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Abstract: Eutectic gallium–indium (EGaIn) is an ideal material for preparing flexible electrodes, but
its high surface tension poses a challenge during deposition and patterning. Herein, we propose a
laser-induced selective surface wetting technique (SSWT) to enable the facile and straightforward
fabrication of flexible finely and directly patternable EGaIn liquid metal electrodes. Our proposed
technique selectively controls the wettability of EGaIn by establishing a perfluorinated self-assembled
monolayer on a zinc oxide nanorod array to impart superhydrophobicity and then inducing specific
sites on the hydrophilized surface by ultraviolet (UV) pulsed laser ablation, thereby enabling fine
patterning (linewidth, ~50 µm). Surface analysis of the effect of laser ablation was also performed to
elucidate the mechanism of SSWT. The patterned EGaIn liquid metal electrode fabricated by SSWT
exhibited superior flexibility, with a resistance change (∆R/R0) of only 18.6% compared with a Ag thin
film electrode, which showed a dramatic increase in ∆R/R0 to nearly 500% after 50,000 folding cycles
at a peak strain of 2.5%. The simple and easily implementable liquid metal patterning technique
proposed in this study may potentially be applied in the field of wearable and stretchable electronics,
which requires extreme flexibility.

Keywords: liquid metals; eutectic indium gallium; pulsed laser ablation; patterning; ZnO nanorods;
self-assembled monolayer; flexible electrodes; cyclic bending fatigue

1. Introduction

Flexible electronics is an expanding research area that focuses on the creation of
electronic devices capable of being bent, twisted, or stretched without impeding their
functionality [1]. These unique capabilities enable new form factors, such as carrying in a
folded or rolled state or attachment to the body. Recently, the field of flexible electronics has
advanced to the point of mimicking human skin with bio-inspired robotic skin for sliding
tactile perception [2]. Maintaining device performance under stress from deformation is a
critical aspect of flexible device design. All device components must possess flexibility and
the ability to distribute the stress caused by deformation to ensure device durability after
mechanical deformation. The application of brittle materials to flexible device components
can result in damage and breakdown owing to stress during deformation [3]. Liquid metals
offer an attractive alternative to rigid materials for flexible electrodes. These metals can
remain in a liquid state at room temperature because their melting points are below or near
room temperature. This state provides liquid metals with unique advantages over other
metals, such as the ability to flow, bend, and reform at room temperature [4]. However,
their use is limited to specific applications owing to the inherent radioactivity of cesium,
the high instability of francium and rubidium, and the toxicity of mercury [5].

Fortunately, unlike other liquid metals, eutectic gallium–indium (EGaIn) alloy does
not have such limitations. The conductivity of EGaIn (σ = 3.4 × 106 S m−1) is comparable
with that of other metals [6]. Thus, EGaIn not only exhibits high electrical conductivity but
also withstands folding and stretching stress, rendering it ideal for use as a flexible electrode
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material on account of its outstanding features. Chen et al. reported self-healing, robustly
conductive, and stretchable conductors by embedding EGaIn liquid-metal patterns within
an imprintable self-healing elastomer [7]. EGaIn is an ideal material for flexible electrodes,
but its high surface tension poses a challenge during deposition and patterning. Several
methods, such as direct inkjet printing, photolithography, injection molding, and stamp
lithography, have been proposed to control the patterning of EGaIn liquid metals [8–13].
However, these methods have limitations when applied to actual production owing to
factors such as time consumption, low resolution, and complexity. Jiang et al. reported
the direct patterning of EGaIn liquid metal by inducing selective wettability differences
via a laser ablation process; however, the authors did not perform a surface analysis of
the effects of the laser ablation process and did not show the realization of fine linewidths
below 50 µm [14].

Herein, we present a cost-effective, easily customizable, and direct patterning approach
for liquid EGaIn via a selective surface wetting technique (SSWT). A superhydrophobic
surface was created by establishing a fluorine-containing self-assembled monolayer (SAM)
on a zinc oxide (ZnO) nanorod array using a straightforward hydrothermal synthesis
method under atmospheric conditions. Because the ZnO nanorods react favorably to
ultraviolet (UV) light, a UV pulsed laser can selectively hydrophilize the surface. Thereafter,
EGaIn was brushed onto and effectively coated on the selectively hydrophilized surface.
We demonstrate that EGaIn liquid metal can form micropatterns with fine linewidths of as
low as 50 µm. Furthermore, the EGaIn liquid metal patterned electrode displayed superb
flexibility after 50,000 cycles of folding fatigue.

