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Abstract: The demand for ultra-tight encapsulation solutions with excellent barrier and high confor-
mality properties has increased in recent years. To meet these challenges, thin-film barrier coatings
have emerged as a promising solution. In this study, we investigate well-established silicon-based
plasma-enhanced chemical vapor deposition (PECVD) and metal oxide atomic layer deposition
(ALD) barrier coatings deposited at low temperatures (≤100 ◦C) regarding their abilities to address
high-level 3D encapsulation applications. Various combinations of such layers are evaluated by
measuring the water vapor transmission rate (WVTR) and considering the conformality properties.
The impact and the benefits of the organic film integration, namely parylene VT4 grade, on the barrier
performances is assessed. Among these combinations, parylene-AlOx stack emerges as one of the
most effective solutions, obtaining a WVTR of 3.1 × 10−4 g m−2 day−1 at 38 ◦C and 90% relative
humidity conditions.

Keywords: barrier layer; thin film; parylene; atomic layer deposition; water vapor transmission
rate; conformality

1. Introduction

In recent years, there has been growing demand for high-performance encapsulation
solutions that can provide excellent barrier properties while offering interesting mechanical
properties. Conventional encapsulation solutions, such as metal or glass casings, provide
reliable protection but suffer from certain limitations regarding the potential for the minia-
turization and flexibility of the protective case. One promising approach to address this
challenge is the use of thin-film barrier coatings. These coatings, typically made of alternat-
ing organic–inorganic layers, can provide enhanced protection by combining the unique
properties of both types of materials. Parylenes, or poly-p-xylylene and its derivatives,
are polymeric films deposited at ambient temperature using the Gorham process through
chemical vapor deposition [1]. Due to parylene properties and by combining it with inor-
ganic layers, it is possible to create a conformal, pinhole-free barrier layer with exceptional
barrier properties, even at a low deposition temperature. Water vapor transmission rate
(WVTR) measurement is an essential technique employed in various industries to assess
the barrier properties of materials. WVTR is expressed in units of grams per square meter
per day (g m−2 day−1) and represents the quantity of moisture passing through the test
specimen over a time period and area. Currently, a range of instruments exist to quantify
WVTR, involving various technologies, such as gravimetric evaluation [2], coulometric
testing [3], calcium corrosion [4] and tunable diode laser absorption spectroscopy [5], which
stands out as one of the most sensitive methods, allowing the measurement of WVTR in
the extremely low range of 10−6 g m−2 day−1.
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Micro- and optoelectronics are commonly cited as applications requiring highly confor-
mal thin-film encapsulation solutions. Integrated circuits (ICs) and microelectromechanical
systems (MEMS) devices require encapsulation to protect the sensitive components from
environmental factors such as moisture, oxygen and chemical contaminants, while opto-
electronic devices such as photovoltaic modules, display panels and organic electronic
technologies, including organic light-emitting diodes (OLEDs), need ultra-tight, in the
range of 10−6 g m−2 day−1, transparent and flexible barrier alternatives [6–8]. In addition,
thermally sensitive bioelectronic and biosensor applications demand flexible protection
compatible with low-temperature processes [9–11]. Energy storage and conversion such
as batteries, fuel cells and other energy storage and conversion devices require efficient
thin-film encapsulation to prevent moisture and oxygen penetration into the active materi-
als, which can degrade their performance and reduce their lifespan [12–16]. Cros et al. [17]
demonstrated that, for instance, organic solar cells can be protected with medium bar-
rier materials with a WVTR of around 10−3 g m−2 day−1. Advanced developments in
the biomedical domain involve a barrier coating solution that prevents the interactions
with surrounding tissue, ensuring long-term biocompatibility and enabling the further
miniaturization of implantable devices [18–21].

