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Abstract: Biofouling is a major concern in marine industries. The use of traditional toxic antifouling
coatings is forbidden or severely restricted. This study aimed to provide a green and effective
antifouling coating. The coating was prepared using a polydimethylsiloxane (PDMS) matrix and
Cu-doped zinc sulfide (ZnS:Cu). Four samples with different ZnS:Cu contents (1, 10, 20, and 50 wt%)
were prepared. Pristine PDMS (0 wt%) was used as the control. The results showed that all coatings
had hydrophobic surfaces conducive to combating biofouling. In tests against B. Subtilis, the 1,
10, 20, and 50 wt% samples showed enhanced antifouling capabilities compared to the 0 wt%
sample. In static and dynamic tests against Chlorella, the antifouling capability increased with
increasing ZnS:Cu content and the 50 wt% sample showed the best antifouling capability. The possible
antifouling mechanisms of these coatings include the release of ions (Zn2+ and Cu+), induction of
deformation, and fluorescence emission. This study provides a reference for the application of
Zn2+/Cu+ combinations to combat marine biofouling.

Keywords: PDMS; cuprous oxide; zinc ion; marine biofouling; antifouling coating

1. Introduction

Biofouling of marine vessels can increase the surface roughness, leading to increased
drag resistance and fuel consumption [1]. Biofouling accelerates surface corrosion and
affects equipment safety; therefore, it is a major issue in the marine industry [2]. Traditional
antifouling coatings contain toxic chemicals such as mercury, arsenic, and tributyltin (TBT).
Although these toxic coatings are effective in combating biofouling, they exhibit teratogenic
and lethal effects on other marine organisms. Their most serious consequence is that they
can harm human health by bioaccumulating in food chains. Several countries have reported
the presence of TBT in humans [3,4]. In 2001, the International Maritime Organization
(IMO) passed a ban on the application of TBT by 1 January 2003, and a total ban on the use
of TBT by 1 January 2008. Therefore, it is necessary to develop environmentally friendly
and effective antifouling coatings.

Biofouling is a stepwise process that involves the formation of a conditioning film,
a biofilm, and macroscopic fouling [5]. Preventing biofilm formation (where the major
contributors are bacteria and diatoms) can inhibit the subsequent biofouling stages [1].
Recently, several metal ions, including zinc (Zn2+), copper (Cu+ and Cu2+), and silver (Ag+)
ions, have been used to combat biofouling because of their microbial activity [6,7]. The
toxicity of these metal ions (e.g., Cu) is lower than that of TBT, and they are considered rela-
tively green antifouling biocides under government supervision and approval [8,9]. Pristine
or modified metal ions are mostly used as fillers to enhance the antifouling capabilities of
coatings. For example, silicone/ZnO nanorod composite coating [10], ZnO/multi-walled
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carbon nanotube/polyethersulfone composite coating [11], polyhexanide-coated copper
oxide nano-particles/poly (vinylidene fluoride) composite coating [12], cuprous oxide
microcapsule/polyvinylpyrrolidone antifouling coating [13], AgNPs/poly(di(ethylene
glycol)methyl ether methacrylate) coating [14], Ag@TA-SiO2 nanospheres/terpolymer
coating [15], and Ag/ polydimethylsiloxane (PDMS) composite coating [16] have shown
potential for preventing marine biofouling. However, most of these solutions involved
a single metallic ion. A recent study showed that a single metal-based coating has an-
tifouling limitations (e.g., limited broad-spectrum antifouling capability and durability)
under various conditions [17]. Therefore, combining metal ions with other materials to
fabricate synergistic antifouling coatings has attracted the attention of researchers. Tian
et al. reported a Cu-Ti composite coating by plasma spraying of mechanically mixed Cu/Ti
powders, and the coating showed remarkable antifouling efficiency against bacterial sur-
vival and adhesion up to ∼100% [18]. Calabrese et al. investigated the synergistic effects of
Cu, Ag, and titanium dioxide (TiO2) [19]. The Cu/TiO2 powder exhibited the best antifoul-
ing performance due to its synergistic effect. Recently, many metallic-ion combinations,
including ZnO/Fe2O3 [20], graphene/Ag [21], g-C3N4/ZnO [22], and Cu/TiO2 [23] have
exhibited enhanced antifouling capabilities.

