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Abstract: Sustainable and renewable energy technologies have attracted significant attention for
reducing greenhouse emissions in the shift from fossil fuels. The production of green hydrogen from
water electrolysis is considered an environmentally friendly strategy for a decarbonized economy.
We examine the activities of the hydrogen and oxygen evolution reactions (HER and OER) using spin-
coated thin-film electrodes with Pt/C and IrO2 nano-electrocatalysts under acidic conditions. The
nano-electrocatalysts are characterized using scanning electron microscopy (SEM), X-ray diffraction
(XRD), and atomic force microscopy (AFM). The electrocatalytic activities of nanoscale Pt/C and
IrO2 are close to those of commercial Pt/C and superior to commercial IrO2, resulting in improved
overall water splitting performance. Furthermore, the OER kinetics analysis using the IrO2 electrode
is conducted using EIS measurements with distribution of relaxation time (DRT) analysis, resulting
in a comparable exchange current density to that from the Tafel slope method (6.7 × 10−2 mA/cm2

versus 5.1 × 10−2 mA/cm2), demonstrating the validity of the kinetics analysis. This work provides a
general strategy for preparing novel and highly active OER electrode materials for water electrolysis.

Keywords: water electrolysis; thin films; kinetic analysis; electrochemical impedance spectroscopy

1. Introduction

Green hydrogen production is considered a significant solution for achieving net-zero
greenhouse gas emissions, as hydrogen is the cleanest energy carrier for transportation and
industry [1]. Green hydrogen is mainly produced using water electrolyzers powered by
renewable energy. Because the performance of water electrolysis devices is limited by the
ohmic drop and the overpotential [2,3], developing novel efficient electrocatalysts for the
hydrogen and oxygen evolution reactions (HER and OER) with low ohmic drop and over-
potential is pivotal [4–8]. Furthermore, designing novel, highly efficient electrocatalysts
with acid tolerance is also vital for proton exchange membrane (PEM) water electrolysis [9].
For the HER, protons in the solution are transferred to the electrode surface to combine
with electrons, producing hydrogen [6]. Although platinum-based catalysts (i.e., Pt/C) are
the most active HER electrode materials in water electrolysis, their high cost and limited
abundance have hindered large-scale applications. For the OER, the characteristics of
the four-electron transfer and the complex electrocatalytic process [10–13] significantly
affect conversion efficiencies. Iridium-based electrocatalysts (i.e., IrO2) are widely used
due to their high OER activity and bifunctionality [14–20]. Accordingly, developing highly
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efficient OER electrode materials has attracted significant attention due to their sluggish
reaction kinetics [21,22]. Numerous studies have been conducted to elucidate the reaction
mechanisms of water splitting at electrode surfaces [23–25]. Simulating reaction kinetics for
estimating kinetic parameters is essential for investigating the reaction process and electro-
catalytic activities [26]. Typically, the Tafel extrapolation method is applied by determining
the exchange current density (j0) of the OER through Tafel plots (η = a + b · log(j)) [27],
where η, b, and j are the overpotential, the Tafel slope, and the current density, respectively.
On the other hand, Costa et al. reported an OER kinetic analysis of a lead (Pb) electrode
using electrochemical impedance spectroscopy (EIS) [28]. Lu et al. then applied the ap-
proach to obtain OER kinetic parameters with microkinetic modeling on a rhodium (Rh)
electrode [26]. In this study, nanoscale IrO2 electrocatalysts were synthesized to verify
their applicability in water electrolysis with nano-sized Pt/C. We applied the spin-coating
method to attain reproducible electrochemical activities of the as-synthesized Pt/C and
IrO2 on fluorine-doped tin oxide (FTO) glass substrates owing to their reasonable electrical
conductivities and excellent stability in acidic media [29,30]. Kinetic analysis using electro-
chemical impedance spectroscopy (EIS) is a powerful tool to investigate the fundamental
mechanisms and kinetics of electrochemical reactions at electrode/electrolyte interfaces.
Then, to experimentally understand the OER kinetic process and parameters of nanoscale
IrO2 electrode materials, EIS measurements with the equivalent electrical circuit (EEC)
analysis were conducted [26]. Furthermore, the distribution of relaxation time (DRT) analy-
sis was also used to investigate the contribution of the impedance of the electrochemical
process evolution on the OER electrode surfaces [31,32]. In particular, we found that the
exchange current density obtained from the EIS-based kinetic analysis agrees well with that
from the Tafel slope method. This study supports the validity of the microkinetic model for
OER processes [26].

