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Abstract: In situ stress measurements have been widely used in various deposition processes for
stress detection. The substrate size can affect the uniformity of curvature across the entire surface,
which is a major cause of incorrect stress measurements. However, because of the inherent concept
of measurement theory and the complexities of the influence of substrate size on measurement
accuracy, the underlying nonlinear effects of the rectangular substrate are still not fully understood.
We discovered that increasing the substrate size caused an increase in nonlinear effect (nonuniform
distribution of curvature radii and stresses in the x and y directions) and surface defects on the
rectangular substrate using in situ stress measurement. Furthermore, the bending stiffness of the
substrate, which was influenced by the substrate size, was established to illustrate the effect of
substrate size on the nonlinear effect. The total stress of the deposit was concentrated at the edge
in both the x and y directions, and the deposit at the edge was prone to delamination and cracking.
When the substrate size was reduced, the deposit surface did not show obvious defects, and the
stress errors in the x and y directions were only 2.34% and 2.54%, respectively. These findings will be
beneficial to improve the accuracy of in situ stress measurement and further understand the causes of
nonlinear effects.

Keywords: equivalent reference temperature method; curvature measurement; in situ stress
measurement; electrodeposition; nonlinear effect

1. Introduction

In situ stress measurement is emerging as a powerful tool for understanding the
relationship between stress evolution and the film growth process [1,2]. The basic concept
of in situ stress measurement is that the curvature of a deposit-substrate system can

be directly converted into stress using Stoney’s formula σd = E∗s h2
s

6hd
k [3], and the stress

changes can be obtained by real-time detection of the corresponding curvature during the
deposition process. In Stoney’s formula, σd is the average in-plane stress, k is the measured
curvature, E*

s = Es
(1 − vs)

is the biaxial elastic modulus, hs is the substrate thickness, and
hd is the deposit thickness. Therefore, the measurement accuracy of curvature is the
key to determining stress measurement accuracy. In this regard, many efforts have been
made to promote the accuracy of curvature measurements, including enhanced detection
capabilities and improved measurement sensitivity. For example, diversified sensors are
employed to enhance the detection capabilities, such as a multibeam optical stress sensor [4],
Shack–Hartmann sensor [5,6], and quadri-wave lateral shearing interferometry sensor [7];
to improve the measurement sensitivity of the substrate deformation, it is shown that
using low elastic modulus substrate materials (quartz glass and polymethyl methacrylate)
or reducing the substrate thickness is effective, the available thickness of deposit can be
reduced to about 0.1 mm [7,8]. However, beyond these attempts, an intrinsic problem is
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that nonlinear effects (i.e., nonuniform curvature in different directions) are induced by
large deformation of the substrate, leading to large errors in stress measurements [9,10].

According to the Stoney theory of in situ stress measurement, the nonlinear effect
is directly related to the assumption that substrate deformation is consistent [10,11]. The
nonlinear effect is strongly dependent on the shape and size of the substrate [8,12,13],
which has received a lot of attention in this regard. For a circular substrate, Finot et al.
have studied the evolution of the curvature with the substrate size, which depends on the
value of A (A = σdhdD2

s h−3
s , where Ds is the diameter of the circular substrate). With the

increase in A, the deformation of the substrate-deposition system increases continuously,
and the curvature changes from uniform spherical to nonuniform cylinder through an
elliptical stage, leading to an obvious nonlinear effect. Furthermore, for in situ stress
measurements in electrodeposition, the substrate is typically rectangular, and previous
work has suggested that the corresponding nonlinear effect of such substrates is controlled
by size factors such as length and width [9,13]. Guyot and Mezin have demonstrated that
when the length/width ratio is greater than 65/8, the relative change in curvatures in
the x and y directions is less than 5% [13]. Therefore, in the in situ stress measurement
experiment, a substrate with an appropriate length/width ratio should be chosen, which
has always been neglected in previous studies. We have noticed that substrates with
various length/width ratios are used for in situ stress measurements in previous work,
such as 60/3 [14,15], 50/18 [16], and 60/15 [6]. It is obvious that the ratios of the last two
sizes are smaller than the comparison value (65/8), thus making a large measurement error.
Hence, it is still unclear how substrate sizes influence nonlinear effects.