To the best of our knowledge, no previous studies have investigated the antifouling
capabilities of the Zn2+/Cu+ combinations. Cu-doped zinc sulfide (ZnS:Cu) is a semicon-
ductor material that emits luminescence under mechanical forces [24]. In this study, ZnS:Cu
was incorporated into polydimethylsiloxane (PDMS) as a filler to investigate the synergistic
antifouling effects of Zn2+ and Cu+. PDMS is an elastic material that can undergo defor-
mation under the impact of water flow; thus, the ZnS:Cu/PDMS composite coating can
emit luminescence in flowing water. Several studies have revealed that luminescence can
inhibit algal settlement [25–27]; hence, the ZnS:Cu/PDMS composite coating has double
antifouling effects, that is, microbial activity (Zn2+/Cu+) and luminescent drive effects.
In the antifouling tests, Bacillus Subtilis (B. Subtilis) and Chlorella were selected as fouling
models to evaluate the antifouling capabilities of the ZnS:Cu/PDMS composite coatings.

2. Materials and Methods
2.1. Materials

Commercial ZnS:Cu (model: D502CT, particle size: 25 µm) was purchased from
Shanghai Keyan Phosphor Technology Co. Ltd. (Shanghai, China). Two-part PDMS
(SYLGARD 184 Silicone Elastomer Kit) was provided by the Dow Corning Corporation
(Midland, TX, USA), and the kit included a PDMS base and curing agent. The bacterial
strain B. subtilis NCIB3610 was provided by Chuanxiang Biotechnology, Co., Ltd. (Shanghai,
China). Chlorella was provided by HEALTH BIOTECH, Co., Ltd. (Nanjing, China).

2.2. Preparation of ZnS:Cu/PDMS Coating

Method 1: First, 0.25 g of ZnS:Cu, 25 g of PDMS, and 2.5 g of the curing agent were
mixed for 5 min using a mechanical stirrer at 80 rpm. The mixture was then placed
in a vacuum oven at room temperature to remove internal bubbles. When no bubbles
overflowed, the mixture was poured into an acrylic model (groove depth = 1 mm). After
48 h of curing at room temperature, a 1 wt% ZnS:Cu/PDMS coating was obtained.

Method 2: Because micro- and nano-particles have a high specific surface per unit
volume, they exhibit high surface free energies (SFEs) [28]. It is difficult to distribute these
particles uniformly in a low-surface-energy polymer matrix (e.g., silicone and fluorine
polymers) due to the differences in their SFEs. Additionally, micro- and nano-particles are
affected by gravity. Hence, during curing, the particles tend to move toward the bottom of
the composite material. Therefore, the ZnS:Cu/PDMS coating prepared using Method 1
may have limitations in terms of dispersibility. A new preparation method was used to
address this issue as follows:

First, 25 g of PDMS and 2.5 g of the curing agent were mixed for 5 min using a
mechanical stirrer at 80 rpm, and the mixture was placed in a vacuum oven at room
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temperature to remove the internal bubbles. The mixture was allowed to stand in air for
A hours to increase its viscosity, after which 0.25 g of ZnS:Cu was added and stirred for
30 min. The ZnS:Cu/PDMS mixture was poured into an aluminum alloy model (groove
depth = 1 mm) and placed in a vacuum oven to remove the internal bubbles. The model
was then placed on a heating platform under B ◦C for C mins. After curing, a 1 wt%
ZnS:Cu/PDMS coating was prepared. In addition, 10, 20, and 50 wt% ZnS:Cu/PDMS
samples were prepared, and pristine PDMS (0 wt%) was used as the control group. Based
on our experience, the viscosity after 5–8 h was accepted for preparation. According to the
technical data sheet of SYLGARD 184 Silicone Elastomer, the curing time of PDMS at 25,
100, 125, and 150 ◦C are 28 h, 35 min, 20 min, and 10 min, respectively. Considering the
effects of incorporated ZnS:Cu particles and coating thickness, the curing parameters of
80 ◦C (240 min) and 150 ◦C (20 min) were used. The parameter combinations for A, B, and
C are listed in Table 1.