In this study, we systematically investigated the barrier performances of inorganic
coatings deposited via plasma-enhanced chemical vapor deposition (PECVD) and atomic
layer deposition (ALD). Silicon-based layers and metal oxides were characterized by mea-
suring their WVTR, employing two techniques. For WVTR values up to 10−3 g m−2 day−1,
an electrolytic detection sensor based on a coulometric method was applied, following
the international standard ISO 15106-03 [3]. For lower WVTR values, the diode laser
spectroscopy method was employed; this specific equipment was designed to determine
WVTR for materials with ultra-high barrier properties, enabling the detection of values
down to 10−6 g m−2 day−1. Organic film, fluorinated parylene VT4 grade, deposited
via a low-pressure chemical vapor deposition (LPCVD) process, was then combined with
inorganic layers to build up organic–inorganic stacks, and the benefits in terms of barrier,
mechanical and chemical properties were evaluated. In addition, to assess the conformality,
micro-channel structures on the silicon wafer were manufactured in order to determine the
aspect ratio (AR) of the coatings investigated in this study.

2. Materials and Methods
2.1. Substrate

For the evaluation of the barrier properties, the barrier layers were deposited on two
different substates: polyethylene terephthalate (PET) Melinex Peelable-Clean-Surface (PCS)
grade and polyimide (PI) Kapton HN grade substrate.

2.1.1. PET Melinex PCS Grade Substrate

Firstly, the ultra-clean PET Melinex PCS grade substrate, 125 µm thick, produced
by DuPont Teijin Films™ [22], was employed to measure the WVTR of the barrier layers.
A liner film, protecting the PET substrate, was removed before the deposition in a clean
environment to avoid as much particle contamination as possible. The PET Melinex PCS
substrate, presenting a melting point between 255 ◦C and 260 ◦C, exhibited a WVTR of
6 g m−2 day−1 at 38 ◦C and 90% relative humidity (RH).

2.1.2. PI Kapton HN Grade Substrate

Next, 125 µm thick PI Kapton HN grade substrate, one of the most thermally stable
polymers with a decomposition point around 500 ◦C [23], was used to evaluate the barrier
coating on common substrate. Kapton HN type is the recommended choice for applications
that require a film with an excellent balance of properties over a wide range of temperatures.
The PI film shows a WVTR of 15 g m−2 day−1 at 38 ◦C and 90% RH. The substrate was
cleaned with isopropanol solution and dried with a high-purity nitrogen blow gun before
the deposition processes.
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2.2. Inorganic Layer Deposition
2.2.1. PECVD Silicon Oxide, SiOx

Silicon oxide, SiOx, was deposited via a capacitively coupled plasma (CCP) deposition
using hexamethyldisiloxane (HMDSO) as a silicon-content precursor and oxygen (O2).
CCP deposition was performed in a CX-30 PC deposition system, provided by Coat-X
SA (La Chaux-de-Fonds, Switzerland). Amorphous SiOx was deposited with a flow rate
ratio of 1:10 at a pressure of 36 µbar with a RF power of 50 W applied at 13.56 MHz. The
deposition temperature was maintained at around 30 ◦C, and the layer thickness was set to
160 ± 10 nm to avoid excessive internal stress in the layer.

2.2.2. PECVD Silicon Nitride, SiNx

Amorphous silicon nitride, SiNx was deposited with silane (SiH4) precursor combined
with nitrogen (N2) and ammonia (NH3). Inductively coupled plasma (ICP) deposition was
performed in an Oxford Plasma 80 PECVD system, provided by Oxford Instruments GmbH
(Abingdon, UK). The flow rate ratio was 1:50:1 (SiH4; N2; NH3), and the deposition pressure
was 0.87 mbar. The depositions were achieved at 20 W RF power with a temperature fixed
to 100 ◦C. The layer thickness was again targeted to 160 ± 10 nm.

2.2.3. ALD Metal Oxides

ALD metal oxides were deposited in a FlexAl PE-ALD system in thermal mode provided
by Oxford Instruments GmbH. Fully amorphous aluminum oxide (AlOx), titanium oxide
(TiOx) and hafnium oxide (HfOx) were deposited using, trimethylaluminum (TMA) and
tetrakis(dimethylamino)titanium (TDMAT) and tetrakis(dimethylamido)hafnium (TDMAH),
respectively, as metalorganic precursors. The deposition temperature was set at 100 ◦C, and
the thickness of the layers was set to 45 nm ± 5 nm.