In this work, we observed the evolution of the curvature and stress of the Ni elec-
trodeposition using in situ stress measurement and analyzed the relationship between the
substrate size and the nonlinear effect. Furthermore, the equivalent reference temperature
(ERT) method has been proposed to simulate the value and distribution of stress in the
thin films, which utilizes temperature loads caused by differences in temperature and
thermal expansion coefficients between the substrate and the thin film to simulate thermal
stress [17–20]. Here, we also use the ERT method to supplement the details that the exper-
imental characterizations cannot acquire. We revealed the effect of substrate size on the
nonlinear effect, the stress distribution, and the causes of nonlinear effects and surface de-
fects in the deposit. Our study provides valuable insights for understanding the mechanism
of surface defects on rectangular substrates and improving measurement accuracy.

2. Materials and Methods
2.1. The Equivalent Reference Temperature Method

The essence of the ERT method is to use temperature loading to model the internal
stress in the film [17,20]. According to crystallographic theory, the internal stress of the elec-
trodeposited layer can be simplified as lattice expansion (compressive stress) or contraction
(tensile stress), and such lattice change can also be induced by thermal stimulation [20].
Therefore, the internal stress of the electrodeposited nickel layer can be simulated by ther-
mal stress caused by the temperature load. Here, the stress simulation by the ERT method
was carried out using the static module in ANSYS 19.2. In accordance with the basic steps
of finite element simulation, the simulation process is as follows:

(1) Establishment of the geometric model. Figure 1a shows a three-dimensional solid
model of the electrodeposited Ni layer. The model comprised a quartz glass substrate
(blue) and a nickel deposit (orange). During electrodeposition, the substrate was partially
immersed in the electrolyte; therefore, the size of the deposit was smaller than that of the
substrate. In the simulation, the materials of substrate and deposit were assumed to be
isotropic and homogeneous, and their mechanical properties are listed in Table 1.
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thickness direction of the substrate and the deposit were 50 µm and 2 µm, respectively. 
The figure after meshing of the model is shown in Figure 1b. 

(3) Constraints and Loads. The substrate was clamped in the experiment on a single 
side to form a cantilever beam. Therefore, in the simulation, a fixed displacement con-
straint was imposed on the edge of the substrate, which was not immersed in the electro-
lyte. On the other edge of the substrate, the deformation of the quartz glass and nickel 
layer was the same, and the contact type between the substrate and the deposit was 
bonded to avoid gaps or slippage. 

The temperature load was generated by the temperature difference between the 
equivalent reference temperature (𝑇௥௘௙) and the actual process temperature (𝑇௣). The 𝑇௥௘௙ 
was the initial temperature of the nickel layer in the model. The 𝑇௣ was the final temper-
ature of the nickel layer. If the experimental stress (𝜎௥௘) was tensile, the cooling process 
(𝑇௥௘௙ ൐ 𝑇௣) would be used to simulate the generation of the intrinsic stress. Conversely, if 
the experimental stress was compressive, the heating process (𝑇௥௘௙ ൏ 𝑇௣) would be used. 
In this work, the 𝑇௣ was equal to the ambient temperature, assumed to be 295.15 K. The 
stress of the electrodeposited nickel layer was mostly tensile, so the 𝑇௥௘௙ was set greater 

Figure 1. Schematic illustration of the model for the simulation. (a) Geometric model, the left is fixed,
and (b) Mesh of the model.

Table 1. Material properties used in the simulation.

Materials Elastic Modulus/GPa Poisson Ratio Coefficient of Thermal Expansion/◦C−1

Nickel 210 0.31 1.33 × 10−5

Quartz glass 55 0.25 5.5 × 10−7

To study the influence of substrate size on the deposition stress in different directions,
we designed three groups of parameters. The detailed dimension parameters are listed in
Table 2.

Table 2. Size of deposits and substrates in simulations and experiments.

Deposits Substrates

Length
(Ld/mm)

Width
(Wd/mm)

Thickness
(Td/mm)

Length
(Ls/mm)

Width
(Ws/mm)

Thickness
(Ts/mm)

15
5

0.01 80
5

0.310 10
15 15

(2) Mesh division. Automatic meshing with ANSYS software (v19.2) is difficult because
the substrate’s and deposit’s thickness differ by an order of magnitude. Multizone and
Mapped Mesh Types were used for hexahedral meshing to improve the simulation accuracy
of the stress distribution of the substrate and deposit. The element sizes in the thickness
direction of the substrate and the deposit were 50 µm and 2 µm, respectively. The figure
after meshing of the model is shown in Figure 1b.

