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Abstract: The layered oxyselenide BiCuSeO has attracted significant attention due to its ability
to demonstrate low thermal conductivity and a high Seebeck coefficient. This research project
involved the synthesis of Bi1−xNaxCuSeO1−xFx (x = 0, 0.05, 0.10, 0.15, and 0.20) ceramics using
high-energy ball milling and cold isostatic pressing techniques. A comprehensive investigation was
conducted to examine the influence of co−doping NaF on the thermoelectric properties of BiCuSeO
ceramics. The substitution of Bi3+ with Na+ introduces a substantial number of holes, resulting in
a remarkable improvement in the electrical conductivity and power factor. The conductivity was
significantly increased from 9.10 S cm−1 (BiCuSeO) to 94.5 S cm−1 (Bi0.85Na0.15CuSeO0.85F0.15) at
323 K. Additionally, at 823 K, the power factor of the Bi0.85Na0.15CuSeO0.85F0.15 sample reached
44.8 × 10−5 W/m K2. Furthermore, the Bi1−xNaxCuSeO1−xFx ceramics demonstrated a minimum
thermal conductivity of 0.43 W m−1 K−1. Consequently, the Bi0.85Na0.15CuSeO0.85F0.15 sample
achieved a maximum ZT value of 0.78, which is 7.09 times higher than that of the pure BiCuSeO
sample (0.11).

Keywords: high-energy milling; BiCuSeO; thermoelectric performance; microstructure; double doping

1. Introduction

The problems of environmental pollution and energy crisis are rapidly worsening.
Currently, in the conventional procedure of utilizing fossil energy, only a small propor-
tion of the mineral energy is converted and utilized, with the majority of the remaining
energy being dissipated as heat [1]. Extensive research has been conducted by scientists to
explore renewable and ecofriendly energy sources while also improving energy efficiency.
Thermoelectric materials exploit the carrier and phonon transmission properties within
solid materials to enable the direct conversion between electric energy and heat energy,
making them a promising environmentally friendly energy material [1,2]. A dimensionless
figure of merit is used to evaluate the thermoelectric properties of materials. This can be
calculated using the equation ZT = S2σT/κ. In this equation, S, σ, T, and κ represent the
Seebeck coefficient, electrical conductivity, absolute temperature, and thermal conductivity,
respectively [3–5]. Nonetheless, the interdependence of S, σ, and κ presents a challenge
in simultaneously optimizing multiple parameters and enhancing thermoelectric perfor-
mance. [6,7]. The concept of phonon glass electron crystals offers a potential solution to
this obstacle [8]. Among them, layered material is an ideal candidate material [9–15]. The
BiCuSeO system with low thermal conductivity and a high Seebeck coefficient has garnered
significant interest [12–15]. Figure 1a illustrates the layered structure of BiCuSeO, which
belongs to the ZrCuSiAs type and is classified under the P4/nmm space group. The crystal
structure comprises a stack of alternating layers in the C−axis direction. These layers
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consist of an insulating layer (Bi2O2)2+ and a conducting layer (Cu2Se2)2−. The Bi2O2
layer functions as a charge storage layer, comprising a slightly deformed Bi4O octahedron
with shared Bi−Bi edges. Moreover, the Cu2Se2 layer serves as a carrier transport surface,
composed of slightly deformed CuSe4 tetrahedra with shared Se−Se sides [16–18]. Addi-
tionally, the weak chemical bonding between the two layers and the junction connecting
them enhances phonon scattering, resulting in an exceptionally low thermal conductivity
(0.40 Wm−1K−1 at 923 K) [13].
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Figure 1. (a) Schematic diagram of the crystal structure of BiCuSeO; (b) XRD pattern of
Bi1−xNaxCuSeO1−xFx (x = 0, 0.05, 0.10, 0.15, and 0.20) ceramics.

