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Abstract: In this work, Fe64Nb3B17Si6Cr6Ni4 and Fe60Nb3B17Si6Cr6Ni4Mo4 (at. %) coatings were
prepared with a high-velocity air fuel spraying method, and the effects of minor Mo addition on
the microstructure, glass formation, and corrosion resistance of the coating were studied. It was
found that the Mo addition improves the glass-forming ability of the alloy and a fully amorphous
structure with a higher compactness was obtained in the Mo-containing coating. The thermal stability
of the coating is enhanced by Mo addition and the onset crystallization temperature was increased
by 20 K. In addition, the Mo-containing amorphous coating exhibited higher corrosion resistance
than the Mo-free coating. The superior corrosion resistance can be attributed to the increased
proportion of protective, stable Cr, Nb, and Mo oxides in the passive film and fewer defects of the
Mo-containing coating.

Keywords: Fe-based amorphous coating; HVAF; microstructure; corrosion resistance

1. Introduction

Compared with crystalline alloys, amorphous alloys show characteristics of no va-
cancies, dislocations, and other defects, which renders amorphous alloys which exhibit
significantly better mechanical and physicochemical properties than those of crystalline
materials [1–3]. Fe-based amorphous alloys, one of the most commonly studied amorphous
alloys, have drawn quite a bit of attention for their advantageous mechanical characteristics,
strong corrosion resistance, and comparatively inexpensive cost [4,5]. Irrespective of the
limitations of glass-forming ability (GFA), amorphous alloys fabricated as protective coat-
ings instead of bulk show great application prospects [6–8]. Currently, the major techniques
for preparing Fe-based amorphous coatings are thermal spraying and laser cladding [9–11].
Fe-based amorphous coatings prepared by laser cladding have fewer holes and the coating
size can be precisely controlled. However, due to the high laser energy, most of the prepared
coatings have crystalline phases and crack [11,12]. In comparison, the high-velocity air
fuel (HVAF) thermal spraying technique, which provides the advantages of high flight
of sprayed particles and large kinetic energy, is widely used in the creation of Fe-based
amorphous coatings [13–15].

Among Fe-based amorphous alloys, Fe-(B, Si)-Nb amorphous alloys are receiving more
attention due to their high GFA, excellent corrosion resistance, and fairly low cost [16,17].
Based on the Fe-(B, Si)-Nb system, the authors’ group has been dedicated to its component
optimization to further improve its corrosion resistance and GFA. The addition of minor
alloying elements is a well-known method in component optimization of Fe-based amor-
phous alloys, and Cr, Ni, and Mo are three common alloying elements. Among them, Cr
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is crucial to further improve the corrosion resistance, because it can form a dense passive
film on an alloy’s surface to prevent further erosion of the internal alloy by the corrosive
medium [17,18]. Additionally, Ni can improve the forming ability of Fe-based amorphous
alloys, because it belongs to the same period as Fe with the adjacent position in the peri-
odic table, sharing similar atomic radii, outer electronic structures, and physicochemical
properties with Fe. Similar atomic substitution can improve the chaos of amorphous alloy
systems [4,19]. Therefore, Ni and Cr elements were added to the Fe-(B, Si)-Nb amorphous
alloy system to form the FeNbBSiCrNi alloy. In addition, Mo has been found to be effective
in the regulation of composition to improve the corrosion resistance and GFA of Fe-based
amorphous alloys [17,20]. However, the role of Mo in the FeNbBSiCrNi system is not clear
and needs further study. In order to better understand the factors affecting the GFA and
the corrosion resistance of coatings through micro-alloying, the focus of the current work is
to explore the effect of adding a small amount of Mo on FeNbBSiCrNi amorphous coatings.