(3) Constraints and Loads. The substrate was clamped in the experiment on a single
side to form a cantilever beam. Therefore, in the simulation, a fixed displacement constraint
was imposed on the edge of the substrate, which was not immersed in the electrolyte. On
the other edge of the substrate, the deformation of the quartz glass and nickel layer was
the same, and the contact type between the substrate and the deposit was bonded to avoid
gaps or slippage.

The temperature load was generated by the temperature difference between the equiv-
alent reference temperature (Tre f ) and the actual process temperature (Tp). The Tre f was
the initial temperature of the nickel layer in the model. The Tp was the final temperature of
the nickel layer. If the experimental stress (σre) was tensile, the cooling process (Tre f > Tp)
would be used to simulate the generation of the intrinsic stress. Conversely, if the exper-
imental stress was compressive, the heating process (Tre f < Tp) would be used. In this
work, the Tp was equal to the ambient temperature, assumed to be 295.15 K. The stress of
the electrodeposited nickel layer was mostly tensile, so the Tre f was set greater than Tp.
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In addition, the temperature of the substrate was set as Tp and kept constant. Then, the
formula equation for the stress of the nickel layer can be expressed as

σint =
−αd

(
Tp − Tre f

)
1 − νd

Ed
+ 1 − νs

Es

hd
hs

(1)

(4) Therefore, the stress of the nickel layer (σint) was calculated. The workflow of
simulation by the ERT method is shown in Figure 2.
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2.2. The Curvature Radius of a Substrate-Deposit System in the Simulation

To obtain the curvature radius and stress of the deposit in different directions, extrac-
tion paths were set within the deposit during data post-processing, as shown in Figure 3a.
Lines A-1 to A-2 and B-1 to B-2 represent the x and y directions, respectively. We calculated
the radius of curvature after deformation, referring to the method reported by Hsi-Chao
Chen et al. [19], as shown in Figure 3b. For the x-direction, we extracted the displacements
of points A1 and B1 in the x- and z-directions in the xoz plane; A1D1 is the displacement
difference at the point A1 in the z-direction before and after deformation and B1D1 is
the displacement difference of point B1 in the x-direction before and after deformation.
The same process is also applied for the y-direction, and the marker is identified by the
subscript with 2, such as A2, B2, C2, and D2. Two similar right triangles (∆OAiCi and
∆ABiDi, i = 1 or 2) were constructed, and the radius of curvature was obtained as

Bi Ai

OAi
=

AiDi

AiCi
=

BiDi

OCi
(2)

OAi =
Bi Ai · AiCi

AiDi
(3)

where Bi Ai =

√
(AiDi)

2
+ (BiDi)

2 and AiCi = Bi Ai/2. The OAi lines are the curvature
radius of the deposit. The curvature radius OAi after deformation can be calculated
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according to Equation (3), and the corresponding stress value can be obtained based on the
Stoney formula.
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Figure 3. The curvature radius of a substrate-deposit system. (a) Stress and deformation value
extracted by paths (lines of A-1 to A-2 and B-1 to B-2 represent x and y directions, respectively).
(b) Schematic illustration for the calculation method of curvature radius.

2.3. In Situ Stress Measurement of Ni Electrodeposition

We used a self-developed electrodeposition system for stress measurement with high
accuracy, consisting of a Quadri-wave Lateral Shear Wavefront Sensor (SID4-HR, Phasics@
Corp., Saint-Aubin, France), Collimating Light Source (R-cube, Phasics@ Corp., Saint-
Aubin, France), Electrochemical Workstation (CHI600E, Shanghai Chinstruments@ Corp.,
Shanghai, China), and a Haring Cell. A schematic of the measurement apparatus is
shown in Figure 4a. The laser (λ = 532 nm) sequentially passed through the transparent
electrodeposition cell, electrolyte, and substrate. The reflection was generated in the
interface between the deposit and the substrate, and the reflected light was detected by the
wavefront sensor. The curvature of the substrate was measured in situ by the principle of
transverse shearing interference [7]. The internal stress of the deposit can be calculated
from the curvature of the substrate. The wavefront sensor can also obtain the phase map
of the wavefront, which can directly reflect the surface topography of the sample. When
the deformation of the sample surface is a spherical shape, the resulting wavefront phase
map is circular, as shown in Figure 4b; when the deformation of the sample surface is an
ellipsoid, the map shows an ellipse shape, as shown in Figure 4c. Therefore, the surface
deformation of the sample can be directly reflected by the wavefront phase map, indicating
whether there is a nonlinear effect in the measurement process or not.

