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Abstract: The development of highly efficient and low-cost bifunctional electrocatalysts for water
splitting has become increasingly attractive. So far, the strategies to optimize electrocatalytic per-
formance have mainly focused on enhancing the active sites and regulating the surface structures
through doping foreign metal or anions into the composites; however, the internal and external
adjustments achieved by tuning the chemical composition and crystalline phases in a material in
order to investigate the composition-dependent catalytic activity has generally remained limited.
Here, through various in situ composition-dependent nickel sulfides grown while controlling the
sulfidation degree, we achieve the precise regulation of nickel sulfides from a single-phase component
to multiple-phase components (i.e., two-phase components and three-phase components), further
comparing the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) perfor-
mances. Benefiting from the synergy of an analogous uniform nanoarray structure and excellent
intrinsic activation, the as-obtained NixSy-5, with three-phase components, shows low overpotentials
at 10 mA cm−2 for HER (148 mV) and OER (111 mV), as well as a low cell voltage of 1.48 V for
overall water splitting in alkaline media, which are among the best results ever reported for overall
water splitting.

Keywords: nickel sulfide; component engineering; bifunctional electrocatalyst; overall water splitting

1. Introduction

Electrochemical water splitting is recognized as a sustainable technology for the pro-
duction of clean and green hydrogen, which provides a promising pathway to achieve
the goal of carbon neutralization [1–4]. The overall water splitting process involves two
half-reactions: the hydrogen evolution reaction (HER) and the oxygen evolution reaction
(OER) [5,6]. The efficiency of the process depends on the overpotentials that must be used
for overcoming the energy barriers inherent in the two half-reactions [7–9]. Heretofore,
the major obstacles restricting commercialized applications of water-splitting devices were
the lack of highly efficient electrocatalysts with low overpotential requirements for both
the HER and OER processes [10–14]. It remains difficult to develop two such electrocat-
alysts that could be coupled in an integrated electrolyzer for overall water splitting, as
their optimal operating modes often mismatch [15,16]. Coupling two catalysts in two
different conditions that can make them work best and integrating them into a single
water separation device is more complicated, due to the requirements of different acces-
sories, preparations, and optimization procedures [17–20]. Thus, it is urgent to design
efficient bifunctional electrocatalysts in the same electrolyte that can work well for both
HER and OER.

The platinum (Pt)-group materials have shown highly efficient electrocatalytic per-
formance, but high cost and elemental scarcity significantly hinder their widespread
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application [21–24]. Recently, first-row transition metal-based catalysts, such as metal
oxides [25,26], sulfides [27,28], selenides [29], phosphides [30–33], and hydroxides [34] of
Co, Ni, and Fe, have been intensively investigated due to their high intrinsic activities
and low cost. Among these, nickel sulfides with diverse crystalline phases (i.e., nickel
subsulfide (Ni3S2), nickel sulfide (NiS), and nickel disulfide (NiS2), etc.) have been con-
sidered as promising water-splitting electrocatalysts because of their good conductivity
and unique 3D configuration [35–38]. Although nickel sulfide-based electrocatalysts with
different crystal structures have all been separately studied as HER/OER catalysts, the
further enhancement of the electrocatalytic activity of these materials is still greatly limited
due to their low surface active exposure and poor long-term stability. Doping foreign
high-active transition metal into nickel sulfide-based catalysts is regarded as an efficient
route to optimize their electrochemical performance by overcoming the intrinsic activa-
tion barriers [39–41]; however, the doping strategy usually shows a tendency to include
the various metal-active sites, leading to a significant impact on the study of intrinsic
catalytic activity [42,43]. In principle, the catalytic property of a material is determined
using its electronic structure and can be regulated by engineering its composition and
morphology [44–46]. The internal and external adjustments, i.e., tuning the electronic
structure through phase control and composition adjustment, are valid for the production
of efficient electrocatalysts [47–49]. Guided by the above design ideas, nickel sulfides with
various crystalline phases (such as Ni3S2, NiS, and NiS2, etc.) were used as ideal models
for tuning the chemical composition and crystalline phases in a material, offering a good
opportunity to investigate the composition-dependent catalytic activity by constructing the
composition–structure–performance relationship for designing high-performance catalysts.