2. Experimental Details
2.1. Electrocatalyst Synthesis and Fabrication of Thin-Film Electrodes

PtCl4 (99.9%, Alfa Aesar, Ward Hill, MA, USA), (NH4)2(IrCl6) (99%, Sigma-Aldrich,
Burlington, MA, USA), NaNO3 (99.5%, Alfa Aesar, Ward Hill, MA, USA), 0.1 M HClO4
(Acros Organics BVBA, Geel, Belgium), 5 wt.% Nafion solution (Sigma-Aldrich, Burlington,
MA, USA), and Vulcan XC-72 (Cabot Corporation, Boston, MA, USA) were used without
further purification. Fuel-cell-grade Pt/C (20 wt.%, Fuel Cell Store, Bryan, TX, USA) and
IrO2 (99%, Alfa Aesar, Ward Hill, MA, USA) were used as active benchmark electrocat-
alysts for the HER and OER. Carbon-supported Pt electrocatalysts (20 wt.% Pt/C) were
synthesized based on a previous approach [33]. The precursor Pt salt (50.5 mg of PtCl4) was
mixed with carbon blacks (Vulcan XC-72) in 50 mL of acetone (99.5%, Anaqua Chemical
Supply, Houston, TX, USA) and stirred for 1 h, followed by a 30 min ultrasonication and
drying at 50 ◦C on a hot place with stirring. Then, dried samples were annealed at 600 ◦C in
15% H2/Ar for 2 h. Also, nanoscale IrO2 powders were prepared using a modified Adams
fusion method [34]. An amount of 206.7 mg of (NH4)2(IrCl6) was dissolved in 6.7 mL of
isopropyl alcohol (IPA) (99.5%, Anaqua Chemical Supply, Houston, TX, USA) and stirred
for 30 min, followed by adding NaNO3 powders to the solution with an additional 30 min
stirring with a weight ratio of NaNO3/(NH4)2(IrCl6)~10 [34]. The effective removal of
potential contaminants (i.e., NaCl) was verified in previous studies [34,35].

Then, samples were filtered using Isopore membrane filters (Millipore, MA, USA)
with a pore size of 0.4 µm. Collected samples were dried in an oven for 30 min at 110 ◦C
and calcined in a tube furnace (Thermo Scientific, Lindberg Blue M, Waltham, MA, USA)
for 2 h at 350 ◦C in air. The collected samples were then washed via filtration with
~1.5 L of deionized (DI) water to remove impurities (i.e., unreacted precursor salts). IrO2
nanoparticles were dried in an oven for 2 h at 100 ◦C before characterization. As shown
in Figure 1, thin-film electrodes were prepared via the spin-coating method on fluorine-
doped tin oxide glass substrates (FTO, ~400 nm and 1 cm × 2 cm). FTO substrates were
first consecutively cleaned in an ultrasonic bath of acetone, IPA, ethanol, and DI water
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for 5 min, then dried in an oven and subjected to UV ozone treatment for 20 min. A
catalyst ink was prepared by mixing 3 mg of catalyst powders with 300 µL of IPA solution
(volume ratio of DI water/IPA = 3) and 50 µL of 5 wt.% Nafion solution, followed by a
40 min ultrasonication in an ice bath. An amount of 10 µL catalyst ink was placed on an
FTO substrate at 500 rpm for 30 s using a spin coater in a fume hood. An active area of
5 mm × 5 mm was set using a chemical-tolerant tape. The thin-film samples were dried in
an oven at 70 ◦C for 30 min and then air-dried in a fume hood for 1 h.
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Figure 1. Schematic of the preparation process of thin-film electrodes on an FTO-coated glass
substrate using spin-coating.