A 30 nm thick Au film as a conductive layer was coated on the surface of the substrate
using a high-vacuum sputter coater (EMSCD 500, Leica@ Corp, Frankfurt, Germany) for
240 s. Because the conductive layer was very thin, the influence of the conductive layer was
ignored in simulations [17,21]. The size of the deposits can be controlled by adjusting the
height of the electrolyte (the major ingredients of the electrolyte can be seen in Table S1). An
electrochemical workstation (CHI600E, CH Instruments, Bee Cave, TX, USA) was used as
the power source to output direct current by chronopotentiometry. The deposition current
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density was 1 A/dm2, and the deposit was electrodeposited for 30 min at a sampling
interval of 30 s.
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Figure 4. A self-developed electrodeposition system for stress measurement. (a) A schematic of
the in situ stress measurement apparatus, (b) A spherical sample and their phase maps. (c) An
ellipsoidal sample and their phase map. Where kx and ky represent the curvature of the sample
in x- and y-directions, respectively. Cloud map colors indicate phases. Red color indicates large
displacement, and blue represents that the displacement is zero. The spherical sample indicates that
the deformation displacement is the same in all directions, and the ellipsoidal indicates the presence
of nonlinear phenomena.

3. Results and Discussion
3.1. Effect of Substrate Width on the Curvature Radius and the Internal Stress of Nickel Deposits
in Experiments

A series of in situ stress measurements have been carried out to observe the evolution
of the curvature radius and stress under different substrate widths. The thickness of
corresponding deposits is less than 0.8 µm for the different substrate widths, as shown
in Figure 5a–c, and the radii of curvature in the x and y directions show large differences
within the first 200 s. Because the initial growth stage of electrodeposited nickel gradually
consists of island growth, contact, merger, and continuous deposit formation [22,23]; the
stress state changes continuously at different growth stages, and the stress in different
directions also shows significant differences. Furthermore, the slight deformation of the
substrate at the initial stage makes the radius of curvature difficult to measure. When
the deposit time was between 200 and 1000 s (the thickness of the corresponding deposit
was 0.8 to 4 µm), the difference gradually decreased and approached a constant value.
Therefore, this work mainly focuses on the electrodeposition process after 200 s.
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When the substrate width is 15 mm, as shown in Figure 6a, the radii of curvature in
the x- and y-directions are different. There is also a difference between the stresses in the x-
and y-directions, about 20 MPa (Figure 6b). At the same time, the phase map is elliptical
(see inset in Figure 6a), which intuitively indicates that the surface curvatures are different
in the x and y directions. The curvature radius and the stress inhomogeneity indicate that
the deformation of the substrate-deposit system is affected by nonlinear effects. A sudden
change occurs after 1170 s (dotted-line circle in Figure 6a,b), and the electrodeposition
process stops. The reason is that the delamination of the upper edge causes the deposit
to separate from the conductive layer so that the electrodeposition is interrupted and
stopped. As shown in Figure 6c, cracks and delamination appear in the deposit, mainly at
the upper edge.

Coatings 2023, 13, x FOR PEER REVIEW 7 of 16 
 

 

When the substrate width is 15 mm, as shown in Figure 6a, the radii of curvature in 
the x- and y-directions are different. There is also a difference between the stresses in the 
x- and y-directions, about 20 MPa (Figure 6b). At the same time, the phase map is elliptical 
(see inset in Figure 6a), which intuitively indicates that the surface curvatures are different 
in the x and y directions. The curvature radius and the stress inhomogeneity indicate that 
the deformation of the substrate-deposit system is affected by nonlinear effects. A sudden 
change occurs after 1170 s (dotted-line circle in Figure 6a,b), and the electrodeposition 
process stops. The reason is that the delamination of the upper edge causes the deposit to 
separate from the conductive layer so that the electrodeposition is interrupted and 
stopped. As shown in Figure 6c, cracks and delamination appear in the deposit, mainly at 
the upper edge. 

 
Figure 6. In situ stress measurement of Ni electrodeposition with different substrate widths. (a,d,g) 
The curvature radius as a function of time with different directions (Insets show phase map at dif-
ferent times. (b,e,h) The average stress is a function of depositing thickness in different directions. 
(c,f,i) The surface morphology after electrodeposition. The widths of (a–c), (d–f), and (g–i) are 15 
mm, 10 mm, and 5 mm, respectively. 