However, the electrical conductivity of BiCuSeO is considerably restricted due to its
low hole concentration, which hinders the achievement of a high ZT value. To address
this issue, the researchers employed techniques such as element doping to enhance the
material’s conductivity, adjusted the band gap to optimize the carrier concentration, and
utilized texturization to increase carrier mobility [19,20]. The improvement of the thermo-
electric performance of BiCuSeO can be achieved via the doping of monovalent elements
(Na+, K+, Ag+, etc.) or bivalent elements (Mg2+, Ca2+, Ba2+, Pb2+, etc.) at the Bi site or
by increasing the concentration of hole carriers using Bi, Cu, and O vacancies and ball
milling [14–17,21–23]. Additionally, the technique of dual doping has been identified as an
efficient approach to enhancing the thermoelectric performance of materials. By introduc-
ing Zn into the Bi and S into the O positions of BiCuSeO, Sun et al. successfully improved
its ZT value to 0.68 at 750 K [24]. Guang-Kun Ren et al. conducted a study in which they
introduced dopants of Pb and Te into the Bi and Se positions, respectively. The substitution
of Te at the Se sites had a significant impact on the extent of chemical bonding and the mass
of effective carriers. As a result, this led to a weakening of the coupling between the carriers
and phonons, ultimately enhancing carrier mobility and resulting in high conductivity [25].
Via the utilization of mechanical alloying, the BiCuSeO system achieved a ZT value of
1.08 by incorporating Pb and Ni elements into the Bi and Cu sites [19]. The substitution
of Bi elements with Pb and In elements led to the attainment of a ZT value of 1.23 in the
BiCuSeO system [26]. Liu et al. observed that the incorporation of Pb and Ca elements into
the Bi site of BiCuSeO not only enhanced the conductivity and thermal conductivity but
also increased the effective mass of carriers, thereby preserving a high Seebeck coefficient
for the material. Consequently, the doped BiCuSeO achieved a ZT value of 1.5 [27], which
represents the highest value within the current system.

As demonstrated by the aforementioned results, co-doping of elements can signifi-
cantly improve the thermoelectric performance of BiCuSeO. While there is a substantial
amount of research on the Bi, Cu, and Se dopants in BiCuSeO, there is a scarcity of informa-
tion regarding the O dopants. Additionally, studies [14] and [28] have indicated that the ZT
values of the BiCuSeO system can be enhanced via the doping of F and S elements at the O
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site. The majority of the materials are synthesized using the solid-state reaction sintering
technique. The drawback of this approach is the lengthy requirement for calcination of the
raw materials, whereas the high-energy ball milling technique enables the rapid synthesis
of the raw materials. In light of this, the high-energy ball milling technique was employed
to swiftly synthesize Na and F co-doped BiCuSeO ceramics. A systematic investigation
was conducted to assess the influence of incorporating sodium into the bismuth position
and fluorine into the oxygen position on the microstructure and thermoelectric properties
of the BiCuSeO.

2. Experimental
2.1. Synthesis of Starting Material

The Bi1−xNaxCuSeO1−xF x(x = 0, 0.05, 0.10, 0.15, and 0.20) ceramics were fabricated us-
ing high-energy ball milling and cold isostatic pressing techniques [29,30]. Initially, the mass
of the raw material was determined based on the chemical formula of Bi1−xNaxCuSeO1−xFx
(x = 0, 0.05, 0.10, 0.15, and 0.20). Bi2O3 (99.999%, Aladdin), Bi (99.999%, Aladdin), Cu
(99.999%, Aladdin), Se (99.999%, Aladdin), and NaF (99.99%, Aladdin) were selected. Sub-
sequently, the raw material powder of Bi1−xNaxCuSeO1−xFx was measured and introduced
into a ball mill tank within a high-energy planetary ball mill. The ball mill tank utilized
in this study was a 500 mL cemented carbide ball grinding tank, while the ball employed
had a diameter of 10 mm and was also made of cemented carbide. The proportion of
the ball to material was kept at a ratio of 30 to 1, while the milling speed was adjusted
to 560 rpm. A dry ball milling process was employed. The duration of the ball milling
process spanned 2 h. To mitigate the potential occurrence of elevated temperatures and
subsequent side reactions during the ball milling process, and produced side reactions,
a cycle approach consisting of 10 min of ball milling followed by +3 min of cooling was
implemented. Following the ball milling process, the powder was placed into an elongated
rubber balloon, and shaped into diameters of 10 mm and 15 mm. It was then subjected to
a cold isostatic pressing process at a pressure of 300 MPa for 20 min. Subsequently, the
resulting rod sample was sealed in a quartz tube (vacuum ~10−3 pa) and gradually heated
to 450 ◦C at a rate of 5 ◦C/min. A 2-h calcination process was then carried out in a Muffle
furnace. The utilization of low-temperature sintering effectively mitigates the growth of
the ceramic sample’s grains. Finally, the sintered sample was prepared into dimensions of
15 mm × 3 mm × 3 mm and ∅12.5 mm × 2 mm for thermoelectric performance testing.