Herein, we present a facile design of various in situ grown composition-dependent
nickel sulfides by precisely controlling the sulfidation degree in a simple hydrothermal
process, achieving the regulation of nickel sulfides from a single-phase component to
multiple-phase components (i.e., two-phase components and three-phase components),
with the amount of thiourea gradually increased from 2 mmol to 7 mmol, thus intrinsically
comparing the HER and OER performance in various-phase nickel sulfide-based systems.
Specifically, benefiting from the higher exposed active surface, the increased charge transfer
capacity, and the lower charge-transfer resistance, the vertically aligned NixSy-5 nanoarrays,
with three-phase components, exhibit exceptional bifunctional electrocatalytic performance
towards both OER and HER under alkaline media. Notably, NixSy-5 shows remarkable
HER and OER activities, with overpotentials of 148 mV and 111 mV to deliver the current
density of 10 mA cm−2, respectively, which is superior to the performance of the majority
of non-noble metal electrocatalysts under alkaline conditions. Furthermore, utilizing the
NixSy-5 nanoarrays as bifunctional electrocatalysts, an alkaline electrolyzer at 10 mA cm−2

is operated at a low cell voltage of 1.48 V, significantly lower than that of state-of-the-art
overall-water-splitting electrocatalysts (cell voltages > 1.6 V).

2. Experimental

Chemicals

Otassium hydroxide (KOH, 96.0%) and thiourea (CH4N2S, 99.0%) were purchased
from Tianjin Kermel Chemical Reagent Co., Ltd. (Tianjin, China) Hydrochloric acid (HCl,
37%), acetone (C3H6O, 99.9%), and ethyl alcohol (CH3CH2OH, 99.7%) were purchased
from Qinhuangdao Chemical Co., Ltd. (Qinhuangdao, China) Nickel foam (NF) was
purchased from Shenzhen Green and Creative Environmental Science and Technology
Co., Ltd. (Shenzhen, China) All the reagents were employed directly, without further
refinement. The water used throughout all the experiments was purified using a Millipore
system. Pieces of nickel foam, used as a substrate, were washed by sonication consecutively
with 3 M HCl, acetone, and deionized water.
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Synthesis of multiple-component NixSy composites

Typically, the different amounts of thiourea (2–3–4–5–6–7 mmol) were dissolved in
10 mL of water under continuous magnetic stirring for about 20 min to obtain different con-
centrations of aqueous solutions. Then, the acidified surface-cleaned Ni foam (Figure S1),
as an Ni source, was immersed in the above solution, and the mixture was subsequently
placed into a 23 mL autoclave with a Teflon liner at 180 ◦C for 16 h. When the mixture
cooled down to 30 ◦C, the reaction mixture were separated from the solution and cleaned
three times with deionized water to remove the unreacted impurities. Finally, the corre-
sponding nickel sulfide products with different phase components, denoted as NixSy-2,
NixSy-3, NixSy-4, NixSy-5, NixSy-6, and NixSy-7, respectively, were obtained by drying at
75 ◦C overnight in a vacuum oven.

Characterization

These samples were assessed by scanning electron microscopy (SEM, SUPRA 55, Carl
Zeiss AG, Jena, Germany), X-ray diffraction (XRD, Bruker AXSD8 diffractometer, BRUKER
AXS GMBH, Karlsruhe, Germany), and X-ray photoelectron spectroscopy (XPS, ESCALAB
250Xi, Thermo Fisher Scientific, Waltham, MA, USA). The acquired XPS data were refined
via standard carbon peaks.

Electrochemical measurements

The CHI 660E device, with a three-electrode system, was employed to record the
electrocatalytic activity of these catalysts in 1 M KOH aqueous solution. The three-electrode
system comprised a working electrode (the samples) with a dimension of 1 cm × 2 cm, a
reference electrode (Hg/HgO), and a counter electrode (a graphite rod). The potentials were
determined using the Hg/HgO electrode, and they can be transformed into RHE based
on the equation ERHE = EHg/HgO + 0.0591 pH + 0.0977. For measuring the electrocatalytic
activities of these samples in HER and OER, the polarization curves were acquired using
linear scanning voltammetry (LSV), with scan rate of 5 mV. Electrochemical impedance
spectroscopy (EIS) measurements were carried out in a frequency range of 0.01 Hz~1 MHz.
Double-layer capacitance (Cdl) was assessed via cyclic voltammetry (CV), with diverse
scan rates of 10–50 mV s−1.