Figure 6. In situ stress measurement of Ni electrodeposition with different substrate widths.
(a,d,g) The curvature radius as a function of time with different directions (Insets show phase map at
different times. (b,e,h) The average stress is a function of depositing thickness in different directions.
(c,f,i) The surface morphology after electrodeposition. The widths of (a–c), (d–f), and (g–i) are 15 mm,
10 mm, and 5 mm, respectively.



Coatings 2023, 13, 2031 8 of 16

When the substrate width is 10 mm, the curvature radii and stresses in the x- and
y-directions exhibit some sudden changes (the dotted-line circle), as shown in Figure 6d,e.
This is due to severe delamination and cracks on the surface of the deposit (see Figure 6f).
The phase map is also elliptical (see inset in Figure 6d), which intuitively indicates that
the surface curvatures are different in the x and y directions. The deformation of the
substrate-deposit system is still affected by the nonlinear effect. With the deposition time
increase, the deposited layer’s surface defects gradually increased, and the deformation
difference in different directions gradually became significant. The phase map approached
towards a cylindrical shape under the influence of the surface defects.

Interestingly, when the substrate width is reduced to 5 mm, as shown in Figure 6g,h,
one can see that the values of the curvature radii and stresses in the x- and y-directions
are close to the same. Moreover, there are no obvious defects on the surface of the deposit
(Figure 6i), and the phase map is close to a circle (see inset in Figure 6g), indicating that
the surface deformation of the deposit in different directions is consistent and the surface
curvature is uniform.

The above experimental results address that the nonlinear effect and surface defects
existing on rectangular substrates can be reduced by lowering the width of the substrate.
When the substrate width is 5 mm, there are no nonlinear effects and surface defects.

3.2. Effect of Substrate Width on the Curvature Radius of the Deposit in the Simulation

To thoroughly figure out the effect of substrate width on nonlinear effect, the simula-
tion method of ERT has been used to explore the changes in the curvature radius of deposits
along with the diversified substrate widths. After applying the equivalent reference temper-
ature, the deformations of the substrate-deposit system in the x- and y-directions are shown
in Figure S1. The radius of curvature after deformation is calculated by Equation (3), as
shown in Figure 7a,c. With the increase in the substrate width, the radius of curvature in the
x-direction increases while that in the y-direction decreases; the difference between the radii
of curvature in the x- and y-directions increases with the substrate width (Figure 7a). The
error of the curvature radii in the x- and y-directions with a substrate width of 5 mm is only
3.8%, while that with a substrate width of 20 mm is as high as 67.5%. Further, we compare
the average stress (σst) converted from the curvature radius by Stoney’s formula and the
average stress (σsi) calculated by the ERT simulation. As shown in Figure 7b, the average
stress (σsi) is about 80 MPa. Comparatively, with the increase in the substrate width, σst
in the x-direction decreases while σst in the y-direction increases. The difference between
σsi and σst in the x- and y-directions both increase with the substrate width. Theoretically,
the σsi is the same as the σst [24–26]. However, the difference in the radius of curvature
between the x and y directions results in an error in σst compared to σsi. Errors of the
average stress in the x- and y-directions with a substrate width of 5 mm are only 2.34%
and 2.54%, respectively, while that with a substrate width of 20 mm is as high as 20.34%
and 140.51%, respectively. This indicates that, in accordance with the experimental results,
there is a non-uniformity effect on the rectangular substrate, and the non-uniformity effect
is more significant with the increase in the substrate width.

Figure 7c,d are the curves of the curvature radius and stress with reference temperature
when the substrate width is 5 mm. The curvature radii in the x- and y-directions both
decrease with the increase in temperature, but the difference of the curvature radii in
different directions is small, about 3.5% (Figure 7a). As shown in Figure 7d, σst and
σsi increase linearly with the reference temperature, and the stress error in the x- and
y-directions is about 2.5%. This indicates that the average stress, which varies linearly with
Tre f , has little effect on the radii of curvature in different directions. Therefore, the average
stress of the deposit has little effect on the non-uniformity effect of the rectangular substrate.
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radius of curvature as a function of equivalent reference temperature (Tre f ) for x and y directions.
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To sum up, the nonlinear effect of the substrate is mainly affected by the geometric size
of the substrate. Both large-displacement analytical methods and finite element calculations
have shown that the substrate size plays an important role in the deformation (curvature)
induced by internal stress [9]. Bending stiffness is an important parameter to determine
the flexural capacity of a substrate. The bending stiffness usually ignores the effect of the
length and width of the substrate [27]. In this paper, through the finite element analysis of
thin plate bending, the substrate is discretized into rectangular elements, and the bending
stiffness Bs considering the length and width of the substrate is obtained. Details of the
derivation of Bs can be found in Appendix A.