2.3. Organic Layer Deposition

Poly(tetrafluoro-p-xylylene), commonly identified as fluorinated parylene VT4, was
deposited at room temperature using the LPCVD technique based on the Gorham route [1].
The parylene deposition process contained three stages: sublimating the solid dimer into
vapor, disassociating the dimers into monomers and, lastly, condensing the monomers
within the chamber to yield a polymeric film. To ensure a constant pressure of 80 µbar in the
deposition chamber, the sublimation temperature was carefully regulated from 80 to 150 ◦C.
The pyrolysis temperature was set at 700 ◦C to cleave the dimers into monomers. Finally,
the monomers underwent condensation and polymerization within the chamber to form a
polymeric film at room temperature. The parylene film structure was considered to be a
semi-crystalline material showing both crystalline domains and amorphous regions [24,25].
Depending on process parameter, the average molecular weight of the parylene chain
was 2.5 × 105–4 × 105 g mol–1, assuming that the chain ends were uniformly distributed
throughout the film [26]. Parylene VT4 grade, known to possess a superior thermal stability
and a low dielectric constant with values in the range of 2.05–2.35. [27]. As previous
studies have shown, parylene VT4 has a melting point above 400 ◦C, but the polymer
begins to degrade above 300 ◦C [24,28]. The decomposition temperature was found to be
between 495 ◦C and 510 ◦C [24,27]. Compared to parylene N grade, the basic parylene form
consisting of a linear carbon–hydrogen molecule structure, parylene VT4 grade incorporates
fluorine atoms in the aromatic sites. The chemical structures of parylene N and parylene
VT4 grades are illustrated in Figure 1a,b, respectively.

Parylene film was deposited in a CX-30 PC hydride machine, able to deposit inorganic
layers via CCP, provided by Coat-X SA. Before the deposition of a 2 ± 0.2 µm thick parylene
film, an adhesion promoter, namely methacryloxypropyl trimethoxysilane (A-174), was
evaporated for 3 min in the chamber.
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Figure 2. Illustrations of the micro-channel structures on silicon wafer for the conformality investi-
gations: (a) top view of the structure comprising the micro-channel and the cavity in front of them; 
(b) lateral cut view of the 50 µm channels etched in a silicon wafer and covered with a glass slide. 
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Figure 3. Silicon wafer micro-channel structures after deposition: (a) SiOx (160 nm) deposited via 
PECVD; (b) AlOx (45 nm) deposited via ALD; (c) parylene film (605 nm) deposited via LPCVD. 

Figure 1. Chemical structure of (a) parylene N grade, the basic form of parylene, consisting of a linear
carbon–hydrogen molecule structure, and (b) parylene VT4 grade incorporating fluorine atoms in
the aromatic sites.

2.4. Characterization Method

The water vapor transmission rate (WVTR) was determined using two different
methods but applying the same measurement conditions: a temperature of 38 ◦C and
a relative humidity of 90%. The measurements, in which each layer combination was
measured at least three times (n ≥ 3), were performed by Coat-X SA in collaboration with
the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology
(FEP), Dresden. In addition to WVTR measurements, conformality investigations were
conducted to evaluate the ability of parylene and inorganic layers to fill in cavities.

2.4.1. Conformality Investigation

To assess the conformality of the coatings investigated in this study, micro-channel
structures on silicon wafer were manufactured using the standard lithography process.
These micro-channels, measuring 50 µm in depth and width, were etched onto the silicon
wafer. Subsequently, a covering glass slide was placed atop the wafer during the deposition
process to enclose the channels, resulting in the formation of micro-channels. An open
cavity positioned at the termination of the channel ensured channel entrances. Figure 2
illustrates the micro-channel structure on silicon wafer, both seen from above (Figure 2a)
and with a lateral cut (Figure 2b). Additional materials can be found in the Appendix A.
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By examining these structures, we derived a lateral aspect ratio for the coatings.
To quantify this aspect ratio, the penetration length of the coating was measured. This
measurement then allowed us to calculate the aspect ratio (AR) using the following formula:

AR =
penetration length

channel width
, (1)