2.2. Materials’ Characterization

Surface morphologies of the Pt/C thin film spin-coated on FTO were observed using
scanning electron microscopy (SEM, Zeiss Gemini 450, Jena, Germany) operated at an
acceleration voltage of 10 keV and atomic force microscopy (AFM, Bruker Innova, MA,
USA) in tapping mode. X-ray diffraction (XRD, Brucker D8 DISCOVER, Billerica, MA, USA)
with Cu Kα radiation (λ = 0.154184 nm) was applied to analyze as-prepared electrocatalysts
(Pt/C and IrO2). Electrochemical measurements were conducted using a potentiostat (SP-
150e, BioLogic, Seyssinet-Pariset, France) with a typical three-electrode system in a 0.1 M
HClO4 electrolyte. In this study, an Ag/AgCl (3 M NaCl) reference electrode was used
to measure potentials, which were converted to the reversible hydrogen electrode (RHE)
scale using VRHE = V(Ag/AgCl) + pH × 0.059 + 0.209, where V(Ag/AgCl) is the measured
potential against the Ag/AgCl reference electrode [36]. A graphite rod was used as a
counter electrode to avoid the influence of HER on the Pt coil owing to the electrochemical
dissolution–deposition process of Pt [37]. Electrocatalysts were always conditioned using
cyclic voltammetry (CV) cycling at 20 mV/s until they turned stable. Also, we evaluated
the double-layer capacitance (Cdl) using scanning CVs at different scan rates (10, 25, 50, 75,
and 100 mV/s) in a non-Faradaic OER potential range. The electrolyte solution was H2- and
O2-saturated for HER and OER measurements to remove the excess gas from the electrolyte.
iR-corrected polarization curves [38] were obtained using linear sweep voltammetry (LSV)
at a scan rate of 5 mV/s. To examine the OER kinetic process, electrochemical impedance
spectroscopy (EIS) was conducted from 1 MHz to 50 mHz with 5 mV sinusoidal amplitude
with six data points per frequency decade at current densities of 2, 4, 6, 8, and 10 mA/cm2.

3. Results and Discussion
3.1. Characterization of Thin-Film Electrodes

Figure 2a,b demonstrate surface morphologies of the Pt/C thin film using SEM. The
thin-film morphology confirms that the spin-coating method provides a good dispersion
of Pt/C on FTO, exhibiting a microporous structure. Figure 2c shows an AFM image of
the Pt/C thin film whose morphology is similar to that produced using SEM (Figure 2b).
The roughness value (Rq = 65.2 nm) illustrates a high active area of the thin-film electrode,
potentially leading to good HER activities, as reported [39,40]. The surface wettability
of electrocatalysts was examined using a homemade contact angle measurement tool
with a high-resolution camera by dropping 5 µL of DI water on the thin-film electrodes
(0.5 cm × 0.5 cm) [41]. As displayed in Figure 2d, the contact angles of 134.2◦ (IrO2) and
137.9◦ (Pt/C) indicate the hydrophobic behavior of the electrode materials on FTO [40],
ensuring the low interaction of the generated gas bubbles [42,43]. Figure 2e shows the
XRD patterns of the as-synthesized IrO2 and Pt/C nanoparticles. The XRD analysis of IrO2
verifies a rutile structure with an amorphous phase [44] without metallic iridium impurities.
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The diffraction peaks of 39.7◦, 46.2◦, and 67.6◦ of Pt/C are assigned to the (111), (200), and
(220) planes of the face-centered cubic (fcc) [45–48]. The Pt/C sample annealed at 600 ◦C in
15% H2/Ar exhibits sharp and intense peaks caused by increased crystallization [49]. The
peak observed around 24.5◦ in the XRD patterns is attributed to the graphitic (002) plane of
Vulcan XC-72 [50]. The average crystallite sizes (D) of Pt and IrO2 were calculated to be
13.0 and 2.2 nm using the Scherrer equation (Equation (1)) [34].