2. Materials and Methods
2.1. Materials

A 1-mm-thick soda–lime glass slide (Paul Marienfeld, 1000412, Berlin, Germany) and
a 50-µm-thick polyethersulfone film (PES, SU30-FM-000150, GoodFellow, Huntingdon, UK)
were used as substrates. Zinc acetate dihydrate (99.999%, Sigma-Aldrich, St. Louis, MO,
USA) and 1-propanol (99.5%, Sigma-Aldrich) were used as the solute and solvent, respec-
tively, for the ZnO seed coating solution. Zinc nitrate hexahydrate (98%, Sigma-Aldrich)
and hexamethylenetetramine (99.5%, Sigma-Aldrich) were used for ZnO growth. For su-
perhydrophobic surface treatment, 1H,1H,2H,2H-perfluorooctyltriethoxysilane (PFOTES,
98%, Sigma-Aldrich), butylamine (99.5%, Sigma-Aldrich), and toluene were used as the self-
assembling molecules, catalyst, and SAM solution solvent, respectively. Diiodomethane
(DIM, 99%, Sigma-Aldrich) was used to calculate the surface energy (γs) from the droplet
contact angles of the hydrophilized surfaces. EGaIn electrodes were purchased from
MIDAS (Seoul, Korea) and used as conductive electrodes (Ga:In = 75.5:24.5 wt%).

2.2. Fabrication of Patterned EGaIn Electrodes

A schematic diagram of the fabrication process of the patterned EGaIn electrode is
shown in Figure 1. The process for fabricating a selectively wettable substrate includes seed-
layer coating (Figure 1b), ZnO-nanorod growth (Figure 1c), superhydrophobic treatment
with the PFOTES SAM (Figure 1d), UV pulsed laser ablation (Figure 1e), and EGaIn
brush deposition (Figure 1f). The substrates were cleaned by sonication with isopropyl
alcohol, acetone, and deionized (DI) water and treated with UV ozone for 10 min. A
10 mM solution of zinc acetate dihydrate (99.999%, Sigma-Aldrich) in 1-propanol was
spin-coated on the cleaned substrates at 2000 rpm for 30 s. The samples were then baked
at 130 ◦C for 1 min. The above coating and baking process was repeated five times to
ensure the uniform coverage of the zinc acetate crystallites on the substrate. All samples
were pre-annealed in an air atmosphere at 200 ◦C for 1 h to obtain ZnO seeds. For ZnO
nanorod growth, the samples were soaked in 25 mM zinc nitrate hexahydrate and 25 mM
hexamethylenetetramine in DI water and heated in a microwave oven (2.45 GHz) at 1000 W
for 3 min. The residual solvent in the samples was removed by rinsing with DI water [15].
Next, the samples were immersed in 1 mM PFOTES and a solution of 0.01 vol% butylamine



Coatings 2023, 13, 1922 3 of 11

in toluene at 45 ◦C for 90 min to form a SAM composed of PFOTES molecules on the
ZnO nanorods. The treated samples were rinsed with toluene to remove excess PFOTES
molecules [16]. The superhydrophobic samples were selectively ablated by a nanosecond
UV pulsed laser (LSU5DS 3D Laser Marking System, HGTECH, Wuhan, China), as shown
in Figure 1e, to expose the hydrophilic surfaces of channels with different widths. The
widths of the laser-ablated channels were 50, 100, 200, 500, and 1000 µm. The wavelength
of the laser was 355 nm, the pulse frequency was 100,000 Hz, the off time was 6500 ns, and
the scan rate was 1000 mm/s. Finally, EGaIn liquid metal patterns were formed on the
selectively wettable substrate using a brush, as shown in Figure 1f.
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Figure 1. Schematic of the fabrication process of patterned EGaIn electrodes via SSWT: (a) substrate
cleaning, (b) ZnO seed layer coating on the substrate and pre-annealing, (c) ZnO nanorod growth
fabricated by microwave heating, (d) PFOTES SAM treatment on the ZnO nanorods, (e) UV pulsed
laser ablation, (f) EGaIn patterns on the selectively wettable substrate using a brush.