2.4.2. WVTR Electrolytic Detection Method

WVTR measurements were conducted, in accordance with international standard
ISO 15106-03, using a water vapor permeability (Wasserdampf-Durchlässigkeits, WDDG,
Munich, Germany) instrument containing an electrolytic detection sensor provided by
Brugger Feinmechanik GmbH (Munich, Germany). The sample, with a diameter of 15 cm,
was placed in a test cell consisting of a dry chamber and a controlled humidity chamber. The
controlled humidity chamber maintained a constant water vapor pressure using a sulfuric
acid solution. The sample, with the coated side facing the dry chamber, was exposed to a
dry nitrogen carrier gas. The water vapor permeating through the sample was transported
by the carrier gas to the electrolytic cell. By applying a DC voltage, the water vapor in
the carrier gas was electrolytically decomposed into hydrogen and oxygen. The mass of
the permeating moisture per time interval was determined by analyzing the electrolytic
current and dividing it by the area of the test specimen. The water vapor transmission rate
was calculated using the following equation:

WVTR =
I
A

8.067, (2)

where WVTR (g m−2 day−1) is the water vapor transmission rate of the specimen, ex-
pressed in grams per square meter and per day; A (m2) is the transmission area of the
test specimen in square meter; I (A) is the electrolytic current in amperes; and 8.076 is the
instrument constant.

2.4.3. WVTR Diode Laser Spectroscopy Method

For lower WVTR values, diode laser spectroscopy method was employed. The Hi-
BarSens equipment, provided by the company Sempa GmbH (Dresden, Germany), was
developed for the determination of water vapor permeation rates of an ultra-high barrier
material, which allowed detection until 10−6 g m−2 day−1. The 20 cm diameter sample
divided the system into two parts. On the upper side, a defined water vapor concentration
was generated at a set temperature. The measurement chamber where a tunable diode laser
could quantitatively determine the permeated moisture concentration was located below
the sample. The detection method was single-line absorption spectroscopy. The variation
in the intensity due to absorption of the water vapor molecules between the transmitter
and receiver gave direct and absolute measurements for water vapor permeation rate. The
water vapor transmission rate was calculated using the following equation:

WVTR =
cQN2P MH2O
A R T (1 − c)

, (3)

where WVTR (g m−2 day−1) is the water vapor transmission rate of the specimen, expressed
in grams per square meter and per day; c (ppm) is the concentration of water; QN2 (sccm)
is carrier gas flow rate; P (Pa) is the pressure; MH2O (g mol−1) is molar mass of water
molecule; A (m2) is the area of the test sample; R (J mol−1 K−1) is the gas constant; and T
(K) is the measurement temperature.
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3. Results and Discussion
3.1. Conformality

Figure 3 illustrates the penetration ability of PECVD SiOx (Figure 3a), ALD AlOx
(Figure 3b) and LPCVD parylene VT4 (Figure 3c) layers in micro-channels, measuring 50 µm
in depth and width. Inorganic PECVD and ALD layers were deposited at 160 nm and 45 nm,
while the parylene film was made to be 605 nm thick to determine the optical interferences.
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Optical microscopy imaging allowed us to measure the penetration length and hence
determine the lateral aspect ratio (AR) of each coating. The SiOx layer deposited via PECVD
exhibits a penetration length of about 0.08 mm, corresponding to an AR of 1.6:1. On the
other hand, the AlOx layer grown using ALD demonstrates a penetration length of 1.6 mm,
resulting in an AR of 32:1. Similarly, the parylene film displays a penetration length of
approximately 1.7 mm, yielding an AR of 34:1.

