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Abstract: High-temperature annealing has been regarded as an effective technology to improve
the performance of Ga;Os3-based solar-blind photodetectors (SBPDs). However, as a metastable
phase, e-GayO3 thin film may undergo phase transformation during post-annealing. Therefore, it is
necessary to investigate the effect of the phase transition and the defect formation or desorption on
the performance of photodetectors during post-annealing. In this work, the e-Ga;Oj3 thin films were
grown on c-plane sapphire with a two-step method, carried out in a metal-organic chemical vapor
deposition (MOCVD) system, and the e-Ga;O3 metal-semiconductor-metal (MSM)-type SBPDs were
fabricated. The effects of post-annealing on e-Ga;O3 MSM SBPDs were investigated. As a metastable
phase, e-Ga;Oj3 thin film undergoes phase transition when the annealing temperature is higher than
700 °C. As result, the decreased crystal quality makes an SBPD with high dark current and long
response time. In contrast, low-temperature annealing at 640 °C, which is the same as the growth
temperature, reduces the oxygen-related defects, as confirmed by X-ray photoelectron spectroscopy
(XPS) measurement, while the good crystal quality is maintained. The performance of the SBPD
with the post-annealing temperature of 640 °C is overall improved greatly compared with the ones
fabricated on the other films. It shows the low dark current of 0.069 pA at 10 V, a rejection ratio
(Rpeak/ Rapp) of 2.4 x 10% (Rpeak =230 nm), a higher photo-to-dark current ratio (PDCR) of 3 x 105,
and a better time-dependent photoresponse. These results indicate that, while maintaining no phase
transition, post-annealing is an effective method to eliminate point defects such as oxygen vacancies
in e-GayOj3 thin films and improve the performance of SBPDs.

Keywords: solar-blind photodetector; e-Ga,O3; annealing; MOCVD

1. Introduction

Solar-blind photodetectors (SBPDs) have garnered considerable attention for their
applications in missile warning, optical communication, environmental monitoring, flame
detection, and various other fields [1-3]. Recently, solar-blind UV photodetectors based
on ultrawide bandgap semiconductors like AlGaN, MgZnO, and Ga,;O3 have gained
significant prominence [4-6]. Among these materials, Ga;O3 stands out as a promising
candidate for SBPDs due to its ultra-wide and direct bandgap (4.5-5.2 eV), which is suitable
for the solar-blind region without the need for bandgap modulation through alloying
processes [7]. GapOs has six crystal phases: «, 3, v, 8, ¢, and k [8,9]. Among them,
-Gay O3, being the most stable phase, has garnered widespread attention for the fabrication
of SBPDs [10-12]. Metastable e-GayO3 presents a hexagonal symmetry, which means
e-GapOs3 has potential to grow on hexagonal substrates such as SiC, sapphire, and GaN with
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high-quality heteroepitaxy [13-15]. It also means that e-GayO3; grown on these matching
substrates is attractive for the development of novel devices for optoelectronic applications.

GayO3 SBPDs can be categorized into two basic types: photoconductive-metal-semicon
ductor-metal (MSM) SBPDs and junction SBPDs. The MSM-SBPDs consist of two “back-to-
back” interdigitated electrodes and a semiconductor with photoconductivity effect as the
work mechanism. This type of device offers a simple fabrication process and large respon-
sivity [16]. The impact of defects in semiconductors on the performance of MSM-SBPDs
can appear in a variety of ways. These defects can be point defects, line defects, and plane
defects. An appropriate amount of defects can increase photocurrent due to photoconduc-
tivity gain, but a large number of defects can also cause a significant increase in dark current
and prolong response time. To date, there exist numerous studies examining the influence
of post-annealing on the characteristics of 3-GayOs3 film photodetectors [17-20]. High-
temperature annealing is recognized as a potent technique capable of not only diminishing
defect density but also enhancing crystal quality. These factors significantly influence the
performance of solar-blind photodetectors based on Ga,O3. The post-annealing method
has also been applied to the e-Ga,O3 photodetectors to modulate the oxygen vacancy in
e-GayOs film, as reported in the literature [21]. However, as a metastable phase, e-Gay;O3
thin film may undergo phase transformation during post-annealing. Therefore, it is neces-
sary to investigate the effect of the phase transition on the performance of photodetectors.
In addition, by keeping the e-Ga,O3 phase unchanged, we would like to know whether a
post-annealing temperature as low as the growth temperature of e-GayO3 is effective in
modulating defects such as oxygen vacancies.