2.3. Characterization

The surface top-view and cross-section of the samples were characterized using a field
emission scanning electron microscope (FE-SEM, NOVA-600, FEI, Hillsboro, OR, USA)
equipped with an energy-dispersive X-ray spectrometer (EDS). X-ray diffraction (XRD,
X’Pert-Pro MPD, Malvern Panalytical, Malvern, UK) analysis was performed to investigate
the crystal structure of the ZnO nanorods. The absorbance of the samples was analyzed
using a UV-Vis spectrophotometer (UV-2550, Shimadzu, Kyoto, Japan) to characterize their
optical absorption at 355 nm. A drop shape analyzer (DSA100, KRÜSS, Hamburg, Germany)
was used to measure the contact angles of DI water and DIM droplets on the hydrophilized
samples. Here, 3 µL of the liquids was applied to the surface of each sample. Images of the
obtained EGaIn conductive patterns and the ablation linewidths were captured by optical
microscopy (OM, BX51M, OLYMPUS, Tokyo, Japan). Folding tests were performed for
50,000 cycles using CFT-070i equipment (COVOTECH, Hwaseong-si, Korea) to demonstrate
the flexibility of the EGaIn conductive layer, and electrical resistances were measured and
averaged every 10,000 cycles using a two-point probe multimeter (Fluke 289, Fluke, Everett,
WA, USA). The resistance change (∆R/R0) was calculated as ∆R/R0 = (R − R0)/R0, where
R is the resistance after folding and R0 is the initial resistance.
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3. Results and Discussion

Figure 2 shows top-view images of the laser-ablated interface region of the PFOTES
SAM-processed ZnO nanorod array layer (hereafter referred to as ZnO-PFOTES) at different
magnifications. The ZnO nanorods were grown on the substrate and then subjected to
selective laser irradiation to enable the analysis of the laser-irradiated and pristine surfaces
using FE-SEM and EDS. The ZnO nanorods grew uniformly and densely, as shown in
Figure 2a. The surface images of the non-irradiated area on the left and the laser-irradiated
area on the right were compared, as demonstrated in Figure 2b. The noticeable difference
in morphology between these areas subjected to laser irradiation and those without it was
apparent. Redeposited ZnO nanorod fragments from laser ablation were detected. One-
dimensional EDS analysis (distance, ~2220 µm) was performed on the boundary region to
investigate whether the ZnO nanorods were well-ablated by the UV pulsed laser, as shown
in Figure 2c,d. The laser-ablated region exhibited a significantly lower Zn-Kα intensity
than the non-ablated area, which was consistent with the results obtained from the FE-SEM
top-view image shown in Figure 2b. Hence, based on the FE-SEM and EDS analysis, the
use of the UV pulsed laser was confirmed to lead to the removal of the ZnO-PFOTES layer.
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(d) EDS line scan Zn-Kα spectrum of the laser-ablated interface area (yellow line in (c)).

The crystallinity and optical characteristics of the pristine and laser-ablated ZnO-
PFOTES were investigated by XRD and UV-Vis, respectively, to further confirm successful
ablation by the UV pulsed laser, as shown in Figure 3. In the case of the pristine ZnO-
PFOTES, ZnO crystal growth was more dominant along the z-axis than along the x-axis,
which was confirmed by the stronger intensity of the (002) plane at 34.4◦ than that of
the (100) plane at 31.8◦, as shown in Figure 3a. This result aligns well with the FE-SEM
image in Figure 2c and previous studies on hydrothermally synthesized ZnO nanorods,
which showed a dominant tendency for z-axis growth [17]. The presence of ZnO was also
confirmed by the absorbance peak at 369 nm, which is an inherent absorption characteristic
of ZnO, as shown in Figure 3b [18]. In contrast, the XRD peaks and absorption peak of ZnO
at 369 nm were considerably diminished in the laser-ablated ZnO-PFOTES. ZnO-PFOTES
exhibited a broad absorption peak at 355 nm and a central wavelength of 369 nm, as shown
in Figure 3b. Thus, ZnO-PFOTES was effectively eliminated by the UV-pulsed laser with a
central wavelength of 355 nm.
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The general mechanism of laser ablation involves the absorption of light energy, where
excited electrons transfer heat to the lattice due to photon absorption, causing the heating
effect to melt or vaporize the material, resulting in macroscopic removal of material from
the substrate [19]. This phenomenon occurs when the peak fluence (F0) of the laser is above
the ablation threshold fluence (Fth) and is calculated as follows [20]:

D2 = 2w2 ln
(

F0

Fth

)
, (1)

where D and w are the ablation linewidth and 1/e2 beam radius of the Gaussian beam
profile, respectively. The peak fluence of the Gaussian laser beam is calculated from the
pulse energy (E) of the UV pulsed laser with the following equation:

F0 =
2E

πw2 (2)

Figure 4 shows the correlation of the ablation linewidth with the peak fluence of the
UV pulse laser. Figure 4a shows the OM images of the laser scanning ablation trace lines
of the ZnO-PFOTES layer at different laser pulse energies. The higher the pulse energy
of the laser, the more the ablation linewidth of the ZnO-PFOTES layer tended to increase.
This phenomenon is a natural consequence of the Gaussian profile of the laser beam, which
increases the portion of the laser beam with higher fluence as the pulse energy increases [20].
In general, the higher the irradiation fluence, the higher the absorbed energy density, which
induces higher temperatures. As a result, a larger portion of the irradiated area is ablated,
and the ablation linewidth increases (Figure 4b). From these results, the calculated ablation
threshold fluence for the ZnO-PFOTES was 5.01 J/cm2 from the x-intercept obtained by
extrapolation from Equation (1) and Figure 4c.

The Droplet contact angle analysis was adopted to quantitatively calculate the change
in γs induced by laser ablation. Table 1 shows the γs characteristics and droplet shapes of
liquids on the pristine and laser-ablated ZnO-PFOTES.
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Table 1. Surface energy (γs) characteristics and droplet shapes of liquids on the pristine and laser-
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Sample
Contact Angle (◦) γ

p
s

(mJ m−2)
γd

s
(mJ m−2)

γs
(mJ m−2) Xp

(
= γ

p
s /γs

)
DI Water DIM

Pristine
ZnO-PFOTES
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and 26.5◦, respectively. The DI water contact angle of 141◦ on the pristine ZnO-PFOTES
sample is much larger than 90◦, which means the sample exhibits superhydrophobicity
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γs = γ
p
s + γd

s , (4)

Xp =
γ

p
s

γs
, (5)

where γ
p
s and γd

s refer to the surface energies of the polar and dispersive components of
the sample, respectively, and γlv is the surface tension of the test liquid. The quantitative
γs values of the samples were obtained by inserting the known values of γlv, γd

lv, and γ
p
lv

of the test liquids [22] and the measured contact angle θ into the above equation. The γs,
γd

s , and γ
p
s calculated for the pristine ZnO-PFOTES were 34.92, 29.01, and 5.906 mJ/m2,

respectively, while those calculated for the laser-ablated ZnO-PFOTES were 58.68, 33.97,
and 24.71 mJ/m2, respectively. Because γs increased from 34.92 to 58.68 mJ/m2 and the
polar component ratio Xp increased from 0.1691 to 0.4210 following laser ablation, the
selective wetting of EGaIn was clearly facilitated by this process.

Figure 5 displays the different EGaIn patterns created using SSWT. In Figure 5a, the
line patterns of EGaIn formed on the PES substrate had varying linewidths of 50, 100, 200,
500, and 1000 µm. Electrical resistance was successfully measured in all patterned EGaIn
lines. The resistance increased considerably as the linewidth decreased. However, even at
the narrowest linewidth of 50 µm, an accurate measurement of resistance was still obtained,
indicating a seamless patterning process. Magnified OM images of the 50, 100, and 200
µm fine-line patterns are shown in Figure 5b–d, respectively. The advantage of laser for
designing patterns is demonstrated in Figure 5e, which shows the text pattern formed using
SSWT as a digitalized process. Although some dewetting areas are evident in the enlarged
OM images shown in Figure 5f,g, the overall patterns demonstrated good resolution with
clear boundary definitions.
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Figure 5. (a) Electrical resistance and OM image (inset) of flexible EGaIn electrodes with different
patterned linewidths of 50, 100, 200, 500, and 1000 µm. Scale bar = 5 mm. (b–d) OM images of the
fine-line patterns with linewidths of 50, 100, and 200 µm, respectively. Scale bar = 200 µm. (e) Text
logo pattern and (f,g) enlarged OM images of the areas marked in (e). Scale bars = (e) 5 mm and
(f,g) 500 µm.