Table 1 presents a summary of the measured penetration abilities, alongside their
corresponding ARs. Additionally, comparative AR values are provided from the existing
literature. An important contrast emerges between PECVD SiOx and ALD AlOx layers,
as the ALD technique shows a penetration ability that is 20 times higher than that of the
PECVD technique. The existing literature supports the notion that PECVD layers typically
exhibit an AR approaching a maximum of 2:1 [29,30]. In contrast, ALD processes are
known for yielding higher ARs compared to PECVD, a characteristic also confirmed via
our measurements. For instance, Gabriel et al. [31] documented an AR of 38:1 for AlOx
deposited using ALD techniques, while a higher equivalent AR can be achieved if a higher
process temperature is used [32,33]. Kim et al. [34] indicated that thermal ALD oxide layers
deposited at 200 ◦C can display an AR of 200:1. Parylene films, in particular parylene C
grade, have been investigated for applications involving high ARs [35–37]. Suzuki et al. [38]
indicated that an AR ranging from 10:1 to 20:1 was achievable with parylene C. Confirming
parylene’s VT4 conformal properties is difficult since this grade has been synthesized quite
recently compared to the other types, and related studies are rare. However, a fluorinated
parylene variant, known as parylene AF4, has exhibited exceptional promise, with an
equivalent AR higher than 78:1 [39]. This variant is known for its superior penetration
abilities, outperforming other parylene types in this regard.
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Table 1. Summary of the penetration length measured for each coating and the corresponding AR.
Equivalent AR values provided by the literature are also presented.

Coating Penetration Length [mm] AR in this Study AR in the Literature

PECVD SiOx 0.08 1.6:1 2:1 [29,30]
ALD AlOx 1.6 32:1 38:1 [31]
LPCVD Parylene VT4 1.7 34:1 -

3.2. PECVD SiOx and SiNx Barrier Layers

Figure 4 provides a schematic representation of the different layer combinations
evaluated for WVTR measurements. PECVD silicon-based inorganic layers exhibited a
thickness of 160 ± 10 nm, while the parylene films displayed a thickness of 2 ± 0.2 µm,
deposited on PET Melinex PCS substrate, 125 µm thick.
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Figure 4. Three combinations investigated regarding WVTR measurements: PECVD single layer,
SiOx and SiNx as single layers, PECVD multilayer, combinations of SiOx and SiNx layers and a
Parylene-PECVD multilayer where the inorganic layer is encapsulated by parylene films.

Figure 5 presents WVTR values of SiOx and SiNx, abbreviated as SO and SN, re-
spectively, of the combination illustrated in Figure 4. WVTR values for SiOx and SiNx,
as monolayers, are limited to 1.8 × 10−2 g m−2 day−1 and 4 × 10−3 g m−2 day−1, re-
spectively. To increase the barrier performances, the combination of PECVD layers is
necessary. The bilayer combination SiOx/SiNx greatly decreases the WVTR value, reaching
9 × 10−4 g m−2 day−1, while an additional layer of SiOx does not improve the barrier
properties, obtaining a WVTR of 1.5 × 10−3 g m−2 day−1. Finally, the encapsulation
in a parylene (Px) “sandwich” of SiOx and SiNx monolayers yields WVTR values of
7 × 10−3 g m−2 day−1 and 2 × 10−3 g m−2 day−1, respectively.

Our results have shown that the combination of two or more PECVD layers greatly
improves the barrier performances compared to a single layer. These results can be ex-
plained by the fact that water diffusion through PECVD layers is mainly governed by the
presence of pinhole defects [40–42]. In consequence, the superposition of PECVD layers
decouples the defects existing in the previous layer and hence significantly enhances barrier
properties by blocking the diffusion through preceding layer defects. The main advantages
of using PECVD layer combinations for barrier solutions are the high deposition rate (i.e.,
about 20 nm/min) combined with a large-scale deposition capability and a low deposition
temperature compatibility compared to the common CVD process. However, SiOx and
SiNx PECVD layers have limited conformality due to the directionality of the deposition
technique [43]; conformality investigations, as presented above, and previous studies have
indicated that similar layers exhibit an aspect ratio of approximately 2:1 [29,30]. Further-
more, the addition of PECVD layers to form an inorganic multilayer solution increases
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the internal stress formation in the stack, which can lead to failures such as warping, de-
lamination and even cracks [44]. This reason could explain why the trilayer SO/SN/SO
does not show better barrier properties than those of the bilayer SO/SN. In addition, the
superposition of inorganic layers reduces the flexible and stretchable properties of the
barrier stack [45]. To avoid these limitations, a polymeric film made of fluorinated parylene
VT4 was integrated to build up organic–inorganic combinations. Parylene encapsulation
has a favorable effect on SiOx and SiNx single layers, having a WVTR improvement factor
of 2.6 and 2, respectively, even if the parylene VT4 itself exhibits poor WVTR behavior,
i.e., 72 g m−2 day−1 for a 4 µm thick film [24]. The parylene film on top of the stack also
has the advantage of increasing the mechanical robustness and hence avoiding the scratch
deterioration of the PECVD layers through handling or wear and tear. Finally, the first
parylene film acts as a stress-releasing layer, which helps to avoid defect site formation and
hence permits the buildup of robust a parylene-PECVD multilayer stack [19].
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Figure 5. WVTR values of PECVD SiOx and SiNx, abbreviated as SO and SN, respectively, as a single
layer, in combination with a PECVD inorganic multilayer and fully encapsulated by parylene films
(Px) as an organic–inorganic multilayer.