3. Results and Discussion

In the typical synthetic strategy, the acidified Ni foam was used as a surplus Ni
source and a support material, and the different amounts of thiourea (2 mmol, 3 mmol,
4 mmol, 5 mmol, 6 mmol, and 7 mmol) played the significant role of chemical etching
for the direct sulfidation of NF in a hydrothermal process, offering a good opportunity to
allow the in situ formation of nickel sulfides of different sulfidation degrees and different
crystalline phases. The compositions of the synthesized samples were detected using
standard XRD measurements (Figure 1a). The diffraction peaks of NixSy-2 and NixSy-3
are in good agreement with the orthorhombic phases of Ni3S2 (JCPDS: 44-1418), except for
the observed pronounced diffraction peaks of the Ni substrate (51.8◦), which suggest the
formation of Ni3S2 in NixSy-2 and NixSy-3. As the thiourea content increased to 4 mmol, all
the diffraction peaks of NixSy-4 became well indexed to hexagonal Ni3S2 (JCPDS: 44-1418)
and Ni7S6 (PDF: 14-0364), without additional diffraction peaks of other impurities, in
which corresponding diffraction peaks of Ni foam all disappeared, confirming the high
purity of NixSy-4. Notably, there were three crystalline phases in the NixSy-5 structure,
where, in addition to Ni3S2 and Ni7S6 mentioned above, a new phase NiS appeared (JCPDS:
12-0041). When the content of thiourea was further increased to 6 mmol and 7 mmol, all
the diffraction peaks of Ni3S2 disappeared, and both NixSy-6 and NixSy-7 contained only
two phases of nickel sulfides (i.e., Ni7S6 and NiS). These results indicate that changing
the thiourea content can achieve the manipulation of nickel sulfides from a single-phase
component to multiple-phase components (i.e., two-phase components and three-phase
components), making various composition-dependent nickel sulfides good platforms for
evaluating the composition–structure–performance relationships.
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The morphologies of all the samples were revealed using SEM, indicating that the
as-obtained samples formed in different sulfidation processes elucidate the manner in
which varying the sulfidation degree led to the diverse morphologies of the samples
(Figures 1 and S2). Generally, NixSy-2, NixSy-3, and NixSy-4 present irregular morpholo-
gies, while the NixSy-5, NixSy-6, and NixSy-7 show analogous uniform rod-like arrays,
homogeneously distributed across the entire NF surface. Notably, in NixSy-2, compared
to other sulfidation conditions, Ni3S2 grew on the surface of the nickel foam, without any
aggregation, but this growth was not sufficient to completely cover the NF surface due to
the low-degree sulfidation (Figure S2a). With further increase in the degree of sulfidation,
it can be found that the whole Ni surface is densely covered with irregular morphology in
NixSy-3 and NixSy-4 (Figures S2b and 1d). Different from NixSy-2, NixSy-3, and NixSy-4,
the rod-like nanoarrays are grown across the NF surface for NixSy-5, NixSy-6, and NixSy-7.
Notably, NixSy-5 nanoarrays, with uniformly distributed Ni and S elements across the
structure, grow almost uniformly and vertically on the NF surface, with an average length
of about 1.9 µm, indicating an evident anisotropic growth behavior (Figure 1b,c), which
may result in more active sites. Compared to NixSy-5, NixSy-6 nanoarrays with a higher
degree of sulfidation, have a longer length of about 2.2 µm, arranged with clear crossover
between the rod-like structures (Figure 1e), and the degree of crossover increases as the
sulfidation further enhances, as observed in NixSy-7 (Figure 1f).

The XPS analyses are carried out to determine the predominant constituent elements
and characterize the corresponding chemical valence states. All observed peaks are as-
signed to the expected elements, including Ni, S, O, and adventitious C (Figure S3). Notably,
the spectrum of NixSy-2 does not show peaks of the S elements, which is attributed to the
low-degree sulfidation due to the small amount of S content, which is difficult to effectively
detect; the signal of the S 2p peak gradually increases with the further improvement of the
sulfidation degree. The Ni 2p, S 2p, and O 2p fitting spectra of all the samples are displayed
in Figures S4–S6, respectively, as obtained by the Gaussian fitting. For the Ni 2p region, the
high-resolution XPS spectrum displays two main peaks at 855.9 and 873.4 eV, ascribed to Ni
2p3/2 and Ni 2p1/2, respectively, as well as typical shakeup satellite peaks located at 880.3
and 861.6 eV (Figure S4) [50]. For the S 2p spectrum, the peaks in all samples, assigned
to the S 2p1/2 and 2p3/2 orbitals of the divalent sulfide ions (S2−), are observed at 163.8
and 162.6 eV, [51,52], in addition to the SO4