2.2. Characterization

Phase analysis of Bi1−xNaxCuSeO1−xFx (x = 0, 0.05, 0.10, 0.15, and 0.20) ceramics was
conducted on an X-ray diffractometer (XRD, Bruker D8 Advance, Karlsruhe, Germany).
The XRD analysis utilized the Cu Kα line and encompassed a scanning range of 20◦ to 60◦

at a scanning speed of 4◦/min and a voltage of 40 kV and 40 mA. The fracture morphology
of the ceramics was analyzed using field emission scanning electron microscopy (FESEM;
Merlin Compact, Carl Zeiss, Oberkochen, Germany). X-ray photoelectron spectroscopy
(XPS) was employed to analyze the valence states of the samples. S and σ were concurrently
measured using a ZEM-3 thermoelectric performance tester using standard DC four-probe
techniques. The κ was determined using the equation κ = ρDCp, where ρ represents
the volumetric density determined via the Archimedes method, D denotes the thermal
diffusivity measured using a laser flash apparatus (LFA 457, Netzsch, Selb, Germany), and
Cp signifies the specific heat obtained using a differential scanning calorimetry thermal
analyzer (DSC 8000, PerkinElmer, Waltham, MA, USA). The Hall coefficient (RH) was
obtained using a Physical Property Measurement System (PPMS, Quantum Corporation,
San Diego, CA, USA). The carrier concentration was stimulated using the single-electron
approximation (RH = 1

n·e , RH, n, and e represent the Hall coefficient, carrier concentration,
and electron charge, respectively).



Coatings 2023, 13, 2069 4 of 11

3. Results and Discussion

Figure 1b illustrates the XRD patterns of Bi1−xNaxCuSeO1−xFx (x = 0, 0.05, 0.10,
0.15, and 0.20) ceramics. Compared to the standard card of BiCuSeO (PDF#45−0296), the
diffraction peak position of the Bi1−xNaxCuSeO1−xFx is found to be consistent with that of
the standard card. The obtained results indicate that the synthesized Bi1−xNaxCuSeO1−xFx
ceramics exhibit a single phase. With an increase in the NaF doping amount, the XRD
peak of the Bi1−xNaxCuSeO1−xFx ceramics demonstrates a slight rightward shift. This shift
can be attributed to the marginally smaller ionic radius of Na+ (0.102 nm) in comparison
to Bi3+ (0.103 nm), as well as the smaller ionic radius of F− (0.133 nm) compared to O2−

(0.140 nm). This makes the crystal plane spacing smaller. The crystal face spacing and the
lattice constants are calculated using the Bragg Equations (1) and (2):

λ = 2dhklsinθhkl (1)