Figure 6 shows the inward-folding cyclic fatigue-deformation characteristics of pat-
terned EGaIn liquid metal and Ag thin film electrodes. The stability of the electrodes under
cyclic folding was estimated by assessing ∆R/R0. The EGaIn and Ag electrodes on the
flexible PES film substrate were fabricated by SSWT and sputtering, respectively. When



Coatings 2023, 13, 1922 8 of 11

electrodes on a film substrate are folded at 180◦, the peak strain (ε) on the sample surface
could be determined using the following equation:

ε =
t

2r
, (6)

where t is the thickness of the substrate and r is the bending radius [24,25]. In the cyclic
folding test, t and r were 50 µm and 1 mm, respectively, corresponding to a peak strain of
2.5%. The cyclic folding test was performed in five sets of 10,000 cycles to achieve a total
of 50,000 cycles, and resistance measurements were taken every 10,000 cycles. The ∆R/R0
the Ag electrode increased dramatically to over 150% after 10,000 cycles and increased
linearly to almost 500% after 50,000 cycles. Most electrodes composed of thin film metals,
including those made of Ag, have been reported to fracture at strains below 2% when used
on polymer substrates [24,25]. Therefore, in this study, the cyclic folding test was performed
at a peak strain of 2.5%, which is greater than the fracture strain, resulting in a sharp change
in resistance. In contrast, the ∆R/R0 of the EGaIn electrode increased moderately to ~15%
and then remained stable over subsequent measurements, increasing to only 18.6% after
50,000 cycles. This result is attributed to EGaIn’s higher flexibility resulting from its much
lower Young’s modulus (2.1 × 105 Pa) compared to Ag metal (~5 × 109 Pa) [26–28]. Thus,
compared with the Ag thin film electrode, the EGaIn liquid metal electrode fabricated
with SSWT was much more stable against cyclic folding fatigue owing to the flexibility
of the intrinsic liquid state of EGaIn. To compare with previously reported findings on
flexible electrodes, we defined an εN value (in this work, εN = 2.5% × 50,000 = 1250) to
represent the degree of cyclic folding fatigue, where N is the number of folding cycles,
as shown in Figure 6b. Most previous studies on flexible electrodes have validated their
flexibility under mild conditions with εN values below 1000. Our study showed that the
patterned EGaIn electrode fabricated with SSWT under harsher conditions with an εN
value of 1250 exhibited comparable or superior flexibility when compared to previously
reported flexible electrodes made of materials such as metal nanowires, metal nanomeshes,
graphene, carbon nanotube (CNT), indium tin oxide (ITO), ITO/Ag/ITO (IAI), and poly(3,4-
ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films [25,29–40].
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Figure 6. Inward-folding cyclic fatigue-deformation characteristics of electrodes: (a) change in
resistance behaviors of patterned EGaIn liquid metal and Ag thin film electrodes under cyclic
folding condition (ε = 2.5%, N = 50,000, εN = 1250) and (b) change in resistance with respect to
degree of cyclic folding fatigue of patterned EGaIn electrode fabricated with SSWT compared
to those of previously reported flexible electrodes: Ag nanowire [29], Ag nanomesh [30], Au
nanomesh [31,32], Au/Graphene [33], ITO/Graphene [34], CNT [35], PEDOT:PSS/CNT [36], Nanos-
tructured ITO [37,38], ITO/Ag/ITO [39,40], Nanostructured IAI [25].
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4. Conclusions

In this work, we presented a simple method to easily fabricate flexible finely and
directly patterned EGaIn electrodes using SSWT based on γs differences. All fabrication
steps utilized a solution process that can be carried out under atmospheric conditions, and
direct patterning was made possible by UV pulsed laser ablation, which is inexpensive
and applicable to large areas. We also investigated the mechanism by which UV-pulsed
laser ablation effectively removed the SAM-treated ZnO nanorod array, rendering the
liquid metal superhydrophobic, and induced an increase in γs, resulting in improved liquid
metal wettability and patterning, using surface analysis. The linewidths of the EGaIn
liquid metal patterns fabricated with SSWT could be freely adjusted to realize linewidths
as fine as 50 µm. The EGaIn liquid metal patterned electrode fabricated on a flexible
substrate exhibited significantly better flexibility than the Ag thin film electrode under
severe conditions with an εN value of 1250, corresponding to 50,000 cycles of folding fatigue
at a peak strain of 2.5%. The simple and easily implementable liquid metal patterning
technique proposed in this study, when combined with a passivation layer to protect the
liquid metal electrodes, may potentially be applied in the promising field of wearable and
stretchable electronics, which requires extreme flexibility.
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