In this work, 4 at. % Mo was added to FeNbBSiCrNi to examine the impact of minor
amounts of Mo on the alloy’s microstructure and corrosion resistance. Two Fe-based
alloy coatings were prepared with the HVAF spraying technique. The microstructures,
morphologies, and corrosion resistances of Mo-free and Mo-containing alloy coatings were
systematically studied, and the microscopic mechanism of Mo was analyzed in Fe-based
alloy coatings.

2. Experimental Section
2.1. Preparation of Powders and Coatings

Fe64Nb3B17Si6Cr6Ni4 (FeNbBSiCrNi) and Fe60Nb3B17Si6Cr6Ni4Mo4 (FeNbBSiCrN-
iMo), at. % powders for spraying were prepared by gas atomization. An HVAF C7 spraying
system (Kermetico, San Francisco, CA, USA) was used for the coating–spraying, and the
detailed spraying parameters of the HVAF process are shown in Table 1. Before spraying,
the surfaces of 45 carbon steel substrates were degreased, ground, and sand-blasted. The
sand blasting material was 80 white corundum.

Table 1. HVAF spraying parameters for FeNbBSiCrNi and FeNbBSiCrNiMo coatings.

Parameter FeNbBSiCrNi FeNbBSiCrNiMo

Spray distance (mm) 240 240
Air pressure (psi) 91 94
Fuel pressure (psi) 87 89

Hydrogen flow rate (SLPM) 35 35
Nitrogen flow rate (SLPM) 25 25
Powder delivery rate (rpm) 3 3
Traverse velocity (mm/s) 1000 1000

2.2. Microstructural and Phase Composition Analysis

We used scanning electron microscopy (SEM, ZEISS Sigma 300 system, Oberkochen,
Germany) and an energy-dispersive X-ray spectrometer (EDS, Oxford Xplore 30, Oxford,
England) in secondary electron (SE2) mode to observe the morphologies of the powder and
coating. The porosity of the coating was calculated from 15 randomly selected SEM images
of the coating cross-section, utilizing Image-Pro Plus 6.0 image analysis software. To deter-
mine the phase of coatings, X-ray diffraction (XRD, Rigaku SmartLab SE system, Tokyo,
Japan) was used and the coatings were exposed to Cu Kα radiation with 2θ ranging from
20◦ to 90◦ and a step size of 2◦/min. A differential scanning calorimeter instrument was
used to perform differential scanning calorimetry (DSC, STA 449F3 Jupiter, NETZSCH, Selb,
Germany) measurements of the coatings at a rate of 20 K/min in an Ar atmosphere. Trans-
mission electron microscopy (TEM, FEI Talos F200X, Thermo Fisher Scientific, Waltham,
MA, USA) was used to further characterize the structure of the coatings.
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2.3. Corrosion Analysis

To investigate the corrosion resistance of the coatings, electrochemical tests were
performed on a CHI660E electrochemical workstation. These tests included a potentio-
dynamic polarization test, an electrochemical impedance spectroscopy (EIS) test, and a
Mott–Schottky (M-S) plot test. Saturated potassium chloride/calomel electrodes were used
as the reference electrode, platinum electrodes as the auxiliary electrode, and coating sam-
ples as the working electrodes with a nominal area of 1 cm2 in a standard three-electrode
setup. All experiments were performed after 12 h immersion in 3.5 wt. % NaCl solution.
The potentiodynamic polarization tests were carried out with a scanning rate of 5 mV/s.
The EIS tests were executed with a sinusoidal potential perturbation of 10 mV in a fre-
quency range of 105 Hz~10−2 Hz and the data from the EIS were fitted using Zsimpwin
3.60 software. The M-S plot was swept at a frequency of 5000 Hz in 10 mV steps. Each
electrochemical test was repeated three times to assess the data’s reproducibility.

X-ray photoelectron spectroscopy (XPS, Thermo Fisher Nexsa, Waltham, MA, USA)
was used to analyze the passive film that formed on the coating following a 12 h immersion
in a 3.5% NaCl solution. Avantage 5.9 software was used to process the XPS analysis data,
and the other peaks were calibrated using the standard C1s peak at 284.8 eV.