3.3. ALD Metal Oxide Barrier Layers
3.3.1. WVTR Results on PET Melinex PCS Substrate

Figure 6 illustrates the combination categories, containing ALD metal oxides and
PECVD silicon oxide in association with parylene films, as assessed through WVTR mea-
surements. Silicon-based and parylene layers exhibited a similar thickness, as described in
Section 3.1, while ALD metal oxides demonstrated a thickness of 45 ± 5 nm. All the coat-
ings were again deposited onto an ultra-clean PET Melinex PCS substrate with a thickness
of 125 µm.
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Figure 7 shows the WVTR values of aluminum oxide, AlOx (A), deposited via thermal
ALD as a monolayer, combined with other oxides and parylene. The ALD Multilayer cate-
gory combines AlOx with other ALD metal oxides, such as titanium oxide (T) and hafnium
oxide (H), while the PECVD Multilayer group combines SiOx (SO) and SiNx (SN) with AlOx.
The AlOx layer directly deposited onto the PET Melinex PCS substrate yields a limited
WVTR of 2.2 × 10−2 g m−2 day−1, while the encapsulation of AlOx with other ALD oxides
is not sufficient to improve the WVTR. In contrast, the combination with silicon oxide layers
appears to be highly beneficial. Indeed, the inorganic trilayer SO/A/SO demonstrates
an excellent WVTR value of 2.4 × 10−4 g m−2 day−1. Finally, the last group evaluates
the integration of parylene films in combination with AlOx to form bilayers and a fully
parylene encapsulated structure. The results indicate that the integration of parylene film
greatly improves the WVTR value for the bilayer A/Px and trilayer Px/A/Px, indicating a
WVTR 3.1 × 10−4 g m−2 day−1 and WVTR of 4.3 × 10−4 g m−2 day−1, respectively.

ALD oxides, as single layers or multilayers directly deposited onto the substrate,
reveal barrier performance limitations. Indeed, AlOx alone or encapsulated by TiOx or
HfOx do not exhibit WVTR values under 10−2 g m−2 day−1. In contrast, the PECVD-
ALD combinations show important improvement compared to the respective single layers.
Two hypotheses can explain those results: Firstly, ALD single layers and multilayers have
poor WVTR due to their limited robustness. Indeed, ALD layers with a thickness less
than 50 nm can be damaged or degraded through handling or during measurements. The
second hypothesis states that the permeability of PECVD layers is limited by defects, and,
thus, the combination with AlOx allows it to fill in pinholes and/or nanocrack defects
due to its important conformality and high-aspect-ratio properties [33,34,46]. As shown,
the PECVD-ALD combination greatly improves the barrier performance; nevertheless,
this solution introduces limitations regarding the conformality due to the directionality
of the PECVD process. To overcome this limitation, AlOx is combined with parylene
VT4 film, which is a highly conformal, uniform and pinhole-free coating [47]. The bilayer
Px/A shows that using a parylene interlayer between the substrate and the AlOx does not
increase the barrier performance. In this case, PET Melinex PCS substate can be considered
as an ideal substrate due to its highly clean and particle-free surface. On the other hand,
the bilayer A/Px demonstrates a great WVTR improvement and validates the requirement
of AlOx to be capped by an additional layer to prevent its chemical and/or mechanical
degradation. Parylene film can act as a mechanical protection against scratches and the
deterioration of the ALD layers, which can occur during the handling or measurement
steps. Furthermore, parylene, known for having excellent ionic barrier properties, can be
considered as a chemical protective coating against AlOx hydrolysis [48]. Indeed, AlOx
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deposited via ALD can manifest chemical instability and be prone to easy dissolution
through hydrolysis when directly exposed to aqueous solutions [49–52]. The results of the
bilayer A/Px and the trilayer Px/A/Px tend to confirm that the capping parylene layer is
necessary to maintain and preserve high barrier performance given by the AlOx layer.
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Figure 7. WVTR values of ALD aluminum oxide, AlOx (A), as single layer, in combination with
others ALD and PECVD oxides and, finally, with parylene films (Px). The highly conformal and
uniform bilayer A/Px exhibits a WVTR 3.1 × 10−4 g m−2 day−1, which is extremely attractive for
complex 3D geometry encapsulation.