1
d2 =

h2 + k2

a2 +
l2

c2 (2)

where d, a, and c represent the crystal plane spacing and lattice parameters, correspond-
ingly. Table 1 displays the lattice constants a and c of Bi1−xNaxCuSeO1−xFx (x = 0, 0.05,
0.10, 0.15, and 0.20) ceramics. The results indicate that the lattice constant a of the doped
samples increases, while the lattice constant c decreases with an increase in the NaF doping
amount. The crystal face spacing of the Bi1−xNaxCuSeO1−xFx ceramics is calculated using
Equation (2), revealing a negligible change in the crystal face spacing. Consequently, the
diffraction peak of the Bi1−xNaxCuSeO1−xFx ceramics does not exhibit any noticeable
deviation. Table 1 shows the computation of thegrain size for Bi1−xNaxCuSeO1−xFx ce-
ramics utilizing the Debye−Scherrer formula Dc = 0.89λ/(Bcosθ), where B represents the
half-peak width and θ signifies the Bragg diffraction angle. The results indicate that the
mean grain sizes of Bi1−xNaxCuSeO1−xFx (x = 0, 0.05, 0.10, 0.15, and 0.20) ceramics are
1.92 µm, 1.63 µm, 1.66 µm, 1.68 µm, and 1.72 µm, respectively. The fracture morphology
of Bi1−xNaxCuSeO1−xFx (x = 0, 0.05, 0.10, 0.15, and 0.20) ceramics is depicted in Figure 2,
demonstrating the presence of layered structures, good crystallinity, and a void-free surface.
Based on Figure 2, the Bi1−xNaxCuSeO1−xFx ceramics exhibit tightly stacked grains, with
an average grain size of approximately 2 um and minimal variation. These results aligns
with the results obtained in calculations using the Scherrer formula.
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Table 1. Lattice parameters and grain sizes of Bi1−xNaxCuSeO1−xFx (x = 0, 0.05, 0.10, 0.15, and 0.20).

Samples a(Å) c(Å) Grain Size (µm)

x = 0 3.93908 8.90968 1.92
x = 0.05 3.92563 8.92035 1.63
x = 0.10 3.91786 8.92214 1.66
x = 0.15 3.91661 8.93309 1.68
x = 0.20 3.92251 8.93120 1.72

The full XPS spectrum of the Bi1−xNaxCuSeO1−xFx (x = 0, 0.15) ceramics are displayed
in Figure 3a. The spectrum reveals the presence of Bi, Cu, Se, and O elements in the undoped
sample, while the doped NaF sample contains Bi, Cu, Se, O, Na, and F elements. Combined
with the XRD results, it is possible to verify the successful integration of Na and F elements
into the BiCuSeO system. Figure 3b–f show the XPS high-resolution spectra of bismuth
(Bi), copper (Cu), selenium (Se), oxygen (O), and sodium (Na) in the Bi1−xNaxCuSeO1−xFx
(x = 0, 0.15) ceramics. The high-resolution spectrum of Bi 4f in Figure 3b demonstrate
the presence of two spin−orbit peaks, corresponding to the spin−orbit peak of Bi 4f7/2
and the spin−orbit peak of Bi 4f5/2, respectively. The presence of two distinct peaks at
158.28 eV and 163.58 eV, exhibiting a disparity of 5.3 eV, implies the existence of Bi atoms
in the Bi3+ state [23,31,32]. In Figure 3c, the 2p orbits of Cu elements in the pure BiCuSeO
sample exhibit a split into two distinct peaks, namely the spin−orbit peak of Cu 2p3/2
at 931.68 eV and the spin−orbit peak of Cu 2p1/2 at 951.58 eV. This difference of 19.9 eV
indicates the presence of Cu+ ions in the sample. The spin−orbit splitting of Cu 2p in the
Bi0.85Na0.15CuSeO0.85F0.15 sample is observed to be divided into four peaks. Based on the
results, the presence of Cu2+ in the Bi0.85Na0.15CuSeO0.85F0.15 compound is consistent with
the previous literature [32]. The Se 3d high-resolution spectrum, as depicted in Figure 3d,
reveals a complex spin−orbit splitting pattern. Specifically, the spin−orbit peaks of Se
3d5/2 are observed at 53.48 eV and 54.88 eV, while the spin−orbit peaks of Se 3d3/2 are
detected at 54.28 eV and 55.48 eV. The indication of Se atoms in the form of Se2− is derived
from the low binding energy observed in the Se 3d5/2 and Se 3d3/2 spin−orbit peaks, which
aligns with the results documented in the literature [32]. Furthermore, the high binding
energy observed in the spin−orbit peaks suggests an interaction between the layers of Se. In
Figure 3e, the high-resolution spectrum of O 1s displays two spin−orbit peaks. The peak at
529.4 eV corresponds to the lattice oxygen, while the high binding energy peak indicates the
presence of an oxygen vacancy. To determine the alteration in oxygen content between the
two types, the ratio of the areas of the two peaks is utilized. The BiCuSeO sample exhibits an
area ratio of 0.2 for lattice oxygen to oxygen vacancy, whereas the Bi0.85Na0.15CuSeO0.85F0.15
displays an area ratio of 0.09. These results indicate that the introduction of NaF as a dopant
increases the presence of lattice defect in the Bi1−xNaxCuSeO1−xFx sample, which aligns
with previous literature reports [33,34]. Figure 3f depicts the high-resolution spectrum
of Na 1s in the Bi0.85Na0.15CuSeO0.85F0.15 sample, wherein the Na 1s orbital manifests
a solitary peak, indicating the presence of Na with a +1 valence, which aligns with the
results documented in the literature [35]. Similarly, the 1s spin–orbit peak of F in Figure 3g
confirms the existence of F− in a manner that aligns with the outcomes reported in the
literature [36].