2− peaks above 168.7 eV (originating from the
surface oxidation). With the further improvement of the sulfidation degree, in addition to
the three XPS peaks mentioned above, additional sets of peaks appear in the spectrum. The
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binding energies of S 2p1/2 and 2p3/2 at 164.4 and 165.6 eV show the existence of bridging
S2

2− (Figure S5) [51,53]. Although it is impossible to exclusively evaluate the ratio between
the two types of sulfur species of S2− and S2

2− because of their similar binding energies,
the existence of the higher energy peaks in NixSy-5, NixSy-6, and NixSy-7 are likely related
to the high electrochemical water splitting activity. The O 1s spectra of all the samples were
determined to identify the oxides generated on the surface. Notably, the O 1s spectra of all
the samples are classified into two categories (denoted as O1 and O2) [54]. The O2 peak of
oxygen vacancy is located at ≈531.2 eV, and the peak of O1 at ≈532.5 eV is related to the
hydroxy species of the adsorbed water molecules [55] (Figure S6).

Accordingly, only a representative NixSy-5 with three-phase components, which ex-
hibits the existence of four elements (Ni, S, O, and C) (Figure 2a), is discussed in detail. The
Ni 2p peaks at ≈855.7 and ≈873.1 eV for NixSy-5 are assigned to Ni2+ 2p3/2 and Ni2+ 2p1/2,
respectively, and the peaks at ≈857.2 eV for Ni 2p3/2 and at ≈874.6 eV for Ni 2p1/2 manifest
the existence of high-valence Ni3+, with the ratio of Ni3+ and Ni2+ ≈ 0.6 (Figure 2b). No-
tably, the intensity of the S2

2− peak in NixSy-5 is significantly higher than that in NixSy-6
and NixSy-7, producing more bridging S2

2−, which is considered to possess the most active
sites in NixSy-5 (Figure 2c). The area of O2 is obviously larger than that of O1 in NixSy-5,
suggesting that there are more oxygen sites in the NiO produced by surface oxidation than
that in the absorbed water molecules [56,57] (Figure 2d).
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As NixSy-2 and NixSy-3 possess the same single-phase component of Ni3S2, as well as
the same two-phase components of Ni7S6 and NiS in NixSy-6 and NixSy-7, the detailed de-
scription of the electrocatalysis performance is only illustrated for NixSy-3 and NixSy-7. The
HER electrocatalysis was measured in 1 M KOH electrolyte by a three-electrode system, and
Hg/HgO and a graphite rod were selected as reference and counter electrodes, respectively,
offering a good opportunity to study the component-dependent catalytic activity based
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on the single-phase-component NixSy-3 electrodes, the two-phase-component electrodes
of NixSy-4 and NixSy-7, as well as the three-phase-component electrodes of NixSy-5. As
illustrated in Figure 3a, NixSy-5 shows a remarkable HER catalytic activity at 10 mA cm−2,
with the lowest overpotential of 148 mV after activation by cyclic voltammetry among all
the samples, which is about 69 mV higher than that of the commercial Pt/C catalyst [58].
The activity of NixSy-5 is stronger than that of NixSy-7 (169 mV), and largely exceeds that
of NixSy-4 (196 mV) and NixSy-7 (216 mV). Notably, despite the presence of two-phase
components in both NixSy-4 (Ni3S2 and Ni7S6) and NixSy-7 (Ni7S6 and NiS), there is a clear
difference in the electrocatalytic properties for NixSy-4 (196 mV) and NixSy-7 (169 mV),
presumably because of the presence of bridging S2

2−, which is highly active in NixSy-7. To
clearly identify the catalysts with the best activity, the overpotentials of all the samples are
shown at 10, 20, and 50 mA cm−2 using a visual bar graph (Figure 3b). As the current den-
sity gradually increases, NixSy-5 still exhibits the lowest overpotential, which is probably
attributable to the fact that the NixSy-5 electrodes with a three-phase structure can provide
more oxygen vacancies and more active sites for the HER reaction. These results reveal that
the catalytic performance of the NixSy-5 electrodes is also superior to that of the majority of
non-noble metal HER electrocatalysts in alkaline media (Table S1).