3.3.2. WVTR Results on PI Kapton HN Substrate

Similar to the results shown above, Figure 8 displays, on the hatched columns, the
WVTR results of AlOx on the PI Kapton HN substrate in comparison to the previously
presented results on the PET Melinex PCS substrate. The two combinations on the PI
substrate, namely the bilayer AlOx/parylene and the trilayer parylene/AlOx/parylene,
exhibit WVTRs of 1.2 × 10−2 g m−2 day−1 and 7.6 × 10−4 g m−2 day−1, respectively.

The blue light columns indicate that only adding a capping layer is no longer enough
to achieve a low WVTR on a PI substrate, which can be considered as common and non-
ideal compared to the ultra-clean PET Melinex PCS substrate. In this case, AlOx has
to be fully encapsulated by parylene film in order to reach a comparative WVTR value,
as exhibited by the bilayer AlOx/Parylene on the PET substrate. On the PI substrate,
the first parylene layer can be considered as an interlayer between the substrate and the
AlOx, which smooths the asperities and encapsules the possible particles present on the
substrate. Therefore, incorporating a first layer of parylene provides a way to regulate
surface properties prior to ALD deposition and potentially offers a protection solution that
is not dependent on the substrate surface condition, thus enabling its application on diverse
materials. Finally, as mentioned before, the capping parylene layer can be considered to
be an essential mechanical and chemical protective layer, as it is necessary to preserve the
barrier properties of AlOx.
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Figure 8. Parylene-AlOx combination comparisons on two different substrates: clean polyethylene
terephthalate (PET) Melinex PCS grade and common polyimide (PI) Kapton membrane. The ALD
AlOx barrier layer has to be fully encapsulated by parylene films on a non-ideal substrate (PI) to reach
a WVTR value in the range of 10−4 g m−2 day−1, being an encapsulation solution that is potentially
not dependent on the substrate’s surface condition.

As demonstrated by the results, the combination of ALD with parylene offers several
benefits. Firstly, it can significantly enhance the barrier properties of the ALD layer, thereby
improving its overall performance as a protective coating. Additionally, the use of parylene
with ALD results in excellent conformality, as well as high flexibility and stretchability, mak-
ing it suitable for applications in which the coated substrate is subject to mechanical stress
or deformation. Moreover, the obtained WVTR values, measured over a large area (approx-
imately 150 cm2), provide a comprehensive assessment of the global barrier performance,
in contrast to intrinsic WVTR values, which exclude the pinhole or defect contributions, as
often stated in the literature. Furthermore, the use of this combined technique can provide
a solution that is effective on common substrates, which are typically more challenging
to coat due to their variable surface properties. Overall, the use of ALD barrier layers
with parylene represents a promising approach for achieving enhanced barrier properties,
improved conformality and increased flexibility, all while being applicable to a wider range
of substrates. This solution is also compatible with the superposition of parylene-AlOx
layers, building up multiple dyad structure, thereby achieving higher barrier performance.
For further flexibility-related studies, optimizing the number of layers in a multilayer, as
well as the thickness of both organic and inorganic layers, while maintaining excellent
barrier properties, would be of great interest.