D =
Kλ

βcosθ
(1)

where β is the full-width half maximum value, θ is the Bragg angle, K is the Scherrer
constant (0.9), and λ is the wavelength of the incident X-ray. Nanosized electrode materials
improve electrochemical activities due to their large surface area and high electrochemical
surface area (ECSA) [51–53]. It is noted that according to recent studies [54,55], structural
parameters (i.e., dislocation density and lattice strain) can be correlated with the particle
size, affecting catalytic activities.
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Figure 2. (a,b) SEM images at different magnifications and (c) AFM image of the Pt/C thin-film
electrode on FTO. (d) Contact angles of IrO2 and Pt/C on FTO. (e) XRD patterns of IrO2 and
Pt/C powders.

3.2. Electrochemical Properties of Thin-Film Electrodes

As described, the electrocatalyst inks of Pt/C and IrO2 were spin-coated on FTO to
evaluate the HER and OER activities in 0.1 M HClO4. As mentioned, homogeneous and
wettable electrode surfaces led to reproducible electrochemical measurements. Shown
in Figure 3a are iR-compensated LSV measurements for the HER using the commercial
and as-prepared Pt/C. Figure 3a demonstrates that the geometrical activity for Pt/C is
close to that of commercial Pt/C, resulting in overpotentials of 71.3 and 73.8 mV at a
current density of 10 mA/cm2. As summarized in Figure 3b, their corresponding Tafel
slopes are 39.9 and 40.9 mV/dec. Also, the overpotentials and the measuring environment
are compared with those in the literature (Table S1 [56–64]). It is noted that most Pt
exists with the oxidation state of Pt0 under the (HER) conditions. Previous XPS studies
demonstrated that active Pt nano-electrocatalysts can also exist as Pt2+ (PtO or Pt(OH)2)
and Pt4+ (PtO2) [65,66]. Then, IrO2 electrode materials were investigated under the same
acidic conditions [67]. Vulcan carbon (XC-72) was used to prepare IrO2 catalytic inks
with 20 wt.% loading to enhance the conductivity. Figure 3c shows the OER polarization
curves of IrO2-based electrodes. The overpotentials of the as-prepared and commercial
IrO2 at 10 mA/cm2 are 371.7 and 483.8 mV. Their corresponding Tafel slopes are 178.4 and
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202.7 mV/dec (Figure 3d), demonstrating the superior OER performance of the as-prepared
IrO2 compared with that of commercial IrO2 due to its hydrous amorphous structure
of nano-sized metal oxide [34]. Similar to the Pt-based electrode materials, the recently
reported values in the literature for IrO2-based catalysts are summarized in Table S2 [68–77].
Then, as shown in Figure 3e, the overall water splitting was conducted using the as-
prepared nano-sized Pt/C and IrO2 with an overpotential of 0.44 V at 10 mA/cm2.
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on FTO. (c) OER polarization curves and (d) Tafel slopes of commercial and as-prepared IrO2 on
FTO. (e) Polarization curve of overall water splitting of Pt/C versus IrO2. The measurements were
conducted in 0.1 M HClO4 at a scan rate of 5 mV/s.