Table 1. Three preparation methods.

Group A (h) B (◦C) C (min)

1 5 80 240
2 7 80 240
3 8 150 20

2.3. Characterization Analysis

Water contact angles (WCA) were measured using a drop shape analyzer (DSA25,
Kruss, Hamburg, Germany). In the WCA measurement, a 5.0 µL deionized (DI) water
droplet was applied, and each sample was measured five times to reduce experimental
error. The SFEs were estimated using Equation (1) [29]:

cos θ = −1 + 2
√

γS

γL

[
1–β (γL − γS)

2
]

(1)

where θ is the WCA and γS and γL are the SFEs of solid and liquid, respectively. β can
be considered a constant with the value of 1.129 × 10−4 m2/mJ. The γL of DI water is
72.8 mJ/m2. Surface chemical state information was analyzed using an X-ray photoelectron
spectrometer (XPS, ESCALAB 250XI, ThermoFisher Scientific, Waltham, MA, USA) with Al
Ka x-rays. The chemical groups of the samples were analyzed using a Fourier-transform
infrared (FT-IR) spectrometer (Nicolet iS10, Thermo Scientific, Waltham, MA, USA). The
ZnS:Cu sample for the FT-IR measurements was prepared using the KBr pellet method,
and the thickness of the prepared sample was tens of microns. The surface elements were
measured using an energy-dispersive spectrometer (EDS, HORIBA EMAX, HORIBA, Ltd.,
Kyoto, Japan). Tensile tests were performed using a tensile tester (UTM5305, YOUHONG,
Shanghai, China), and the reference measurement procedure was GB/T 528-2009 [30]. To
test the weight loss of the samples in a water environment, the pristine samples were
immersed in DI water for 72 h, after which the samples were placed into a vacuum oven at
40 ◦C for 48 h. After drying, the weight loss of each sample was calculated as follows:

Weight loss = (M0 − M1)/M0 × 100% (2)

where M0 is the weight of the pristine sample and M1 is the weight of the dried sample
after immersion.

2.4. Antifouling Tests

Antibacterial Test. The samples were immersed in ethyl alcohol under ultrasonication
for 20 min and then dried in a vacuum oven for 1 h. The method for the culture of B. subtilis
was the same as previously reported [25,31]. The bacterial suspension was diluted to
106 CFU/mL. The samples were immersed in the bacterial solution at 37 ◦C for 24 h.
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After the test, the samples were gently washed with phosphate-buffered saline (PBS) to
remove unattached bacteria. The samples and PBS were placed in separate centrifuge
tubes and ultrasonically cleaned for 5 min to detach the attached bacteria. The PBS and
bacteria mixture were then diluted to 10−4. The diluted mixture was evenly deposited on a
solid agar medium and cultured for 24 h. Finally, the individual colonies on the plate were
counted to determine the antifouling capabilities of the samples. Three parallel experiments
were performed for each sample to minimize the experimental error. The antibacterial ratio
of each sample was calculated as follows:

Antibacterial ratio = (A − B)/A × 100% (3)

where A and B are the numbers of bacterial colonies in the control and experimental
samples, respectively.