Figure 4a illustrates the electrical conductivity (σ) as a function of temperature for the
Bi1−xNaxCuSeO1−xFx (x = 0, 0.05, 0.10, 0.15, and 0.20) ceramics. In the case of the pure
BiCuSeO sample, the conductivity remains consistently low across the entire range of test
temperatures. However, upon the introduction of doping, a significant improvement in
conductivity is observed. The σ of Bi1−xNaxCuSeO1−xFx ceramics demonstrates a positive
correlation with the level of NaF doping across the entire temperature range. Specifi-
cally, at 323 K, the conductivity increases from 9.10 S cm−1 (BiCuSeO) to 94.50 S cm−1

(Bi0.80Na0.20CuSeO0.80F0.20), resulting in a remarkable increase of 900%. The primary factor
contributing to the increased conductivity of Bi1−xNaxCuSeO1−xFx (x = 0, 0.05, 0.10, 0.15,
and 0.20) ceramics is the rise in carrier concentration within the system, calculated using
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the equation: the relationship between conductivity (σ) and carrier concentration (n) and
mobility (µ) can be represented as σ = enu, where e represents the charge of an electron. The
carrier concentration is determined using the expression n = 1/eRH. Table 2 demonstrates
the carrier concentration and mobility values for Bi1−xNaxCuSeO1−xFx (x = 0, 0.05, 0.10,
0.15, and 0.20) ceramics. With the introduction of NaF, the electrical conductivity σ experi-
ences an initial decrease, followed by an increase as temperature rises, ultimately reaching
a critical point at 523 K. Within the temperature range spanning from 323 K to 523 K, the
conductivity of the ceramics doped with NaF diminishes with an increasing temperature,
demonstrating the characteristics of a degenerate semiconductor. However, as the tem-
perature surpasses 523 K, the conductivity of the sample exhibits a proportional increase
with the temperature. This behavior indicates that the sample exhibits semiconductor
properties that are non-degenerate, attributable to its intrinsic excitation. The conductivity
of Bi0.80Na0.20CuSeO0.80F0.20 reaches a maximum of 108.6 S cm−1 at 823 K.
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Table 2. Carrier concentration, mobility, effective mass, and density of Bi1−xNaxCuSeO1−xFx (x = 0,
0.05, 0.10, 0.15, and 0.20) ceramics at room temperature.