Bs =
E

12(1− µ2)
· h3

(ab)
(4)

It can be seen from Equation (4) that the flexural capacity of a substrate mainly depends
on the substrate material (biaxial elastic modulus E

(1 − µ2)
) and geometric sizes (thickness h,

length b, and width a). In our work, the length and thickness are constant, and the size of the
substrates is controlled by the various widths. When the width of the substrate is large, the
bending stiffness is relatively small, the substrate is relatively “soft”, and its deformation is
large, which tends to be cylindrical or elliptical, making the curvature uneven, and vice
versa. This explanation is also consistent with the previous work reported by M. Finot et al.,
who show that an increase in the diameter or a decrease in the thickness of the substrate
increases the propensity for large deformations and geometric instabilities [28]. Therefore,
the substrate bending stiffness is the central cause of the nonlinear effects affecting the
curvature and stress.
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3.3. Effect of Substrate Width on the Internal Stress of the Deposit in the Simulation

To further explore the reasons for the formation of surface defects in the deposit, we
analyzed the effect of the substrate width on the stress distribution. As shown in Figure 8a,b,
the average stresses in the x- and y-directions are both concentrated at the substrate-deposit
edges. Note that, according to the previous work by Freund and Suresh [29], the edges can
be categorized into two types, including a free edge (where the substrate extends infinitely
beyond the edge of the deposit) and an interface (where the substrate coincides with the
edge of the deposit). In Figure 8a, for the x-direction, the two substrate-deposit edges are
both interfaces; thus, the stress distribution shows the symmetric feature. However, for
the y-direction, the substrate-deposit edges consist of one free edge and one interface, and
the stress value is high for the free edge but low for the interface, showing an asymmetric
feature (Figure 8b). The results also suggest that the stress values for these two different
edges show obvious fluctuations. Muskhelishvili et al. demonstrated that the stress exhibits
a rapid oscillation in amplitude near the free edge, a typical stress distribution near the free
edge [29]. According to Shield and Kim’s research [30], the free edge was more flexible
than the interface and exhibited more obvious changes in the stress oscillation. In addition,
the total stress of the deposit is the sum of the average stress and the interface stress, and
the mean stress is a constant value, so the total stress is mainly affected by the interface
stress (q(x)), as shown in Figure 8c. Referring to the study of Hutchinson and Suo [31], it

can be expressed as q(x) ∼ σd

√
ehd
2πx , where e is the ratio of the biaxial elastic modulus

of the substrate to that of the deposit, and x is the distance from the edge. When x → 0+ ,
q(x) is expected to be infinite. Therefore, the stress will be concentrated near the edges.
The interface stress is the main reason for the delamination and cracking of the deposit [32].
Therefore, the failure of the deposit occurs at the edge due to the stress concentration and
the large interface stress. Specifically, the upper edge of the deposit, which is a free edge,
has larger stress than the other three edges, which are interfaces. The upper edge of the
deposit is also at the edge of the electrolyte, and the deposit has nowhere to attach, which
makes it very easy to produce delamination. The stress at the interface is concentrated,
but the deposit can be attached to the side, resulting in less delamination and more prone
to cracks. The total stress in the x- and y-directions decreases with the decrease in the
substrate width. Therefore, reducing the substrate width can decrease the total stress and
eliminate surface defects of the deposit.
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4. Conclusions

In this study, the influence of substrate width on the accuracy of stress measurement
has been studied by in situ stress measurement of Ni electrodeposition and the ERT
simulation. First of all, using in situ stress measurement of Ni electrodeposition, we found
that when the width is larger than 5 mm, values of the curvature radius and stress in
different directions are inconsistent, and the shape of the phase diagram deviates from
the circle (showing an elliptical feature), indicating the existence of nonlinear effects.
Additionally, delamination and crack defects are prone to occur at the edge of the deposit.
We show that the nonlinear effect can be reduced, and the stress detection accuracy can
be improved by reducing the width of the substrate; when the width is 5 mm, the surface
of the deposit has no defects, and the curvature radius and stress in different directions
are consistent.