Anti-Algal Settlement Test. The cleaning and bactericidal procedures used for the sam-
ples were the same as those described for the antibacterial tests. In the tests under static con-
ditions, the pretreated samples were immersed in a Chlorella solution (0.5 × 108 cells/mL)
for 15 h. In the tests under dynamic conditions, the samples and Chlorella solution were
placed in a thermostatic oscillator (SHA-B, JIANGXI RUYU Technology Development
Co., Ltd., Shanggao, China) at 150 rpm for 15 h. Because Chlorella requires sunlight for
photosynthesis, the test was performed under a plant growth lamp (25 W, Hebei Pengxian
Agricultural Technology Co., Ltd., Shijiazhuang, China) with a 7.5 h light time and 7.5 h
dark periods. After the test, the samples were gently washed with PBS to remove the
unattached Chlorella. The surface area was measured using a digital microscope (VHX-6000;
Keyence, Osaka, Japan). The number of Chlorella cells in a 50 µm × 40 µm area was counted
to evaluate the antifouling capabilities of the coatings.

3. Results and Discussion
3.1. Preparation Optimization

As shown in Figure 1a, the sample prepared under 48 h curing exhibits obvious
double layers. No ZnS:Cu particles can be observed from the top, whereas many ZnS:Cu
particles are distributed at the bottom (Figure 1b), and the particle size is approximately
25 µm. Double layers were clearly observed, although the stratification phenomenon was
improved in Groups 1 and 2 (Figure 1d,e, respectively). Figure 1f shows a well-prepared
coating in which ZnS:Cu is evenly distributed. This stratification phenomenon is primarily
attributed to the SFE differences between ZnS:Cu and PDMS, which led to their chemical
incompatibility. During the curing process, the ZnS:Cu particles were affected by gravity,
leading to the settlement of ZnS:Cu in PDMS (Figure 1c). According to Stokes’ law for
settling particles, the settling velocity is [32].

V = g/18 ((ρs − ρf)/µ) D2 (4)

where g is the acceleration due to gravity; ρs and ρf are the densities of particles and fluid,
respectively; µ is the fluid viscosity; and D is the particle diameter. The settling distance is
derived as follows:

S = Vt (5)

where t denotes the settling time. Two strategies are available for reducing the settlement
of the ZnS:Cu particles in the PDMS: reducing the settling velocity (V) and reducing the
curing time (t). According to Equation (4), V can be decreased by decreasing µ. During
the curing process, the viscosity of PDMS increased with increasing time and temperature.
Hence, the PDMS/curing agent mixture was allowed to stand in air for several hours to
increase the viscosity of the PDMS. Another essential condition is the curing time; particle
settlement in the PDMS stops when the PDMS is cured. Therefore, the ZnS:Cu particles in
Group 3 (Figure 1f) showed the best dispersibility among the samples. Because particle
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dispersibility can affect the performance of the coating, the parameter in Group 3 was a
good choice for preparing such coatings.
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Figure 1. (a) Side view, (b) top view, and (c) bottom view of ZnS:Cu/PDMS coating prepared by
method 1 (48 h curing). (c) Schematic illustration of stratification phenomenon in the curing process.
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3.2. Characterization Analysis

The elemental composition of the coating surface was analyzed by XPS (Figure 2a). The
peaks at 102.84 eV (Si2p), 153.83 eV (Si2s), 285.13 eV (C1s), and 532.92 eV (O1s) are typical
characteristics of PDMS [25]. However, although ZnS:Cu was incorporated into PDMS,
no XPS signal was detected in the composite. In the narrow XPS spectrum (Figure 2b,c),
the Zn2p and Cu2p signals are close to the background signal, indicating that they can
be neglected. Because the SFEs of ZnS:Cu and PDMS differ, the ZnS:Cu particles were
completely wrapped in PDMS. In XPS measurements, the probe can only detect a depth
of several nanometers, and it is difficult and challenging to measure heterogeneous and
layered surfaces [33]; hence, no ZnS:Cu signal was detected in the measurement. In the
FT-IR spectra of PDMS and ZnS:Cu/PDMS, the peak at 786.86 cm−1 is due to −CH3 rocking
and the ≡Si−C stretch in ≡Si−CH3, the peak at 1008.89 cm−1 is due to –(CH2)– wagging
vibrations, and the peak at 1257.16 cm−1 is assigned to symmetric −CH3 deformation. In
the FT-IR spectrum of ZnS:Cu (black line in Figure 2d), the peak at 580.48 cm−1 is due to the
Zn-S vibration. However, no such peaks were detected for PDMS or ZnS:Cu/PDMS. Given
that FT-IR is a transmission light measurement technique and that the ZnS:Cu powders
are light-tight, the ZnS:Cu signal is too weak to be detected in 1 mm thick ZnS:Cu/PDMS
coating. The ZnS:Cu sample prepared using the KBr pellet method was sufficiently thin
(tens of microns) for some of the light to pass through; hence, the ZnS:Cu sample showed a
Zn-S peak at 580.48 cm−1. The Cu concentration in ZnS:Cu is typically very low [34,35];
therefore, the Cu signal is too weak to be detected by FT-IR measurements. The EDS
measurements (Figure 2e) agree with the XPS results, which show no difference in the Cu
and Zn contents in the two samples.
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Surface wettability and SFE are crucial parameters for determining the antifouling
capability of coatings [1]. Figure 3a shows that the WCAs of the surfaces ranged from 109.8◦