The Tafel plots were acquired via fitting the linear regions of the LSV curves based on
the Tafel equation, which manifested the HER kinetics of the electrocatalysts (Figure 3c).
The Tafel slope of the NixSy-5 electrodes was 140 mV dec−1, the lowest value among
all the samples, which is smaller than that of the two-phase component electrodes (with
comparable Tafel slopes of 151 and 158.1 mV dec−1 for NixSy-4 and NixSy-7, respectively),
and much smaller than that of single-phase component NixSy-3 electrodes (171.1 mV dec−1).
The results show that NixSy-5 exhibits faster reaction kinetics and better charge transfer
abilities in the HER electrocatalysis processes. Accordingly, these various HER activities
demonstrate that the HER performance could be rationally tuned via changing the chemical
composition of the nickel sulfide-based electrodes.

For gaining deep insight into the efficient HER activities of various phase-component
electrodes, the SEM images have revealed that the as-prepared NixSy-5 exhibit looser
and more uniform nanoarrays than those of other samples, showing that the NixSy-5
electrode can offer larger active surface areas during catalytic reactions. For confirming this
result experimentally, the Cdl analyses are carried out for evaluating the electrochemically
active surface area (ECSA). The CV curves of the as-obtained nickel sulfide electrodes in
Figure S7 show that the slope of the linear plot of the non-faradaic capacitance current
as a function of the scan rate is equal to Cdl. Notably, the NixSy-5 electrode possesses
the largest Cdl value of 142 mF cm−1, which is obviously superior to that of the single-
phase component NixSy-3 electrodes (30.3 mF cm−1) and that of the two-phase component
electrodes of NixSy-4 (85 mF cm−1) and NixSy-7 (133.5 mF cm−1), suggesting that NixSy-5
possesses a larger surface area, thus possessing more exposed catalytical active sites in the
HER process. The conductivity of the catalyst is another significant factor that affects the
overall electrocatalytic activity [59]. Compared to other samples, the NixSy-5 electrocatalyst
showed the smallest semicircle within the high-frequency range in the Nyquist curve
(Figure 3e), indicating the weakest charge-transfer resistance in the catalyst/electrolyte
interface and faster charge transport kinetics, in agreement with its excellent electrocatalytic
activity. Moreover, the long-term stability test was conducted for studying the durability of
the constructed electrolyzer using the constant voltage technique. Notably, all the samples
exhibited a stable cathodic current, with almost negligible degradation (Figure 3f), which
indicates good durability, showing that the samples and can maintain catalytic activities
for at least several hours in the NixSy-5 electrode.
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Figure 3. The HER performance data of the as-prepared electrocatalysts in 1.0 M KOH. (a) HER
polarization curves (iR-corrected) measured with a scan rate of 5 mV s−1; (b) comparison of over-
potential of as-prepared electrodes at different current densities of 10 mA cm−2, 20 mA cm−2, and
50 mA cm−2; (c) the corresponding Tafel curves; (d) the linear plots of the capacitive current versus
the scan rate; (e) the corresponding EIS plot; (f) stability test regarding HER at a constant current
density of 10 mA cm−2.

To investigate the OER performance of the as-obtained electrode materials, the cor-
responding electrochemical analyses have been performed under alkaline conditions. As
expected, NixSy-5 exhibits the best OER property among all the catalysts, with a minimum
overpotential of 111 mV for driving the current density of 10 mA cm−2 (Figure 4a), which is
much lower than that of the single-phase component NixSy-3 electrodes (229 mV) and the
two-phase component electrodes of NixSy-4 (131 mV) and NixSy-7 (113 mV), which is also
about 159 mV less than that of state-of-the-art RuO2 catalyst.7 Moreover, the overpotential
values at 10, 20, 50, and 100 mA cm−2 are shown in the visual bar graph (Figure 5b),
indicating that the OER performance of NixSy-5 is also competitive as compared to that
of the recently reported non-precious electrocatalyst (Figure 4b,c and Table S2). The OER
kinetics of the as-prepared electrocatalysts was assessed using a Tafel plot (Figure 4d),
which delivered an impressive Tafel slope of 60 mV dec−1 for NixSy-5, smaller than that
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of the NixSy-3 electrodes (70 mV dec−1) and NixSy-4 (69.9 mV dec−1), as well as NixSy-7
(89.5 mV dec−1), manifesting accelerated kinetics at the NixSy-5 interface.
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Figure 4. The OER performance data of the as-prepared electrocatalysts in 1.0 M KOH. (a) The
polarization curves (iR-corrected) measured with a scan rate of 5 mV s−1; (b) comparison of the
overpotential of as-prepared electrodes at different current densities of 10 mA cm−2, 20 mA cm−2,
50 mA cm−2, and 100 mA cm−2; (c) comparison of the overpotential at 10 mA cm−2 and the Tafel
slope for NixSy-5 with other recently reported electrocatalysts for OER; (d) the corresponding Tafel
curves; (e) the linear plots of the capacitive current versus the scan rate.

