to shift and increase χac value due to the less pinning impact of smoother
roughness on domain walls. As a result of the diminished surface roughness, the contact
angle decreases, and surface energy increases. Furthermore, rougher surfaces have a higher
carrier conductivity, which reduced electrical resistance.
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3.5. Hardness and Young’s Modulus

The hardness (H) and Young’s modulus (E) of Co40Fe40B10Dy10 films under various
circumstances are shown in Figure 10a,b. The maximum hardness is 15.7 GPa at 10 nm
at RT, while the minimum hardness is 13.32 GPa at 50 nm at RT. While the thickness of
deposition increases from 10 nm to 40 nm, the hardness tends to decrease, but it experiences
a subsequent hardening when the thickness reaches 50 nm. Due to the presence of Dy,
Young’s modulus tends to increase with thickness and annealing temperature. Furthermore,
as an XRD result, Dy is generated as Dy2O3 oxide. The amount of Dy2O3 could refine
the grains and contribute to hardness and Young’s modulus [69]. At 50 nm and 300 ◦C
annealing, the maximal Young’s modulus is 200.1 GPa. At critical thickness of 40 nm, the
hardness softens first before becoming harder. Reasonably speaking, it can be deduced
that the film preserves its hardness at a particular annealing temperature and that the
hardness hardens as a result of the recovery of defects during the heat treatment [70]. The
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phenomenon of enhanced strength at elevated firing temperatures, particularly when the
film measures 50 nm in thickness, finds its explanation in the realms of materials science
and thin-film physics. This effect is primarily a consequence of the synergy between grain
growth and defect annealing. A pivotal factor at play centers around the response of grains
and defects within thin films to the application of elevated temperatures. As the film is
subjected to higher temperatures, atoms gain greater mobility, facilitating the repair of
defects. This annealing process serves to eradicate structural flaws, thereby bolstering the
material’s strength [71]. The thickness of the film assumes a pivotal role in this process.
Thicker films, particularly those exceeding 50 nm, possess a more substantial volume
relative to their surface area. This increased volume provides a greater expanse for defects
to diffuse and undergo annealing. Consequently, the material can recuperate from defects
more effectively in thicker films, resulting in a notable increase in strength [72]. The mag-
netic and crystalline properties of Si(100)/Co40Fe40B10Dy10 films in both as-deposited and
post-annealing states were compared with those of Glass/Co40Fe40B10Dy10, as detailed in
Table 2 [73]. The results from Table 2 reveal a clear distinction. Glass/Co40Fe40B10Dy10
exhibits an amorphous structure, while Si(100)/Co40Fe40B10Dy10 displays a crystalline
structure due to substrate effects [74]. Additionally, the maximum χac similarity increases
with thickness and annealing temperature, attributed to thickness effects and magneto-
crystalline anisotropy. However, Si(100)/Co40Fe40B10Dy10 has a smaller maximum χac
compared to Glass/Co40Fe40B10Dy10 due to the presence of oxide peaks. Furthermore, an
increase in surface energy and a reduction in surface roughness to 50 nm were noted with
higher thickness and annealing temperature. In the context of applying our research to
practical uses, this study has investigated how surface roughness and annealing temper-
ature influence a promising magnetic material—namely, the Co40Fe40B10Dy10 thin film.
An essential future consideration is its suitability as either the free or pinned layer in
an MTJ structure. This research provides valuable reference data for the broader field
of magnetism.

Table 2. Significant properties for Glass/Co40Fe40B10Dy10 and Si(100)/Co40Fe40B10Dy10 materials.

Material Crystallinity Maximum χac
(a.u.)

Resistivity (Ω-cm) and
Sheet Resistance (Ω/sq)

Surface
Energy

(mJ/mm2)

Surface Roughness,
Ra (nm) at 50 nm

with Various
Conditions

Glass/Co40Fe40B10Dy10 [73]
10–50 nm at RT and
annealed conditions

Amorphous 0.14–0.18 at
50 nm

0.001–0.275
0.029 × 104–12.36 ×104 26.39–34.71 1.93−1.19

Si(100)/Co40Fe40B10Dy10
10–50 nm at RT and
annealed conditions

(current research)

Metal oxide signature
peaks, Dy2O3(440),

Co2O3(422), and
Co2O3(511)

0.10–0.18 at
50 nm

0.001–0.124
0.014 × 104 –12.36 × 104 25.31–32.38 2.73–1.84
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4. Conclusions

XRD presents that the oxide characteristic peaks of Dy2O3(440), Co2O3(422) and
Co2O3(511) with 2θ = 47.8◦, 54.65◦, and 56.45◦ were generated in Co40Fe40B10Dy10 thin
films at various annealing temperatures. Regardless of the heat treatment temperature,
the film consistently exhibits its optimal resonance frequency at 50 Hz. However, as
the measured frequency increases, there is a tendency for the χac value to decline. The
maximum χac and Ms values exhibit an upward trend with increasing thickness and
annealing temperature, primarily influenced by variations in thickness and magnetic
crystal anisotropy. The magnetic domain of 50 nm grows larger with increasing annealing
temperature, whereas the surface roughness of 50 nm grows smoother with increasing
annealing temperature. To summarize, the magnetic, electrical, and adhesive properties
of CoFeBDy films are significantly influenced by surface roughness at different annealing
temperatures. A smoother surface with reduced roughness has a lesser impact on domain
wall pinning, leading to enhanced mobility and, consequently, higher χac values. Moreover,
surface roughness correlates with a lower contact angle and increased surface energy.
According to the study, the optimal condition is annealing at 300 ◦C with a film thickness
of 50 nm.
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