3. Results and Discussion
3.1. Structure and Thermal Stability of the Coatings

An SEM image of the powders of FeNbBSiCrNi and FeNbBSiCrNiMo is shown in
Figure 1. It is seen that the powders are spherical or nearly spherical with smooth surfaces,
demonstrating a good fluidity, which is conducive to the stability of the spraying process
and the uniformity of the coating. The cross-sectional morphologies of both coatings are
shown in Figure 2, both of which exhibit a uniform structure. Significant deformation
was caused as the heated particles impacted rapidly on the surface of the substrate or the
deposited particles during the HVAF process. The particles’ shape changed from spherical
to lamellar after deposition. The main structural defect of HVAF sprayed coatings is the
interlayer porosity, which is due to the formation of some non-contact areas among two
deformed lamellar structures during the spraying process. As clearly displayed in Figure 2,
the FeNbBSiCrNiMo coating contains fewer and smaller pores, as the porosity of the
FeNbBSiCrNi coating and the FeNbBSiCrNiMo coating were calculated to be 2.26% and
1.53%, respectively. This indicated that the 4 at. % Mo addition improves the compactness
of the coating.
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Figure 2. SEM images of the cross sections of (a) FeNbBSiCrNi and (b) FeNbBSiCrNiMo coatings.

The XRD patterns of the Fe-based coatings are shown in Figure 3. The presence of
broad diffraction peaks as well as α-(Fe, Cr) and Fe2B crystalline phases in the FeNbBSiCrNi
coating suggests that the coating is an amorphous/crystalline composite structure. The
amorphous content of the coating was estimated to be about 87.5% based on the area
ratio of the crystalline peaks to the amorphous peaks, while the FeNbBSiCrNiMo coating
merely exhibits a broad diffraction peak without any crystalline phase peaks, illustrating a
single amorphous structure of the as-sprayed Mo-containing coating. The addition of a
minor amount of Mo changes the phase structure of the Fe-based coating and increases
the amorphous content of the coating, and the higher amorphous content indicates better
corrosion resistance of the Mo-containing Fe-based coating [20]. Figure 4 shows the DSC
curves of the coatings. The presence of amorphous structures in both coatings is further
evidenced by the obvious crystallization-induced heat absorption peaks in the curves. The
onset crystallization temperature (Tx) can be taken as a criterion to compare the relative
thermal stability of the two Fe-based coatings. The higher the Tx, the better the thermal
stability of the coating [21]. The Tx of the FeNbBSiCrNiMo coating is about 20 K higher
than that of the FeNbBSiCrNi coating, indicating that the addition of minor Mo significantly
improved the thermal stability of the Fe-based coatings, as reported in the study by Zhang
et al. [17]. The 4 at. % Mo addition enhanced both the GFA and the thermal stability of the
Fe-based coating while inhibiting crystallization.
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Figure 5 shows the TEM micrographs and selected area electron diffraction (SAED)
patterns of the coatings. Localized lattice streaks with well-defined grain boundaries were
observed in the FeNbBSiCrNi coatings (Figure 5a). In addition, some bright spots scattered
near the diffuse ring were observed in the SAED pattern, confirming the presence of
crystalline phases in the coating. The amorphous phase regions of the coatings in Figure 5b
are uniformly lined and homogeneous in composition, and the SAED pattern consists only
of halo rings, which indicates the presence of a completely amorphous structure in the
coating. In contrast, the Mo-added coating showed no lattice fringes from the TEM images
and no evidence of crystallization and the SAED pattern showed a bright spot in the center
and the presence of a uniform diffuse ring around the periphery (Figure 5c,d), indicating
the presence of a completely amorphous structure. These results are consistent with the
XRD results.