The electrochemical surface areas are probed according to the Cdl behaviors for eval-
uating the catalytic efficiency of the catalysts (Figures 4e and S8). The Cdl for NixSy-7
was 6.0 mF cm−2, which was slightly larger than that of NixSy-4 and NixSy-5 (5.4, and
5.5 mF cm−2, respectively), and a considerably increased compared with that of NixSy-7
at 3.9 mF cm−2. The EIS analysis was carried out to assess the electron transfer kinet-
ics, with semicircles related to the charge transfer resistance (Figure S9), in which the
relatively smaller semicircle of NixSy-5 implies the better charge-transfer kinetics at its
electrolyte/electrode interface, thus leading to rapid charge transfer. The OER durability
measurements show that the cathode current did not show a noticeable change, indicat-
ing its outstanding stability (Figure S10). In summary, NixSy-5 is obviously a promising
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alternative OER non-precious metal electrocatalyst, satisfying the high activity criteria for
potential applications in a concentrated alkaline electrolyte, whose activities could rival
many those of other non-precious HER electrocatalysts (Figure 4c and Table S2).
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Figure 5. The overall water splitting performance in 1.0 M KOH. (a) The polarization curves measured
with a scan rate of 5 mV s−1; (b) comparison of the overpotential of the as-prepared electrodes at
different current densities of 10 mA cm−2, 20 mA cm−2, and 50 mA cm−2; (c) a photo image of the
H2 and O2 generated at the cathode and anode in the NixSy-5 electrodes.

Considering the superior catalytic activity of the NixSy-5 electrodes with three-phase
components in the OER and HER processes, an overall water splitting electrolyzer was
constructed, using NixSy-5 for both the anode and cathode, under alkaline conditions.
For comparison, other catalysts with different phase components were applied as the
cathode and anode for overall water splitting in 1 M KOH aqueous solution. The NixSy-5
catalyst provides a water-splitting current density of 10 mA cm−2 at a voltage of only
about 1.48 V (Figure 5a), which is obviously superior to the results for the single-phase-
component NixSy-3 electrodes (1.63 V) and the two-phase-component electrodes of NixSy-4
(1.58 V) and NixSy-7 (1.55 V). When the current density increased to 50 mA cm−2, the
single-phase-component NixSy-3 electrodes, as well as two-phase component electrodes
of NixSy-4 and NixSy-7, were unable to continue for overall water splitting, except for
the NixSy-5 electrode with three-phase components (Figure 5b). For more systematically
demonstrating the water splitting performances of NixSy-5 electrodes, we have selected
three categories for in-depth discussion. First, compared to precious metal-containing
electrocatalysts, the cell voltage of 1.48 V is comparable to those of the best-performing
precious metal-based electrocatalysts reported to date, such as Ru-NiFe-P/NF (1.47 V) [60],
NiFeRu-LDH/NF (1.52 V) [61], and Ru/NiFe LDH-F/NF (1.53 V) [62], and it is obviously
superior to those of the majority of precious metal-based electrocatalysts, i.e., RuTe2-400
(1.57 V) [58], Pt/C-RuO2 (1.67 V) [58], and Ru2Ni2 SNs/C (1.58 V) [63]. Second, in the nickel
sulfide-based electrocatalysts, the water splitting performances of the NixSy-5 electrodes
is surpassed only by several nickel sulfide-based electrocatalysts, such as Mo-NiPx/NiSy
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(1.42 V) [64] and Mo-Ni3S2/NixPy/NF (1.46 V) [65], and is superior to those of the majority
of the corresponding electrocatalysts, i.e., Ni3S2@Ni(II)-TC (1.53 V) [9],V-doped Ni3S2
(1.55 V) [66], and CoS8/Ni3S2 (1.64 V) [67]. Finally, in the all electrocatalysts, the water
splitting performance of the NixSy-5 electrodes is also significantly lower than that of the
majority of the state-of-the-art overall-water-splitting electrocatalysts, such as NiCo2S4
(1.58 V) [68], CoP NFs (1.65 V) [69], and Co3O4 NCs (1.91 V) [70]. The durability of the
NixSy-5 electrolyzer was tested in long-term electrolysis experiments at a cell voltage of
1.5 V, and it exhibited a stable cathodic current with almost negligible degradation for
at least several hours (Figure S11). More importantly, the electrolyzer could be run by a
single-cell 1.5 V AA battery, and numerous gas bubbles were generated on the surface of
two NixSy-5 electrodes, identifying its superior capability for overall water splitting in an
alkaline medium (Figure 5c). Since the voltage for overall water splitting is higher than 1.5 V
for the single-phase component NixSy-3 electrodes, as well as for the two-phase component
electrodes of NixSy-4 and NixSy-7, there is no bubble generation on their surfaces. These
results indicate that the NixSy-5 electrodes could be promising bifunctional electrocatalysts
for water splitting because of the special synergistic effect of their three-phase structure (e.g.,
NiS, Ni3S2, and Ni7S6), which exhibits the best characteristics both in terms of morphology
and internal structure, i.e., uniform rod-like nanoarrays, and the bridged S2