Samples n (1019 cm−3) µ (cm2 V−1 S−1) m* (m0) ρ (g/cm3)

x = 0 0.99 6.109 0.7621 7.517
x = 0.05 7.54 2.466 2.1792 7.495
x = 0.10 10.3 3.352 2.1016 7.473
x = 0.15 51.5 0.969 4.9396 7.444
x = 0.20 57.8 1.022 4.0589 7.367

Figure 4b illustrates the temperature-dependent S of the Bi1−xNaxCuSeO1−xFx (x = 0,
0.05, 0.10, 0.15, and 0.20) ceramics. The positive signs of all Seebeck coefficients indicate that
the Bi1−xNaxCuSeO1−xFx ceramic functions as a P-type semiconductor with predominantly
hole charge carriers. The Seebeck coefficient of BiCuSeO exhibits a value of 349 µV K−1

at 323 K, while it decreases to 324 µV K−1 at 823 K. Moreover, the Seebeck coefficient of
the Bi1−xNaxCuSeO1−xFx samples decreases as the NaF doping content increases at 323 K.
In the context of degenerate semiconductors, employing a parabolic band structure and
adopting the phonon scattering approximation, the Pisarenko relationship can offer an
approximate depiction of S [37,38].

S =
8π2kB

2T
3eh2 m∗

( π

3n

)2/3
(3)

This relationship encompasses various parameters, including the Seebeck coefficient
(S), Boltzmann constant (kB), absolute temperature (T), carrier charge (e), reduced Planck
constant (h), carrier effective mass (m*), and carrier concentration (n). By examining
Formula (3), it becomes evident that the Seebeck coefficient exhibits an inverse relationship
with the carrier concentration and a direct relationship with the effective mass. The effective
mass m* can be calculated using Formula (3), as presented in Table 2. It is observed that the
effective mass m* exhibits an increasing trend as the NaF doping content increases, ranging
from 0.7621 m0 in the pure sample to 4.9396 m0 in the Bi0.85Na0.15CuSeO0.85F0.15 sample.
These results indicate that the decrease in the Seebeck coefficient of Bi1−xNaxCuSeO1−xFx
ceramics primarily stems from the concurrent increase in the carrier concentration within
the system.

The curves of the power factor as a function of temperature are shown in Figure 4c, illus-
trating that the PF of all doped samples exceeds that of pure BiCuSeO across the entire tempera-
ture range due to a significant increase in conductivity. Notably, the Bi0.90Na0.10CuSeO0.90F0.10
samples exhibit the highest power factor, reaching 16.7 × 10−5 W/m K−2 at 323 K. Fur-
thermore, as the temperature increases, the power factor of the Bi0.85Na0.15CuSeO0.85F0.15
samples gradually surpasses that of the Bi0.90Na0.10CuSeO0.90F0.10 samples. At 823 K, the
Bi0.85Na0.15CuSeO0.85F0.15 sample demonstrates a maximum PF of 44.8 × 10−5 W/m K2,
which is approximately 7.11 times greater than that of the pure BiCuSeO sample
(6.3 × 10−5 W/mK2).

Figure 5a displays the relationship between the thermal conductivity (κ) and temper-
ature for Bi1−xNaxCuSeO1−xFx (x = 0, 0.05, 0.10, 0.15, and 0.20) ceramics. The thermal
conductivity κ of BiCuSeO experiences a significant decrease from 0.98 Wm−1 K−1 at
323 K to 0.43 Wm−1 K−1 at 823 K, while the thermal conductivity remains virtually un-
changed even after the introduction of NaF doping. Typically, the total thermal conductivity
comprises two components: the electron thermal conductivity κe and the lattice thermal
conductivity κl. The calculation of the electron thermal conductivity often involves the
utilization of the Wiedemann−Franz relationship (κe = LσT), where σ represents the elec-
trical conductivity, T denotes the absolute temperature, and L signifies the Lorentz constant.
L can be determined using the formula L = 1.5 + exp