In this study, MSM SBPDs were produced using e-Ga,Oj3 thin films cultivated through
metal-organic chemical vapor deposition (MOCVD). The impact of varying annealing tem-
peratures on both the quality of the e-Ga,Oj3 thin films and the performance of SBPDs was
thoroughly examined. When undergoing high-temperature annealing, the phase transition
results in the SBPDs’ performance deterioration, with high dark current and long response
time. Compared with high-temperature annealing, post-annealing at temperatures as low
as the growth temperature significantly improves the performance of SBPDs. The detailed
mechanism is also discussed.

2. Experiments

The e-GayOs thin films were grown on c-plane sapphire substrates utilizing an Em-
core400 metal-organic chemical vapor deposition (MOCVD) system, employing a two-step
growth method. Initially, a nucleation layer was grown at 550 °C using Triethylgallium
(TEGa) and deionized water (H,O) as precursors. Subsequently, an epitaxial layer was
cultivated at 640 °C using the same precursors. The thicknesses of the nucleation layer
and epitaxial layer were about 30 nm and 360 nm, respectively. Afterward, the e-Gap;O3
films underwent annealing at temperatures of 640, 700, 800, and 900 °C in a tube furnace
under an N atmosphere. These samples were labeled as AG, N-640, N-700, N-800, and
N-900, respectively, denoting different annealing temperatures. The crystal structure of
the Ga,O; films was scrutinized using high-resolution X-ray diffraction (HRXRD) via a
Bruker D8 Discover instrument (Bruker, Mannheim, Germany), using a ThermoFisher
Nexsa (ThermoFisher, Waltham, MA, USA) with a monochromic Al Ka (hv = 1486.6 eV)
X-ray source. Morphological assessments of the Ga;Os3 thin films were conducted us-
ing a scanning electron microscope (SEM) (Hitachi S-4800) (Hitachi, Tokyo, Japan) and
atomic force microscopy (AFM) (Veeco, Dimension EDGE AFM, Plainview, NY, USA).
X-ray photoelectron spectroscopy (XPS) was employed to evaluate the stoichiometry of the
Gay03 films.

MSM SBPDs with Ti/Au (20 nm/80 nm) electrodes were fashioned on both the as-
grown and nitrogen-annealed Ga;Oj3 films. The electrode fingers measured 3 pm in width
and 95 um in length, with a 5 um spacing gap. An annealing process at 500 °C for 10 min
was executed to ensure full contact between the Ti/Au and Ga;O; films. Current—voltage
(I-V) characteristics and time-dependent photocurrent (I-t) curves were measured using
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a semiconductor parameter analyzer (Agilent B1500A) (Agilent, Santa Clara, CA, USA).
A photoelectric system (CEL-PF300, China Education Au-light) (China Education Au-
light, Beijing, China) emitting light with various power densities (P}ignt) and illumination
wavelengths (A) ranging from 220 nm to 400 nm was employed as a light source. Transient
response measurements were obtained using a 254 nm lamp with a light intensity of
550 uW/cm?.