To complete the discussion, the following paragraph provides some considerations
regarding the effect of temperature on ALD depositions in term of layer properties. When
comparing depositions conducted at 100 ◦C to those performed at lower temperatures,
several important insights can emerge. Firstly, lower temperatures can lead to the decreased
mobility of precursor molecules and affect their distribution during the deposition process,
reducing film uniformity and conformality. Consequently, achieving high uniformity and
conformality becomes more challenging. Moreover, a reduced temperature necessitates an
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extension of the process’ duration due to the need for longer exposure and purge times.
Those adjustments are essential to prevent the overlapping of the exposure and purge
steps, thereby avoiding a continuous deposition mode, similar to common CVD processes.
Low deposition temperatures can give rise to inefficiencies in the purging process, decel-
erating the desorption rate of precursors from the surfaces [53]. This effect is particularly
pronounced when considering TiOx layers, deposited via the TDMAT precursor, where the
process duration can become extremely long, making them difficult to implement in indus-
trial processes. In addition, with temperatures under 100 ◦C, the chemical composition of
the oxide layers tends to be affected, and oxygen-rich films were obtained with a lower mass
density and higher hydrogen content [54]. This phenomenon is reinforced by the findings
of Verlaan et al. [55], showing a reduction in the hydrogen content of AlOx film from 13 at.%
at 50 ◦C to under 1 at.% at 400 ◦C, while the mass density increases from 2.6 to 3.1 g cm−3

in the same temperature range. This modified composition can significantly impact the
oxidation characteristics and overall chemical stability, potentially leading to hydrolysis
or other forms of degradation over time. Moreover, although Ylivaara et al. [56] noted
no significant impact of deposition temperature on AlOx adhesion performance between
110 ◦C and 300 ◦C, it is plausible that reducing the deposition temperature below 100 ◦C
could yield weaker adhesion and reduced interface quality. Additionally, the lower energy
available at lower temperatures could impact the energetic processes that typically facilitate
robust bond formation. These alterations in uniformity and chemical composition influence
the barrier properties of the film. Supported via WVTR measurements of AlOx single
layers deposited at 100 ◦C and 40 ◦C, a decrease in hermeticity by a factor of about 10 was
demonstrated during this study.

4. Conclusions

This study systematically investigated the barrier properties of well-established barrier
layers: silicon-based and metal oxide layers deposited via PECVD and ALD at low tempera-
tures (≤100 ◦C). To improve the barrier performance, fully inorganic and organic-inorganic
combinations were evaluated. PECVD multilayers reached excellent WVTR values in the
low 10−4 g m−2 day−1 range; however, this technique presents some weaknesses in terms
of allowing the effective encapsulation of complex 3D components or systems. To overcome
those limitations, parylene-AlOx solutions were combined to build up an organic–inorganic
stack, demonstrating excellent conformality and resulting in WVTR values of close to
10−4 g m−2 day−1, with only one inorganic dyad. In conclusion, the combination of ALD
metal oxide layers with parylene showed great promise in terms of achieving superior
barrier properties and improved conformality while proving to be highly compatible with
commonly used non-ideal substrate materials. This approach is particularly effective for
high-performance 3D encapsulation applications, making it an ideal solution for use in
such cases.
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Appendix A

Figure A1 shows micro-channel structures on silicon wafers fabricated using a stan-
dard lithography process, used to assess coating conformality. Four different channel
widths, namely 50, 100, 200 and 400 µm, all measuring 50 µm in depth, were manufactured
on four-inch p-type silicon wafers (100). Prior to the deposition process, a covering glass
slide was placed on the wafer to surround the channels, while an open cavity at the end of
the channel ensured channel entry. In this study, only the coating penetration lengths in
the 50 µm deep and wide channels were reported in order to calculate the AR.
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Figure A1. Silicon wafer micro-channel structures before deposition: (a) overall view of the four
channel types; (b) partial view of the channel group showing the different widths (50, 100, 200 and
400 µm).
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