(
−|S|
116

)
[39], with the Sommerfeld

value (L0) being equal to 2.44 × 10−8 W Ω K−2. Figure 5b illustrates the temperature
dependence of the electron thermal conductance in Bi1−xNaxCuSeO1−xFx (x = 0, 0.05, 0.10,
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0.15, and 0.20) ceramics. The figure demonstrates an increasing trend in the electron thermal
conductivity of the Bi1−xNaxCuSeO1−xFx ceramics as the level of doping increases. This
can be primarily attributed to the corresponding increase in electrical conductivity. Notably,
tbe Bi0.8Na0.2CuSeO0.8F0.2 ceramics exhibit a maximum electron thermal conductivity of
0.219 W m−1 K−1 at 823 K. The results indicate that the lattice thermal conductivity plays a
dominant role in the BiCuSeO system.
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The relationship between the lattice thermal conductivity and temperature for the
Bi1−xNaxCuSeO1−xFx (x = 0, 0.05, 0.10, 0.15, and 0.20) ceramics is depicted in Figure 5c.
As the temperature increases, the lattice thermal conductivity of the Bi1−xNaxCuSeO1−xFx
samples decreases. This phenomenon can be attributed to the strengthening of lattice
vibration and the increased scattering ability of phonons, resulting in a reduction in the
lattice thermal conductivity as the temperature increases. In comparison to the pure
BiCuSeO sample, the decrease in the lattice thermal conductivity of Bi1−xNaxCuSeO1−xFx
ceramics is primarily caused by the decrease in grain size induced the NaF doping. Table 1
presents that the grain sizes of Bi1−xNaxCuSeO1−xFx (x = 0, 0.05, 0.10, 0.15, and 0.20)
ceramics are 1.92 µm, 1.63 µm, 1.66 µm, 1.68 µm, and 1.72 µm, respectively. It is observed
that the grain sizes of the doped samples are comparatively smaller than those of the
pure BiCuSeO sample, resulting in an enhanced ability to scatter phonons. Consequently,
the lattice thermal conductivity of Bi1−xNaxCuSeO1−xFx ceramics, when doped with NaF,
decreases with an increase in the doping amount.

Figure 5d illustrates the temperature-dependent ZT values for Bi1−xNaxCuSeO1−xFx
(x = 0, 0.05, 0.10, 0.15, and 0.20) ceramics. The ZT value of Bi1−xNaxCuSeO1−xFx ceramics
is primarily determined by its power factor, as the variation in thermal conductivity is
insignificant. The figure illustrates that the ZT value exhibits a positive correlation with the
test temperature. Specifically, Bi0.85Na0.15CuSeO0.85F0.15 achieves a peak ZT value of 0.78
at 823 K, which is 7.09 times greater than that of pure BiCuSeO. The results indicate that a
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significant improvement in the thermoelectric performance of BiCuSeO is observed with
the addition of NaF.

4. Conclusions

In this study, the synthesis of NaF-doped BiCuSeO was successfully achieved by em-
ploying high-energy ball milling and cold isostatic pressing techniques. The incorporation
of Na and F elements led to a reduction in the grain size of the Bi1−xNaxCuSeO1−xFx
samples, an elevation in the carrier concentration, and consequently an enhancement in
the electrical conductivity. At 823 K, the power factor of the pristine sample increases from
6.3 × 10−5 W/m K2 to 44.8 × 10−5 W/mK2 in the Bi0.85Na0.15CuSeO0.85F0.15 sample. The
reduction in grain size in the doped samples enhances the phonon scattering capability of
the system, thereby leading to a decrease in the lattice thermal conductivity. Specifically,
the Bi0.85Na0.15CuSeO0.85F0.15 sample attains a maximum ZT value of 0.78 at 823 K, demon-
strating a 7.09-fold improvement (0.11) compared to the original BiCuSeO sample. The
above results indicate that co-doping is an successful effective strategy for enhancing the
thermoelectric performance of the materials.
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