to 112.4◦, indicating that they were hydrophobic and that the incorporation of ZnS:Cu
in the PDMS had no effect on the surface wettability. The SFE values of the coatings
were similar, ranging from 15.7 to 17.2 mJ/m2. According to Baier’s curve, a surface
exhibits the minimum attachment strength if its SFE ranges from 20 to 25 mJ/m2 [36].
Although the ZnS:Cu/PDMS coatings have lower SFE values, their SFE range is conducive
to combating biofouling.
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Figure 3b shows the results of the tensile tests. The results indicate that the stress–
strain curve decreased with increasing ZnS:Cu content. This may have been caused by
stress concentration, and the ZnS:Cu particles in the PDMS provided the stress concen-
tration points. However, the stress–strain curve of the 50 wt% sample did not follow the
aforementioned trend. This is because excessive ZnS:Cu particles in the PDMS provide
sufficient tensile strength, and the effect of the stress concentration becomes weak. We
assume that all the samples are subjected to a tensile force of 1 MPa, and a higher strain
indicates that the coating is prone to deformation, that is, softer. According to fracture
mechanics and tests, the elastic modulus and stiffness of coatings influence the adhesion of
fouling organisms [37,38]. Specifically, a low elastic modulus and soft coating are helpful
in preventing biofouling adhesion. Hence, the incorporation of ZnS:Cu into PDMS helps
combat biofouling.

Figure 3c shows that the weight loss in the 0 wt% sample is 0.13 ± 0.1%, indicating that
the pristine PDMS can lose weight in the test procedure. When ZnS:Cu was incorporated
into the PDMS, the weight loss in all composite samples increased. This indicates that the
ZnS:Cu particles can be released into water. The weight loss in the ZnS:Cu/PDMS coatings
decreased with increasing ZnS:Cu content. A possible reason is that the increased ZnS:Cu
ratio resulted in enhanced compactness of the composite coatings; thus, the channel for
water molecules to enter the composite coatings was narrowed. However, the weight loss in
the 50 wt% sample was greater than that of the 20 wt% sample. As excess ZnS:Cu particles
were incorporated into the 50 wt% sample, the number of ZnS:Cu particles exposed to
water molecules increased.