The mixing enthalpy of each constituent element of the Fe-based coatings is shown in
Table 2, and large negative mixing enthalpies among the different components typically
result in highly stable supercooled liquids. It can be seen that Mo has large negative
mixing enthalpy with Nb, B, and Si. FeNbBSiCrNi and FeNbBSiCrNiMo coatings have
mixing enthalpies of −40.0 kJ·mol−1 and −42.2 kJ·mol−1, respectively. The larger the
negative enthalpy of mixing between the alloy system, the more favorable the formation
of amorphous alloys [22]. As a result, the addition of minor amounts of Mo increases the
mixing enthalpy of the Fe-based coatings and, thus, increases the GFA. In addition, the
strong interactions among the transition metal and metalloid atoms are established through
s–d hybridization bonds. In the present study, Mo and Nb possess one 5s electron, while
Si and B possess two 2s and 3s electrons, respectively. One 5s electron is considered to be
more active than the energy levels of two 2s and 3s electrons because a pair of s electrons
with opposite spin directions have significantly lower energy levels than one s electron.
Therefore, compared to the 2s electron of the B atom and the 3s electron of the Si atom,
the 5s electrons of the Mo and Nb atoms are more mobile. As a result, the addition of Mo
enhances the s–d hybrid bonding property, as Mo atoms provide more s electrons and Fe
atoms provide more empty “d” shell layers, which causes an increase in the GFA [23]. In
addition, the large atomic size of Mo is favorable for the filling of the local structure, which
enhances the GFA by increasing the local filling rate, suppressing the long-range diffusion of
atoms, and facilitating the formation of amorphous structures [23]. Additionally, the HVAF
process has great potential for the preparation of amorphous coatings because the cooling
rate is fast enough (about 107 K/s) to prevent the remote diffusion of atoms and thus avoid
crystallization [24]. Therefore, the amorphous structure in FeNbBSiCrNiMo coatings can



Coatings 2023, 13, 2089 6 of 14

be attributed to the appropriate alloy composition as well as the fast-cooling suppression of
nucleation of completely molten particles from the highest temperature of the flame (about
1600 K) through the impact-cooled substrate surface [24]. As demonstrated by the XRD
and TEM results, the FeNbBSiCrNiMo coating exhibits a completely amorphous structure.
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Table 2. Mixed enthalpies between the principal elements of the alloy (unit: kJ·mol−1) [25].

Element Fe Nb B Si Ni Cr Mo

Fe 0 −16 −26 −35 −2 −1 −2
Nb - 0 −54 −56 −30 −7 −36
B - - 0 −14 −24 −31 −34
Si - - - 0 −40 −37 −35
Ni - - - - 0 −7 −7
Cr - - - - - 0 0
Mo - - - - - - 0

3.2. Corrosion Resistance of the Coatings
3.2.1. Potentiodynamic Polarization and Electrochemical Impedance Spectroscopy

To evaluate the impact of a small Mo addition on the corrosion resistance of Fe-
based coatings, potentiodynamic polarization behaviors and EIS tests were performed
on FeNbBSiCrNi and FeNbBSiCrNiMo coatings, and the results are shown in Figure 6.
The self-corrosive potential (Ecorr) responds to the ease with which the material can be
corroded, and the self-corrosive current density (Icorr) responds to the actual corrosion rate
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of the material [26]. From Figure 6a, it can be seen that with the addition of minor amounts
of Mo, the Ecorr of the Fe-based coatings increased from −597 mV to −491 mV, and the
Icorr decreased from 4.44 µA/cm2 to 3.78 µA/cm2. The polarization resistance (Rp) was
calculated according to the Stem-Geary formulation as follows [27]:

Rp =
βA × βC

2.203 × Icorr ×
(

βA+βC
) (1)

where βA and βCc indicate the slope of the anode and cathode of the polarization curve,
respectively. From Equation (1), the Rp values of the FeNbBSiCrNi coating and the FeNbB-
SiCrNiMo coating are 8783 Ω and 14,334 Ω, respectively.
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Higher Ecorr, lower Icorr, and greater Rp values were found for the FeNbBSiCrNiMo
coating than for the FeNbBSiCrNi coating, indicating a higher corrosion resistance and
better passivation ability of the Mo-containing Fe-based coating. The improved corrosion
performance of the FeNbBSiCrNiMo coating can be attributed to three aspects. Firstly,
Mo elements can interact with Cr elements, as they have a synergistic effect in corrosion
resistance. Adding 4 at. % Mo provides Mo6+ compounds, which act as corrosion inhibitors,
and accelerates the formation of Cr-containing passive films on the FeNbBSiCrNiMo
coating surface [28]. Secondly, the FeNbBSiCrNiMo coating shows an amorphous structure
with fewer defects, such as grain boundaries and dislocations, so the local corrosion
sprouting strength around the active site (crystalline/amorphous interface) is reduced
and the probability of liquid corrosion through grain boundaries is reduced. Thirdly, the
FeNbBSiCrNiMo coating has lower porosity, as shown in Figure 2.

The EIS test was studied to further understand the influence of minor Mo additions to
Fe-based coatings on corrosion resistance. The Nyquist plots and Bode plots are shown in
Figure 6b,c, respectively. The corrosion resistance is related to the arc radius of the Nyquist
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plots [29]. A larger radius is observed in the FeNbBSiCrNiMo coating, indicating its higher
corrosion resistance. In addition, a higher phase angle value for FeNbBSiCrNiMo confirms
its superior corrosion properties. Based on the above analysis, an equivalent electrical
circuit to describe the electrochemical cell for all the glassy coatings is proposed and shown
in Figure 6d, which was used in EIS data fitting, and the fitting parameters are displayed
in Table 3. Rs is the solution resistance; Rc and Rct are the coating resistance and charge
transfer resistance, respectively. Since the coating surface shows an absence of perfect
smoothness and exhibits defects like porosity and roughness, the constant phase angle
element CPE was used instead of ideal capacitance. Qc and Qdl are the coating capacitance
and electric double-layer capacitance, respectively; nc and ndl are the dispersion coefficients
of Qc and Qdl away from the pure capacitance, respectively [30]. Similar ionic conductivity
is indicated by a slight variance in Rs values between the two coatings. The nc and ndl
values for both coatings are less than one, indicating that the coating exhibits nonideal
capacitance behavior as a result of its surface heterogeneities. The Qc value and passive
film thickness are inversely correlated, decreasing the Qc value as the passive film thickness
increases [31]. The lesser Qc value of the FeNbBSiCrNiMo coating points out that a relatively
thicker passive film is formed. Additionally, a lesser corrosion area is indicated by a lower
value of Qdl for the FeNbBSiCrNiMo coating. The correlation between the Rc and Rct
values along with the material’s corrosion resistance is positive [32]. The FeNbBSiCrNiMo
coating has a relatively high Rc value, indicating that the degree of being corroded is
small, and a high Rct value, indicating that charge transfer is difficult during the reaction.
FeNbBSiCrNiMo coatings’ higher Rc and Rct values provide additional evidence of their
excellent corrosion resistance.

Table 3. The fitted results for the EIS of the coatings.

Sample Rs
(Ω·cm2)

Qc × 10−5

(S·cm−2·sn) nc
Rc

(Ω·cm2)
Qdl × 10−4

(S·cm−2·sn) ndl
Rct

(Ω·cm2) χ2 × 10−4

FeNbBSiCrNi 11.73 9.190 0.8080 545 2.711 0.4361 15,360 3.07
FeNbBSiCrNiMo 11.67 7.092 0.7556 8714 2.164 0.6026 77,360 3.58

3.2.2. Mott–Schottky

The corrosion behavior of Fe-based coatings is closely related to the types of passive
film. Within different ranges of potentials, electrons move out or in from the surface of the
semiconductor passive film. When the space charge layer is in a depleted state, there is an
M-S relationship between the applied voltage (E) and the space charge layer (C) [33]:

For n-type semiconductors:

1
C2 =

2
e×ε×ε0×ND

(
E − EFB − K × T

e

)
(2)

For p-type semiconductors:

1
C2 = − 2

e×ε×ε0×NA

(
E − EFB − K × T

e

)
(3)

where ε0 is the vacuum permittivity (8.85 × 10−14 F·cm−1); ε is the relative dielectric
constant of the passive film at room temperature (15.6) [34]; T is the absolute temperature; K
is the Boltzmann constant (1.38 × 10−23 J·K−1); e is the elementary charge (1.602 × 10−19 C);
EFB is the flat band potential; and NA and ND are the acceptor and donor densities, respectively.

Figure 7a shows M-S plots of the passive film formed on Fe-based coatings. Depend-
ing on the applied potential, both Fe-based coatings showed two linear regions with a
positive slope and a negative slope, indicating that the passive films all exhibit duplex
semiconducting characteristics. The point defect model states that cation vacancy defects
are electron acceptors and exhibit a p-type semiconductor, while oxygen vacancies and/or
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cation interstitial defects are electron donors and exhibit an n-type semiconductor [35].
Therefore, the passive films of both Fe-based coatings are mainly cation vacancy defects
in the region below −0.5 V (p-type semiconductor), while above −0.5 V they are mainly
oxygen vacancies and/or cation interstitial defects (n-type semiconductor).
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Figure 7b shows the NA, ND, and EFB values of the passive film formed on Fe-based
coatings, calculated from Equations (2) and (3), and the slope of the linear regions of the M-S
plots. A higher EFB value of the FeNbBSiCrNiMo coating indicates a higher energy barrier,
more difficult electron transfer, and more stable passive films formed [33]. In general,
a higher NA value indicates faster electron transfer rates at the passive film–electrolyte
interface, and a higher ND value indicates more oxygen vacancies in the passive film
and the corrosive Cl− is adsorbed more easily [36]. The NA values of FeNbBSiCrNi and
FeNbBSiCrNiMo coatings are 3.21 × 1020 cm3 and 1.08 × 1020 cm3, and the ND values are
2.98 × 1020 cm3 and 1.64 × 1020 cm3, respectively. The higher NA and ND values of the
FeNbBSiCrNi coating indicate that the passive film has more defects and deterioration
of the corrosion resistance. The lower NA and ND values in the FeNbBSiCrNiMo coating
indicate the formation of a denser passivation film with fewer defects and better protection
of the substrate. Therefore, the addition of minor amounts of Mo reduces the defects in the
passive film and improves the corrosion resistance of Fe-based coatings.

3.2.3. XPS

An XPS analysis of the chemical composition of the passive film on the surfaces of
the two coatings further verified the impact of minor amounts of Mo on the corrosion
resistance of Fe-based coatings. The detailed XPS spectra of Fe 2p, Nb 3d, Cr 2p, Mo
3d, and O 1s peaks are shown in Figure 8. Metallic Fe0, FeOOH, and Fe2O3 were found
in Fe 2p spectra; metallic Nb0 and Nb2O5 were found in Nb 3d spectra; metallic Cr0,
Cr(OH)3, and Cr2O3 were found in Cr 2p spectra; and metallic Mo0 and MoO3 were found
in Mo 3d spectra, which indicates the passive film of Fe-based coatings included mixed
metal oxides and/or hydroxides. The metal oxide/hydroxide contents obtained from XPS
analysis were normalized and their relative fractions in the passive film were calculated,
which are shown in Figure 9. It can be seen that the primary component of the passive
film on the FeNbBSiCrNi coating is Fe-oxide/hydroxide at about 79%. In contrast, the
passive film of the FeNbBSiCrNiMo coating has less Fe-oxide/hydroxide content at about
48% and higher Cr-oxide/hydroxide, Nb-oxide, and Mo-oxide contents. In general, Fe-
oxides are loose and porous and easily destroyed by corrosive solutions, while Cr, Nb,
and Mo oxides are dense and stable and can effectively prevent the intrusion of corrosive
Cl− [37,38]. Regarding this, the increased content of Cr, Nb, and Mo oxides provides the
FeNbBSiCrNiMo coating with its excellent corrosion resistance. Previous research has
shown the bilayer structure of the passive film formed from Fe-based amorphous alloys in
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neutral liquids. While the inner layer is dense, stable, and oxide-based, the outside layer
is loose, porous, and hydroxide-based [39,40]. Therefore, when the coating is corroded,
the passive film’s outer layers, FeOOH and Cr(OH)3, first play a protective role and are
gradually destroyed with the erosion of Cl−. Then, Cr2O3, Nb2O5, Fe2O3, and MoO3 in the
passive film’s inner layer provide more effective protection. It is worth mentioning that
Mo6+ can be dissolved in water to form molybdate (MoO2−