3. Results and Discussion

Figure 1a presents the results of the X-ray diffraction (XRD) 26-scan of Ga;Os film
growth on c-plane sapphire at different thermal annealing temperatures. The observed
diffraction peaks at 38.90° and 59.80° correspond to the (004) and (006) planes of e-GayOs.
Additionally, peaks at 37.34°, 38.38°, and 58.94° are associated with the 3-Ga,Oj3 reflections,
specifically (311), (402), and (603), respectively. It is noteworthy that the highest intensity
peak aligns with the sapphire (006) plane [22,23]. It is observed that AG and N-640 are
nearly pure ¢ phase without obvious phase transition. The weak shoulders at 38.38° and
58.94° in logarithmic coordinates can be attributed to the seeding layer, which the XRD
20-scan showed in Figure S1. Then, obvious diffraction shoulder peaks at 37.34° and 58.94°
can be seen in the film with 700 °C thermal annealing, indicating that 3-Ga;O3; component
in the film begins to form, which means that a mixture of 3- and e-Ga,O3 appears at this
annealing temperature. When the annealing temperature increases to 800 °C or above, the
e-Gay O3 transforms to 3-Ga;O3 completely. We observed diffraction peaks from different
crystal plane families, indicating that 3-GayOj3 is poly-crystalline structure. The transition
temperature is consistent with literature reports [24]. In order to evaluate the effect of
low-temperature annealing on the crystal quality carefully, the (004) rocking curves of the
pure e-phase thin films were compared between AG and N-640, as shown in Figure 1b. The
full width at half maximum (FWHM) of AG is 0.22°, indicating good crystal quality by
heteroepitaxy. The FWHM is almost unchanged after 640 °C post-annealing. This suggests
that the low-temperature annealing (i.e., the annealing temperature is almost the same as
the growth temperature) does not easily create defects such as dislocation. The transmission
spectra of all the films are shown in Figure 1c with the wavelength from 200 to 800 nm.
By extrapolating the linear region of (cchv)? versus photon energy (hv), a band gap range
around 4.73—-4.81 eV was determined.
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Figure 1. (a) XRD patterns of GapOs film growth on c-plane sapphire with various thermal annealing
temperatures. (b) Rocking curve of the e-Ga;O3 (004) plane. (c) The transmittance spectra of the
GayO;3 thin film, a plot of (achv)? against photon energy (hv), which aids in determining the optical
bandgap of Ga, O3, as presented in the inset.

To further investigate the crystalline structure of the annealed e-GayO; films, Figure 2
presents the surface morphology images of the Ga,Oj3 thin films obtained through SEM and
AFM measurements. The three-dimensional island surface morphologies are observed by
AFM for all the films with a Root-Mean-Square (RMS) surface roughness of about 6-7 nm.
In addition, as the annealing temperature increased to 800 °C, obvious cracks appeared on
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the surface of the film (N-800). Furthermore, with the annealing temperature elevated to
900 °C (N-900), the cracks become wider and wider, which means that the process of phase
transition is accompanied with significant stress, leading to deterioration of crystal quality.

22.0 nm
-21.3 nm
54800 3.0kV 18.4mm x50.0k SE(M)
20.7 nm
-23.2nm
$4800 3.0kV 18.5mm x50.0k SE(M) 1.00um Height
23.9nm
-24.2 nm
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23.0 nm
-22.9 nm