Moreover, the ERT method simulation results also show that the values of the surface
curvature radii and stresses in the x- and y-directions are different, indicating that the
surface curvature radius and stress have a nonlinear effect. The nonlinear effect increases
with the width but does not change with the deposit size and the equivalent reference
temperature. When the substrate width is 5 mm, nonlinear effects are minimal, and the
stress errors in x- and y-directions are only 2.34% and 2.54%, respectively. The source of the
nonlinear effect is the bending stiffness affected by substrate sizes. The bending stiffness is
inversely proportional to substrate width. Therefore, as the width of the substrate becomes
smaller, the bending stiffness gradually increases, which reduces the difference in the radius
of curvature and the stress in different directions and weakens the nonlinear effect.

Further, the total stress distribution of the deposit is analyzed by simulation. The
results show that the total stress is concentrated at the edges, so delamination and crack
defects are prone to occur at the edge of the deposit. The boundary conditions of the edges
are different because the deposit does not completely cover the substrate. There are two
kinds of boundaries, including free edge and interface. The total stress closed to the free
edge exhibits rapid oscillations in amplitude. In addition, the total stress at the interface is
lower than that at the free edge. The surface defects can be eliminated by reducing the total
stress by lowering the substrate width; when the width is 5 mm, the surface of the deposit
has no defects. These results pave the way for further improving the accuracy of stress
determination in electrodeposition. Future work will include investigating the effects of
different electrolytes and changing the substrate structure on the deposition layer stresses.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
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Appendix A. Bending Stiffness Formula Considering Base Geometry

The geometry of a substrate-deposit system is shown in Figure A1a. The width of
the system is a, the length is b, and the thickness is h = hd + hs, where hd and hs denote
the thickness of the substrate and deposit. The origin of the coordinates is on the neutral
plane of the substrate-deposit system. As shown in Figure A1b,c, the deformation of
the substrate affected by the internal stress of the deposit mainly includes three types:
(1) rotation of the neutral plane normal around the x-axis (θx = ∂w

∂y ), (2) rotation of the

https://www.mdpi.com/article/10.3390/coatings13122031/s1
https://www.mdpi.com/article/10.3390/coatings13122031/s1
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neutral plane normal around the y-axis (θy = − ∂w
∂x ), (3) deflection of the neutral plane

(w = w(x, y) = w(x, y, z = 0).
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Figure A1. (a) The geometry of the substrate-deposit system. (b) Deformation of the substrate-deposit
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The deformation of the substrate-deposit system satisfies the Kirchhoff sheet the-
ory without considering shear deformation, which contains three basic assumptions:
(1) ignore the stress in the thickness direction (σz = 0) (2) assumption of the straight
line (γxz = γyz = 0) (3) No lateral deformation in the neutral plane (u(x, y, z = 0) =
v(x, y, z = 0) = 0).

From assumption (1), it can be known that

εz =
∂w
∂z

= 0 (A1)

From assumption (2), it can be known that

γyz =
∂w
∂y

+
∂v
∂z

= 0 (A2)

γxz =
∂w
∂x

+
∂u
∂z

= 0 (A3)

From Equations (A2) and (A3), we can obtain

∂u
∂z

= −∂w
∂x

(A4)

∂v
∂z

= −∂w
∂y

(A5)

Equations (A4) and (A5) integrate z, respectively, and it can be known that u|z=0 =
0 , v|z=0 = 0 from assumption (3). The relationship between u, v and w can be obtained as

u = −z
∂w
∂x

(A6)

v = −z
∂w
∂y

(A7)

Using the geometric equation, the strain components at each point in the plate can be
obtained as

{ε} =


εx
εy

γxy

 =


∂u
∂x
∂v
∂y

∂u
∂y + ∂v

∂x

 (A8)
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Substituting Equations (A6) and (A7) into Equation (A8), we can obtain

{ε} =


εx
εy

γxy

 = −z


∂2w
∂x2

∂2w
∂y2

2 ∂2w
∂x∂y

 (A9)

The stress at each point in the plate can be obtained as

{σ} =


σx
σy
τxy

 = [D]{ε} = −z[D]


∂2w
∂x2

∂2w
∂y2

2 ∂2w
∂x∂y

 (A10)

where [D] is the elastic matrix of the plate.