3.3. Kinetic Analysis of Oxygen Evolution on IrO2 Using Electrochemical Impedance Spectroscopy

Electrochemical impedance spectroscopy (EIS) is one of the most powerful tools that
characterizes the impedance response of electrode interfaces. To examine the reaction
kinetic process, an accurate electrical equivalent circuit (EEC) is required for extracting
the kinetic parameters and different overpotentials applied to the electrode. The rate-
determining step (RDS) is studied by evaluating the electrode impedance response values
during electrochemical reactions [78]. As is well known, IrO2 and RuO2 are the most
efficient OER electrocatalysts under acid conditions. However, RuO2 is easily degraded
under harsh conditions [79]. Thus, as described in Figure 3c, in this study, IrO2 was selected
to conduct the kinetics analysis of oxygen evolution for exploring the capacitance and
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impedance effects among adsorbate, electrolyte, and catalytic materials. A modified EEC,
as shown in Figure 4a, is applied to explain multiple adsorbed intermediates on electrode
surfaces, and the EEC model comprises two RC circuits based on the Randles circuit [26,80].
In this study, we used the OER process under acidic conditions, where OHad and Oad are
the intermediates adsorbed on the IrO2 electrode surface [26,28]. The EEC contains an
electrolyte resistance (Rs) in series with the capacitance of the electrode double layer (Cdl) in
parallel with a pair of the impedances of the intermediates generated during the adsorption
process, which involves an adsorption resistance (Rads) and an adsorption capacitance
(Cads) in series with the resistance of the charge transfer process (Rct), including an electron
transfer process both within the electrode and at the electrode/electrolyte interface. The
EEC model can also be presented as Rs + Cdl/(Rct + Cads/Rads), where Cads/Rads is the
impedance of the intermediate species on the IrO2 electrode (i.e., oxygen species in this
study) for modeling charge relaxation [81]. Figure 4a shows Nyquist plots for IrO2 at
different potentials, revealing the domain Faradaic resistance. As summarized in Table 1,
Rads values significantly decrease with increasing overpotential, which originates from the
accelerated diffusion and transfer of the intermediates adsorbed on the electrode surface.
The impedance resistance arc decreases [26] as the overpotential increases. Accordingly,
the relaxation of the adsorbed intermediates is generally considered the RDS of OER
processes [26,82]. Intermediates adsorbed on electrode surfaces may not be the same
using different electrocatalysts. The RDS can be effectively investigated by evaluating
the significant capacitance associated with surface intermediates [82,83]. The relationship
between the current density (j) and the electrode potential is precisely expressed by the
Bulter–Volmer equation. According to a previous study [26], the reaction admittance (Y)
describes how freely a circuit allows a current flow. j is the current density of the electrode,
j0 is the exchange current density, and T is the temperature.

Y = (∂j/∂E)T (2)

The total reaction resistance of OER, then, is defined as R = Y−1 [28]. It can be modified
to a Tafel-like linear relationship [84].

log(R−1) = log(R*−1) + αapa F(E − E0)/2.303RgT (3)

R* = RgT/αapa Fj0(apa) (4)

αapa =
2RTb

4F
(5)

where F is the Faraday constant, αapa is the apparent charge transfer coefficient of the
rate-determining step, Rg is the gas constant, and E − E0 is the overpotential. Accord-
ingly, the charge transfer coefficient (αapa) is accurately calculated from its slope, while
the exchange current density (j0) can be obtained through its intercept. Then, the crucial
OER kinetic parameters are extracted using the kinetic model. Experimentally, Rads val-
ues were measured as a function of potentials for the OER kinetic study using the EIS
approach (Figure 4b) [26]. The EIS study produced the charge transfer coefficient of IrO2
(0.10) by applying the EEC shown in Figure 4a. We then obtained the exchange current
density of IrO2 (6.7 × 10−2 mA/cm2), which agrees with that from the Tafel slope method
(5.1 × 10−2 mA/cm2). The kinetic method determines the exchange current density using
resistance (Rads) (Figure 4c) to describe the OER mechanism compared with the Tafel slope
analysis [26]. Figure 4d,e indicate the Bode plots of the IrO2 electrode prepared on FTO
measured at cell densities 2, 4, 6, 8, and 10 mA/cm2. From the Bode phase plot, it can be
noticed that there is a stable peak in the high-frequency (HF) region and a peak change
in the low-frequency (LF) region, followed by applied voltage (current density) increases.
The peak in the HF region can be attributed to the characteristic frequency of the material
(103.28 Hz for IrO2), which is defined by the frequency of the highest impedance value of
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the imaginary part of the semicircle in an HF region [85]. Furthermore, the Bode phase
plot in the LF region exhibits a peak frequency shifted towards the HF region as the ap-
plied current density increases, which can be explained by the faster OER kinetics [86]. To
further understand the time constant of high current density in two semicircles of time
and the impedance distribution, a distribution of relaxation times (DRT) analysis [87] was
performed using the impedance data measured at different current densities [87–89] by
deconvoluting the EIS data. Figure 5a,b show that IrO2 has stable impedance values at a
time constant (τ) of 1.0 × 10−5 s in the HF region. This can be interpreted as a charge trans-
fer process at the electrode material/electrolyte interface with the contact impedance [90].
Several peak values between 1.0 × 10−4 s and 1.0 × 10−2 s can be observed due to the OER
process. A time constant of 1 × 10−1 s in the LF region decreases with the increase in current
density and with the decrease in the time constant because of the capacitance response of
the electrode surface and O-intermediate coverage on the catalytic active sites. Meanwhile,
as the applied overpotential increases, the time constant changes because of the accelerated
diffusion and transfer process of the O intermediate [26], which is consistent with the
results of the Nyquist plot in the large semicircle in the LF region and the characteristic
frequency of the Bode phase plot [91]. We plan to perform more systematic studies for
designing novel high-performance OER electrode materials using EIS-based kinetic studies,
which align with the Tafel slope analysis.
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Figure 4. (a) Nyquist plots, (b) overpotential-dependent Rads variation in the kinetic analysis using
EIS, and (c) log(1/Rads) as a function of the overpotentials of IrO2 under OER conditions. An
illustration of the electrical equivalent circuit (EEC) model used for the EIS analyses is shown [26].
Bode plots of (d) impedance magnitude versus frequency and (e) phase angle versus frequency.
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Table 1. EIS fitting parameters of IrO2 nano-electrocatalysts deposited on FTO.