4800 3.0kV 20.0mm x50.0k SE(M) O Height

Figure 2. SEM top-view (left column) and AFM surface morphology images (right column) of the
Gay O3 films with various thermal annealing temperatures.
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In recent investigations, both empirical and theoretical research has revealed the
abundance of oxygen-vacancy (Vo) defects in Gap,Oj3 [25,26]. Figure 3a—e show the XPS
spectra of the O 1s peaks for both as-grown and annealed ¢-Ga;Os3 thin films. The O 1s
core level spectra were subjected to Gaussian fitting, revealing three distinct components:
(1) (OI), which corresponds to O?~ ions in the Ga,Oj3 lattice regions; (2) (OII), representing
O? ions in oxygen-deficient regions and commonly associated with oxygen-vacancy (Vo)
defects in oxide materials; (3) (OIII) peaks, indicative of hydroxyl and carbonate species
chemisorbed on the film surface, centered at 530.5, 532.0, and 533.5 eV, respectively [20].
The density of oxygen vacancies is indicated by the intensity ratio of O /(Oy + Oy), and it
is found to be 17.2%, 10.0%, 14.7%, 10.7%, and 10.1% for the AG, N-640, N-700, N-800, and
N-900, respectively. The AG GayOj3 film inherently exhibits a heightened concentration
of oxygen vacancies, as evidenced by a substantial Oy /(Oy + Oy) ratio of 17.2%. After
640 °C post-annealing, the Oy /(Oy + Oy) ratio is significantly decreased to 10%, indicating
the elimination of oxygen-vacancy defects in the film. Correspondingly, the Ga2p shifts
in the high-binding-energy direction, as shown in Figure 3f. Therefore, the reduction in
the Oy /(Oy + Oy) ratio within the N-640 can be attributed to the increased formation of
Ga-O bonds during annealing at 640 °C [27]. Conversely, with the 700 °C annealing, the
On1/(Og1 + Oy) ratio shows a notable increase, contrasting the behavior observed in the
N-640 film. It is believed that the film crystalline phase begins to develop from ¢ phase
to a mixture of € and 3 phase at 700 °C annealing; meanwhile, the grain boundaries are
formed inside the film. The sharp increase in Vg concentration in the N-700 condition is
primarily governed by the predominant escape of oxygen through grain boundaries or
cavities [28]. Furthermore, when the annealing temperature is increased as high as 800 °C
or 900 °C, the intensity ratio of Oy /(O; + Oyy) decreases to nearly 10%, while the Ga2p
spectra shift in the low-binding-energy direction. Similar phenomena have been reported
in the literature [29]. It was explained that N doping in 3-Ga,O3 substitutes to Vo, during
the high-temperature annealing process in a nitrogen atmosphere, while the Ga2p shift
corresponds to the formation of Ga-N bonds. The impact of high-temperature annealing
on point defects needs still further research.
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Figure 3. (a—e) XPS O 1s core level spectra of Ga,Oj3 films with various thermal annealing tempera-
tures. (f) Ga 2p3,;, core-level spectra of AG, N-640, N-700, N-800, and N-900.
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MSM SBPDs were fabricated on both the as-grown and annealed Ga;O3 thin films.
In Figure 4a—e, the semilogarithmic I-V characteristics of all Ga,O3 SBPDs in the dark
and under 254 nm illumination (power density ~62 tW/cm?) at room temperature are
presented. The primary distinctions in dark current (Iy,,1) and photocurrents (Insanm) at
10 V were extracted, as illustrated in Figure 4f. The as-grown (AG) SBPD exhibits elevated
leakage current attributed to the presence of oxygen-vacancy (Vo) defects within the
e-GapOs film. According to some reports, in the MSM-type SPBDs, traps such as oxygen-
vacancy defects under the conduction band promote trap-assisted tunneling (TAT) during
the electron transport so that the device shows a large dark current [30,31]. However, the
Iqark at 10 V maintains an exceptionally low level, measuring below 6.9 x 10714 A after
undergoing thermal annealing at 640 °C; this value is nearly three orders of magnitude
lower than the dark current observed in the AG device. Considering that the crystal quality
is almost unchanged after post-annealing at 640 °C, such a low I, should be ascribed
to the plunge in the concentration of point defects such as Vo. Then, the I, rises with
the increase in annealing temperature, even larger than that of the AG SBPD. It can be
attributed to the more leakage channels caused by the worse crystalline quality. Of course,
for the case with 700 °C thermal annealing, the oxygen-related defects also lead to the
large leakage current. In contrast to the behavior of I,k the Ipoto remains consistently
high across all devices. The combination of high ;1o and low I,y results in an increased
photo-to-dark current ratio (PDCR = (Iphoto — Idark)/Idark)- Notably, the N-640 Ga,O3 SBPD

exhibits an exceptionally high PDCR of 3 x 10°, surpassing all other devices.
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Figure 4. (a—e) Logarithmic scale I-V curves of the GapO3 SBPDs with and without 254 nm light
(a power density of P54 n = 62 pW cm~2). (f) The dependence of I,k & Ipsa nm & PDCR on the
various annealing temperatures (@ 10 V).