[D] =
E

1− µ2

1 µ 0
µ 1 0
0 0 1−µ

2

 (A11)

During finite element calculation of plate bending, the plate is divided into a series
of rectangular elements to obtain a discrete system to replace the original plate. For each
element to have continuity in deflection and its slope at least at the nodes, the deflection
and its first-order partial derivatives in the x and y directions must be specified as node
displacements (or generalized displacements). The displacement array of node i is usually
written as

{δi} =


wi
θxi
θyi

 =


wi(
∂w
∂y

)
i

−
(

∂w
∂x

)
i

 (A12)

For rectangular elements, a natural coordinate system oξη is introduced to study
element characteristics. Since each node of a rectangular element has three displacement
components ({δi}), one element has four nodes, as shown in Figure A2. There are twelve
node displacement components, so we choose a polynomial with twelve parameters as the
displacement model. The neutral plane w, rotation of the neutral plane normal around the
x-axis θx and rotation of the neutral plane normal around the y-axis θy can be obtained as

w = a1 + a2ξ + a3η + a4ξ2 + a5ξη + a6η2 + a7ξ3 + a8ξ2η + a9ξη2 + a10η3 + a11ξ3η + a12ξη3 (A13)

θx =
∂w
∂y

=
∂w
b∂η

=
1
b

(
a3 + a5ξ + 2a6η + a8ξ2 + 2a9ξη + 3a10η2 + a11ξ3 + 3a12ξη2

)
(A14)

θy = −∂w
∂x

= − ∂w
a∂ξ

= −1
a

(
a2 + 2a4ξ + a5η + 3a7ξ2 + 2a8ξη + a9η2 + 3a11ξ2η + a12η3

)
(A15)

where ξ = x
a , η = y

b .
Substituting the four-node coordinates (ξi , ηi) of the rectangular element into Equa-

tions (A13)–(A15), respectively, and obtaining twelve equations. Solving these twelve
equations, obtaining a1 to a12, and then substitute into Equation (A13), after merging and
sorting, it can be rewritten into the following form:

w = [N]{δ}e (A16)
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where [N] and {δ}e can be expressed as

[N] =
[
[N] 1 [N] 2 [N] 3 [N] 4

]
(A17)

{δ}e =
[
δT

1 δT
2 δT

3 δT
4
]T (A18)
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If [N] is written as the general formula, which gives

[N] i =
[
Ni Nxi Nyi

]
(i = 1, 2, 3, 4) (A19)

where Ni, Nxi and Nyi can be expressed as

Ni =
(1 + ξ0)(1 + η0)

(
2 + ξ0 + η0 − ξ2 − η2)

8
(A20)

Nxi = −
bηi(1 + ξ0)(1 + η0)

(
1− η2)

8
(A21)

Nyi = aξi(1 + ξ0)(1 + η0)
(

1− ξ2
)

/8 (A22)

where ξ0 and η0 are ξ0 = ξiξ and η0 = ηiη, respectively.
Substituting Equation (A16) into geometric Equation (A19), the element strain can be

expressed as a node displacement array as

{ε} = [Bi]{δ}e =
[
B1 B2 B3 B4

]
{δ}e (A23)

where [Bi] can be expressed as

[Bi] = −z


[N]i,xx

[N]i,yy

2[N]i,xy

 = −z


[N]i,ξξ

a2

[N]i,ηη

b2

2[N]i,ξη

ab

 = − z
ab


b
a [N]i,ξξ

a
b [N]i,ηη

2[N]i,ξη

 (A24)

where [N] i,xx and [N] i,ξξ are ∂2[N]i
∂x2 and ∂2[N]i

∂ξ2 , respectively.
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The element stiffness matrix can be written as

[k] =


k11 k12 k13 k14
k21 k22 k23 k24
k31 k32 k33 k34
k41 k42 k43 k44

 (A25)

The formula for calculating the submatrix is

[
kij
]
=
∫

[Bi]
T [D]

[
Bj
]
dxdydz =

∫ h
2

− h
2

∫ 1

−1

∫ 1

−1
[Bi]

T [D]
[
Bj
]
abdξdηdζ (A26)

Substituting Equations (A11) and (A24) into the above equation, and integrating with
z, so we have

[
kij
]
=

D
ab

∫ 1

−1

∫ 1

−1

(
b2

a2 [N] T
i,ξξ [N] j,ξξ + µ[N] T

i,ξξ [N] j,ηη + µ[N] T
i,ηη [N] j,ξξ+

a2

b2 [N] T
i,ηη [N] j,ηη + 2(1− µ)[N] T

i,ξη [N] j,ξη

)
dξdη (A27)

where D can be expressed as

D =
Eh3

12(1− µ2)
(A28)

It is generally considered that D is the bending stiffness of the elastic substrate. How-
ever, it ignores the influence of the length and width of the substrate. In this paper, D

ab is
used to represent the bending stiffness of the elastic substrate (Bs).

Bs =
D
ab

=
Eh3

12(1− µ2)(ab)
(A29)
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