Overpotential (V) 1 Rs (Ω) Cdl × 10−6 (F) Rct (Ω) Cads × 10−3 (F) Rads (Ω) log(1/Rads)

0.30 24.7 4.14 25.0 4.53 46.6 –1.67
0.33 25.1 4.02 25.7 4.18 25.5 –1.41
0.35 25.2 3.75 25.3 3.41 17.5 –1.24
0.37 25.4 4.19 25.7 3.77 13.5 –1.13
0.40 25.5 4.28 26.9 3.86 10.3 –1.01

1 V versus RHE.
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4. Conclusions 
Nanoscale Pt/C and IrO2 electrocatalysts were synthesized, and their thin-film elec-

trodes were fabricated on FTO using the spin-coating method to validate their electro-
chemical efficiencies in water splitting. The electrocatalytic activities of Pt/C and IrO2 on 
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improve kinetics analyses [54]. In addition, advanced surface morphological and ele-
mental analyses using high-resolution SEM and TEM may provide a better understanding 
of active sites in kinetic analysis. The EIS-based kinetic method could be applied to pro-
pose novel and highly active electrode materials for electrocatalytic and photoelectrocat-
alytic water electrolysis and novel energy materials. 
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4. Conclusions

Nanoscale Pt/C and IrO2 electrocatalysts were synthesized, and their thin-film elec-
trodes were fabricated on FTO using the spin-coating method to validate their electro-
chemical efficiencies in water splitting. The electrocatalytic activities of Pt/C and IrO2 on
FTO were close to those of commercial Pt/C and superior to those of commercial IrO2,
exhibiting improved overall water splitting performance. Furthermore, an OER kinetics
analysis of the IrO2 nano-electrocatalysts was conducted based on the EEC model using
EIS measurements. It was observed that the exchange current density of the IrO2 electrode
was in good agreement with that of the Tafel slope method (6.7 × 10−2 mA/cm2 versus
5.1 × 10−2 mA/cm2), indicating the validity of the microkinetic models used for the kinetic
analysis. Systematic in situ characterization of the OER electrocatalysts using Fourier-
transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) can
improve kinetics analyses [54]. In addition, advanced surface morphological and elemental
analyses using high-resolution SEM and TEM may provide a better understanding of active
sites in kinetic analysis. The EIS-based kinetic method could be applied to propose novel
and highly active electrode materials for electrocatalytic and photoelectrocatalytic water
electrolysis and novel energy materials.
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