Figure 5a is the normalized spectral response of all the devices measured at a wave-
length range of 220 to 400 nm and a bias of 10 V. Thermal annealing significantly impacts the
spectral responsivity. Assessing the spectral response characteristics illustrated in Figure 5a,
it is evident that all devices demonstrate substantial sensitivities in the solar-blind region.
Upon undergoing a phase transition, the response peak of Ga;O3 SBPDs shifts from 230 to
256 nm. The crystal structure plays a pivotal role in influencing the response peak, presum-
ably determining the energy band structure and the distribution of the density of states.
The UV-to-visible rejection ratio (Rpeax/Raoonm), representing the ratio of peak responsivity



Coatings 2023, 13, 1987

7 of 12

=

Normalized Responsivity (arb.unit)

1.0

0.5

0.0

to responsivity at 400 nm, serves as a metric for evaluating the spectral selectivity of the
photodetector. As depicted in Figure 5b, the rejection ratio of the N-640 device can reach
an impressive 2.4 x 10%. This optimal wavelength selectivity and sensitivity suggest a
significant reduction in subgap states throughout the entire e-Gay O3, achieved through
thermal annealing at 640 °C. Furthermore, another critical figure of merit is D*, which
characterizes sensitivity, taking into account the noise floor from I, in addition to the
photo response, and is expressed as [32].

R,/S,
Dx = VR 1)

\Y4 2’1 Idark

Here, R represents the responsivity, S is the effective illuminated area in the detector,
and g denotes the electron charge (1.6 x 10~ C). As illustrated in Figure 5b, the specific
detectivity of the N-640 photodetector is determined to be 1.0 x 10'° cm Hz /2 w1
(Jones), attributed to its high responsivity and low dark current. Figure 5c depicts the
responsivity of all the devices under illumination of various 254 nm light intensities. It is
shown that the responsivity exhibits a trend of initial increase followed by a decrease with
increasing light intensity. Under low light intensity illumination, the photoconductivity
effect constitutes the primary operational principle of the device. Trap centers capture
and subsequently release photogenerated charge carriers, prolonging their lifetimes and
thereby enhancing responsivity. Conversely, under high light intensity illumination, the
self-heating effect at elevated intensities leads to increased carrier scattering, resulting in a
decrease in responsivity [33,34].
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Figure 5. (a) The normalized spectral responsivity of all the devices (@ 10 +V) (b) The dependence of
the UV-to-visible rejection ratio (Rpeak /Raponm) and specific detectivity (D*) of all the devices. (@ 10
+V) (c) Light intensity-dependent responsivity of the AG, N-640, N-700, N-800 and N-900 devices
(@10 +V).

Figure 6a exhibits the time-dependent photo-response of all the photodetectors, ac-
quired by exposing them to 254 nm UV light at a power density (P») of 550 pW/cm?, while
operating at a voltage of 10 V. All the devices exhibit a distinct photo-response at this light
intensity. It is evident from Figure 6b that the decay time (t4), defined as the duration
during which the current decreases from 90% to 10% of its peak value, was significantly
reduced by thermal annealing at 640 °C. Moreover, the decay time (t4) typically consists
of two processes characterized by fast and slow responses. Typically, the fast response
components stem from immediate shifts in carrier concentration upon light activation
or deactivation, while the slow response is associated with carrier trapping and release
from defect bands like oxygen vacancies, gallium—oxygen-vacancy pairs, or grain bound-
aries within Ga,Os films [35,36]. For a quantitative analysis of the switching speed of the
PDs, the time-dependent response curves (see Figure 6a) were subjected to fitting using a
bi-exponential relaxation equation [37], as outlined below:
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Here, Iy represents the steady-state photocurrent, t denotes time, and A, B are con-
stants for fitting. 1747 and T4, represent the relaxation time constants for the fast and slow
components, respectively. Figure 6¢c shows the decay time of all the devices. They (t4;
and Tt4,) are 0.08 s/0.37s,0.03s/0.11 s, 0.05s/0.53 s, 0.05s/0.48 s, and 0.07 s/0.58 s for
AG, N-640, N-700, N-800, and N-900, respectively. The persistent photoconductivity (PPC)
has been widely reported, which is mainly related to deep-level defects, which can come
from dislocations, grain boundaries, as well as point defects such as Vo. Obviously, the
decay speed can be effectively accelerated with 640 °C thermal annealing. The improved
persistent photoconductivity (PPC) can be attributed to superior crystal quality and a
decreased presence of oxygen vacancies. As depicted in Figure 6d, the N-640 photodetector
exhibits a time-dependent photo-response to 254 nm illumination through on/off switching
under an applied bias of 10 V. Even after multiple illumination cycles, the device consis-
tently maintains a nearly identical response, emphasizing its high robustness and excellent
reproducibility. Table 1 summarizes the parameters of the typical Ga,O3 MSM-type SBPDs
with mainstream phases. In this work, the dark current of the N-640 photodetector is
~6.9 x 10~ A. For ¢-Ga,O3 SBPDs, this is the lowest dark current reported in the litera-
ture so far. Moreover, the PDCR, responsivity, and t4 exhibit comparability to, or slightly
surpass, results reported in other works.
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Figure 6. (a) Normalized I-t curves of the photodetectors. (b) Enlarged view of the slow response
component of the decay edge of SBPDs. (c) T4; and T4y of all the devices. (d) Photoresponse of the
N-640 by switching 254 nm light.
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Table 1. Comparison of the device parameters of the reported Ga,;Oj3 thin film MSM SBPDs.