3.3. Antifouling Tests

Because bacteria and algae are the major contributors to the primary stage of biofouling,
antifouling tests against B. subtilis and Chlorella were performed. B. subtilis is commonly
found in marine environments [39]. It is a typical rod-shaped bacteria with a length of
2–4 µm (Figure 4a). In the antifouling test against B. subtilis, the 1 wt% sample showed an
average antibacterial ratio of 25.5% (Figure 4b), and the bacterial colonies on samples are
shown in Figure S1. The antibacterial ratio increased to 63.8% when the ZnS:Cu content
increased from 1 to 10 wt%. However, when the ZnS:Cu content was increased to 20 wt%,
the antibacterial ratio decreased to 52.6%. A possible reason for this is that the ZnS:Cu
release rate of the 10 wt% sample was higher than that of the 20 wt% sample (Figure 3c),
but the latter was softer than the former (Figure 3b); hence, both effects resulted in the
20 wt% sample exhibiting reduced antifouling capability. The 50 wt% sample had the
highest ZnS:Cu content and exhibited the highest antibacterial ratio of 66.4%, indicating
its excellent antifouling capability. The possible antibacterial mechanisms of ZnS:Cu can
be analyzed based on the antibacterial activities of pristine ZnS and Cu [35]. According
to previous reports, the generating of biologically reactive oxygen species (ROS) is the
antibacterial mechanism of ZnS. These ROS, such as superoxide anions, hydroxyl ions, and
hydroxyl radicals, damage bacterial cells by attacking cytoplasmic and extra-cytoplasmic
targets [40]. The Cu ions have multiple antibacterial effects, including ROS generating,
protein oxidation, DNA degradation, and lipid peroxidation [41].
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The antifouling tests against Chlorella were conducted under static and dynamic
conditions. In the static tests (Figure 5a), many Chlorella cells covered the 0 wt% sample.
Among the samples with ZnS:Cu contents, the 1 wt% and 10 wt% samples showed several
Chlorella colonies, whereas the 20 wt% and 50 wt% samples showed only a few scattered
Chlorella cells. According to the quantized data in Figure 5c, the antifouling capability of
the samples increased with increasing ZnS:Cu content. This variation trend was different
from that observed in the antibacterial tests, indicating that the ZnS:Cu particles have
a selective antifouling capability. In the dynamic tests, the antifouling capability of the
samples increased with increasing ZnS:Cu content. The numbers of Chlorella cells on the
0 wt%, 1 wt%, and 10 wt% samples were significantly decreased in the dynamic tests
(Figure 5b) compared with those in the static tests (Figure 5a), and the numbers of Chlorella
cells on the 20 wt% and 50 wt% samples showed a reduction to some extent. There are
several mechanisms underlying these results in the dynamic tests. First, ZnS:Cu particles
may have a high release ratio in flowing water. Second, deformation is more likely to occur
on the ZnS:Cu/PDMS surface than on the pristine PDMS under the impact of water flow;
thus, fouling organisms can easily detach from the surface during continuous deformation.
Thirdly, surface deformation may induce fluorescence to prevent the settlement of Chlorella.
Hence, the samples exhibited better antifouling capabilities under dynamic conditions
than under static conditions. A schematic illustration of the antifouling mechanisms of the
ZnS:Cu/PDMS coatings is shown in Figure 5d. According to these tests, the 50 wt% sample
exhibited the best antifouling capability. Although coatings with a higher ZnS:Cu content
(e.g., 60 wt%) may have better antifouling capabilities, this can lead to a significant increase
in costs. Hence, the 50 wt% sample is a good candidate for practical applications.
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4. Conclusions

A series of ZnS:Cu/PDMS coatings with different ZnS:Cu contents was prepared. The
preparation method was simple and cost-effective. These coatings exhibited hydrophobic-
ity, which is conducive to combating biofouling. The ZnS:Cu/PDMS coatings exhibited
excellent antifouling capabilities against B. subtilis and Chlorella. Specifically, the 50 wt%
sample exhibited the best antifouling capability. The ZnS:Cu/PDMS coatings may prevent
biofouling by releasing ions (Zn2+ and Cu+), inducing deformation, and emitting fluores-
cence. In natural marine environments, there are few perfectly still waters and continuous
water flows move beneath the water’s surface. The 50 wt% ZnS:Cu/PDMS coating is
expected to exhibit enhanced antifouling capabilities in natural marine environments. This
study provides a reference for the application of Zn2+/Cu+ combinations to combat marine
biofouling. However, the antifouling capability of the fluorescence emission in this study
requires more direct evidence and further study.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/coatings13122083/s1, Figure S1: Bacterial colonies on
the samples.
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