2− ions are
more favorable to catalytic activity in the NixSy-5 electrodes.

4. Conclusions

In summary, by precisely controlling the sulfidation degree in a simple hydrothermal
process, we prepared various composition-dependent nickel sulfides from a single-phase
component to multiple-phase components (i.e., two-phase components and three-phase
components), and further compared the HER and OER performance in a various-phase
nickel sulfide-based system. Due to the higher exposed active surface area, the improved
charge transfer capacity, and the weaker charge-transfer resistance, the NixSy-5 nanoarrays
with three-phase components showed the remarkable performance of HER and OER,
with the overpotentials of 148 and 111 mV, respectively, to deliver the current density
of 10 mA cm−2, exceeding that of the majority of non-noble metal HER electrocatalysts.
Moreover, NixSy-5, applied as both the anode and cathode, yields an impressive water-
splitting current density of 10 mA cm−2 at ≈1.48 V, which is much lower than that of the
state-of-the-art overall-water-splitting catalysts (cell voltages > 1.6 V), thus providing a
cost-effective alternative for noble metal-based catalysts.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/coatings13111938/s1, Figure S1: (a–c) The different magnification
SEM images of NF surface; Figure S2: SEM images of NixSy-2 (a), NixSy-3 (b). The insets exhibit the
corresponding high magnification SEM image, respectively; Figure S3: XPS spectra of the survey
spectrum for NixSy-2 (a), NixSy-3 (b), NixSy-4 (c), NixSy-5 (d), NixSy-6 (e), and NixSy-7 (f), respectively;
Figure S4: XPS spectra of the Ni 2p spectrum for all the as-prepared samples; Figure S5: XPS spectra
of the S 2p spectrum for NixSy-2 (a), NixSy-3 (b), NixSy-4 (c), NixSy-5 (d), NixSy-6 (e), and NixSy-7
(f), respectively; Figure S6: XPS spectra of the O 1s spectrum for NixSy-2 (a), NixSy-3 (b), NixSy-4 (c),
NixSy-5 (d), NixSy-6 (e), and NixSy-7 (f), respectively; Figure S7: CV curves of the NixSy-3 (a), NixSy-4
(b), NixSy-5 (c), NixSy-6 (d), respectively, for HER process; Figure S8: CV curves of the NixSy-3 (a),
NixSy-4 (b), NixSy-5 (c), NixSy-6 (d), respectively, for OER process; Figure S9: The corresponding EIS
plot for NixSy-3 electrode, NixSy-4 electrode, NixSy-5 electrode, and NixSy-7 electrode; Figure S10:
The stability test toward HER at constant current density of 10 mA cm−2 for NixSy-3 electrode,
NixSy-4 electrode, NixSy-5 electrode, and NixSy-7 electrode; Figure S11: Stability test of overall water
splitting at constant current density of 10 mA cm−2; Table S1: Summary of the HER activities of
recently reported non-noble metal-based electrocatalysts; Table S2: Summary of the OER activities of
recently reported non-noble metal-based electrocatalysts; Table S3: Comparison of electrocatalytic
performance of NixSy-5 with recently reported bifunctional electrocatalysts for overall-water-splitting
in alkaline media.
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