Materials Bias (V) PDCR Tgark (A) D* (Jone) Rejection Ratio Tq (s) Reference
£-GayO3 10 3.0 x 10° 6.9 x 10714 1.0 x 101 2.4 x 10* (Rozp/Ru0) 0.03/0.11 This work
£-Gay O3 5 8.7 x 10° 1.5 x 10712 2.5 x 101 1.2 x 10° (Ros50/Rago) 0.13 [38]
£-GapO3 5 3.5 x 103 21 x10"1 2.5 x 101! - - [39]
£-GayO3 6 1.7 x 10° 24 x 1071 1.2 x 101® 1.2 x 10° (Rp50/Ryg0) 0.03/0.08 [40]
£-GayO3 6 5.7 x 10* 25 x 1071 42 x 1014 - 0.10 [41]
£-GayO3 5 2.0 x 103 47 x 1077 1.2 x 1013 6.0 x 103 (Rps4/Raq0) 5.20 [42]
£-Gay O3 20 9.5 x 107 1.0 x 10712 1.0 x 1016 1.9 x 10* (Rpao/Rao) 0.12 [43]
a-GayO3 10 <10* 3.4 % 10710 1.3 x 10 1.2 x 10° (Rys50/R3sp) 0.02/0.35 [20]
a-Gay 03 5 1.0 x 10° 3.0x 1071 9.8 x 1012 1.0 x 103 240 x 1074 [31]
p-Ga,O3 20 1.5 x 10° 7.0 x 10710 1.1 x 1016 - 0.21/1.38 [44]
B-GapO3 10 <107 29 x 10711 9.0 x 10 8.6 x 10° (Rps0/Ryq0) 0.50 [45]
B-GayO3 50 3.5 x 10! 1.0 x 10~? - - 12.13 [46]
-GapO3 10 - 5.0 x 10713 - 3.6 x 102 (Ro53/Ryqo)  8.90 x 107° [47]
o-Gay O3 10 1.0 x 102 1.2 x 1072 - - 3.49/5.12 [48]
v-GayO3 - 1.6 x 10* 9.0 x 10710 - - 0.06 [49]

4. Conclusions

In summary, we have showcased MSM SBPDs based on ¢-Gay O3 thin films, thoroughly
exploring the impact of post-annealing on device performance. Notably, the solar-blind pho-
todetector, subjected to a 640 °C thermal annealing process under a nitrogen atmosphere,
demonstrates superior performance parameters: a low dark current of ~6.9 x 1074 A at
10 V bias, a high PDCR of 3 x 10°, and a substantial rejection ratio (Rpeak /Raqp) 0f 2.4 x 10*
(Rpeak =230 nm). The excellent performance can be ascribed to the diminished presence of
oxygen-related vacancy defects following annealing, all the while preserving a high crystal
quality. It is crucial to note that when the post-annealing is performed at high temperature,
the e-GayO3 transforms to 3-Ga,O3 with worse crystal quality and the performance of
SBPDs significantly decreases. Our research underscores the importance of employing
an appropriately tailored thermal annealing process as an efficient strategy to achieve
high-performance ¢-GayOs-film-based SBPDs.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ coatings13121987/s1, Figure S1. XRD patterns of the e-Gap;O3 seeding
layer growth on c-plane sapphire.
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