4 ), which can then adhere to the
surface of the FeNbBSiCrNiMo coating to block further Cl− penetration and reduce the
devastation of the coating [28]. The above analysis confirms that minor amounts of Mo are
beneficial to improve the corrosion resistance of Fe-based coatings.
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3.2.4. Corroded Surface Morphology

The surface morphologies of the Fe-based coatings after 12 h of immersion in 3.5 wt. %
NaCl solution are shown in Figure 10. The FeNbBSiCrNi coating was discovered to have
a large area of white flocculent corrosion products as well as a few pits (Figure 10a). In
contrast, the surface of the FeNbBSiCrNiMo coating is relatively flat with only a few
corrosion products, indicating that the addition of minor amounts of Mo reduces the
damage to the coating. Figure 11 shows the Fe-based coating’s EDS images following the
immersion test. Oxygen elements are abundant on the FeNbBSiCrNi coating’s surface,
indicating the occurrence of severe oxidation behavior. In comparison, the FeNbBSiCrNiMo
coating surface had only a few oxides, indicating excellent corrosion resistance. The results
also demonstrate that a minor Mo addition is beneficial to improve the corrosion resistance
of Fe-based coatings.
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Figure 11. EDS mapping of the coatings after immersion corrosion test. (a) FeNbBSiCrNi and
(b) FeNbBSiCrNiMo coating.

4. Conclusions

In this work, FeNbBSiCrNi and FeNbBSiCrNiMo coatings were prepared using HVAF
spraying. The effects of a minor Mo addition on the microstructure and corrosion behavior
of the Fe-based coatings were studied. The principal conclusions are as follows:

(1) The addition of minor amounts of Mo improves the GFA of Fe-based coatings and
decreases the porosity. A 4 at. % Mo addition improved the coating’s thermal stability,
and a 20 K increase in the crystallization onset temperature was made.

(2) A lower corrosion current density, a higher corrosion potential, and a greater charge
transfer resistance indicate that adding Mo significantly increased the corrosion re-
sistance of Fe-based coatings. In addition, the fully amorphous structure of Mo-
containing coatings and the lower porosity also contribute to the corrosion resistance.

(3) The addition of minor amounts of Mo reduces the defects in the passive film and in-
creases the content of Cr, Nb, and Mo oxides, as well as inhibiting oxidative corrosion.
Thus, the FeNbBSiCrNiMo coating has excellent corrosion resistance.

The addition of minor amounts of Mo improves the GFA of Fe-based coatings and
increases corrosion resistance. It can be inferred that FeNbBSiCrNiMo coatings can be
suitable candidates for corrosion-induced degradation applications and have the potential
to be used in engineering applications.

In future work, the effect of different Mo contents on the microstructure and physico-
chemical properties of the coatings will be investigated in further detail.
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