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Abstract: Nanofluids are considered as an effective way to enhance the thermal conductivity of heat
transfer fluids. Additionally, the involvement of micro-organisms makes the liquid more stable,
which is important in nanotechnology, bio-nano cooling systems, and bio-microsystems. Therefore,
the current investigation focused on the examination of the thermodynamic and mass transfer of
a Carreau–Yasuda magnetic bionanomaterial with gyrotactic micro-organisms, which is facilitated
by radiative peristaltic transport. A compliant/elastic symmetric channel subject to partial slip
constraints was chosen. The features of viscous dissipation and ohmic heating were incorporated
into thermal transport. We use the Brownian and thermophoretic movement characteristics of the
Buongiorno nanofluid model in this study. A set of nonlinear ordinary differential equations are
created from the partial differential equations that control fluid flow. The governing system of
differential equations is solved numerically via the shooting technique. The results of pertinent
parameters are examined through velocity, temperature, motile micro-organisms, concentration, and
heat transfer rate.

Keywords: bioconvection; gyrotactic micro-organism; peristalsis; Carreau–Yasuda fluid; thermal
radiation; bionanomaterials

1. Introduction

Peristalsis is the term that refers to the movement of fluid caused by wave motion
that is influenced by the sinusoidal wall of a channel or duct. The pharmaceutical, bio-
engineering, facelifts, chemical, and paper industries all depend on the peristalsis process.
Additional examples of peristaltic procedures in living organisms include the flow of sperm,
ovum, urine, blood, food, and other bodily fluids. Peristaltic pumps are used in medical
devices, such as fusion pumps, open-heart bypass pumps, and dialysis machines. With
these issues in mind, Latham [1] conducted an earlier survey of peristaltic movement using
both theoretical and empirical research methods. Since then, numerous researchers have
looked into a variety of peristalsis-related topics in different flow circumstances. The small
Reynolds number and large wavelength assumption with peristaltic pumping were later
expanded by Shapiro et al. [2]. Mekheimer [3] has explored the features of the magnetic
aspects for the peristalsis of couple stress fluids. Ali et al. [4] examined the thermal analysis
for peristaltic in a curved channel. Wall characteristics for peristaltic transport of nanoma-
terial were studied by Mustafa et al. [5]. Hayat et al. [6] scrutinized the hall and convective
aspects peristaltic flow of couple stress fluids. Sinnott et al. [7] inspected the particulate
deferment in the small intestine, considering the activity of peristalsis. Yasmin et al. [8]
studied the aspects of peristaltic transport with hall current and convective conditions.
Nisar et al. [9] explored the characteristics of compliant walls and thermal radiation for
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the peristaltic flow of nanoliquids. Yasmin et al. [10] examined the peristaltic flow of
Johnson–Segalman fluids. Hina et al. [11] inquired about the peristaltic motion of non-
Newtonian nanomaterials, considering the features of the electro-osmotic flow. Abbasi and
Shehzad [12] developed a numerical solution for the peristaltic activity for ethylene-glycol
and boron-nitride nanomaterials with a curved channel. Fluids with slip consequences
have a wide spectrum of uses, including the buffing of artificial heart valves and inbuilt
cavities. Slip aspects with peristaltic motion can be cited via [13–15].

Researchers and engineers became interested in assessing the flow of nanofluids for the
advancement of the transport of heat. Nanofluids are used in a wide variety of industries
and manufacturing fields, including microelectronics, geothermal panels, lubricating oil,
nuclear reactors, biomedicine, pharmacological treatments, transportation, transformers,
scintillating heat pipes, electronic devices, coolant in computers, lubricants in vehicles,
nano-medicines, drug delivery, fermentation science, rubber sheet, factory production,
heat exchanger design, and power generation. Due to its vast convenience, scientists and
researchers have investigated nanomaterials as a result of their applications in various
arenas of manufacturing and scientific processing. Choi and Eastman [16] coined the term
“nanofluid” to characterize the use of conventional fluids with nano-sized diameters of less
than 100 nm. Buongiorno [17] then gave a full investigation of nanofluids, in which he
examined how Brownian movement and thermophoretic dispersion of nanoparticles lead
to an increase in thermal conductivity. Tsai et al. [18] examined the effectiveness of gold
nanoparticles in the thermal performance of heat pipes. Li et al. [19] examined the detailed
analysis of nanofluids. Yan et al. [20] studied the speed of nanoparticles in nanomaterials
via a zero-crossing laser speckle technique. Abbasi et al. [21] scrutinized the activity of
peristalsis with copper-water nanofluids through permeable space. Akram et al. [22]
reported the consequences of a magnetic field of a peristaltic pseudoplastic nanoliquid
via a trapped channel. Bhatti and Abdelsalam [23] investigated the peristaltic activity of a
hybrid nanofluid containing gold nanoparticles and tantalum while also considering its
magnetic factors. Alsaedi et al. [24] reported the mixed convection and complaint wall
characteristics for peristaltic flow for a nanofluid. Abbasi et al. [25] analyzed the electro-
osmosis peristaltic flow of a hybrid nanofluid. Nisar et al. [26] reported the numerical
investigation peristalsis of couple stress nanomaterials. Hussain et al. [27] examined the
peristaltic flow of hybrid nanofluids. In their study, they analyzed how to enhance thermal
conductivity with electro-osmosis-modulated peristaltic flow. Yasmin et al. [28] examined
how hybrid nanofluids are useful in solar and thermal energy storage.

Bionanomaterials are nanoscale substances that are produced biologically. They dis-
play distinctive chemical, structural, optical, physical, electrical, biological, and mechanical
features that set them apart from bulk matter due to their very compact size. Bionanomate-
rials, e.g., fungi, bacteria, plants, nucleic acids, peptides, etc., are promising materials made
from numerous biological components. Due to their biological synthesis and biocompati-
bility, the use of bionanomaterials in the biomedical area has received considerable interest.
Bionanomaterials, which are extraordinarily small, have unique qualities that give them
potential in a variety of fields, including pharmacology, aeronautical engineering, material
science, biosensors, and more. Moreover, a number of characterization techniques have
been used to explore the characteristics of the synthesized bionanomaterials [29,30].

Numerous scientists and researchers have become fascinated by the study of non-
Newtonian fluids in recent years. Studies on these fluids are encouraged by their sig-
nificance in fields including industrial developments, plastic melting, pharmaceutical
products, polymeric fluids, metabolic engineering, hazardous and nuclear facilities, in-
dustrial settings, and the food industry. Blood, perfumes, honey, diesel fuel, glue, cream,
and many more substances are famous examples. Among these, the Carreau–Yasuda fluid
framework [31] can explain the shear thinning and thickening features. Kayani et al. [32]
examined the peristaltic flow of the Carreau–Yasuda model by adding nanoparticles. Khan
et al. [33] examined the entropy generation analysis for a Carreau–Yasuda material with
activation energy. Hayat et al. [34] explored the impact of modified Darcy’s expression for
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peristaltic motion of Carreau–Yasuda nanoliquids via a chemical reaction. Iqbal and Ab-
basi [35] studied the MHD peristaltic activity of nanoliquid by analyzing a Carreau–Yasuda
model via joule heating and variable thermal conductivity.

Bioconvection is the term used to describe organic macroscopic convective fluid mo-
tion. The bioconvection phenomenon is caused by the interaction of micro-organisms at
various physical scales. The presence of directional movement of different types of micro-
organisms is a prerequisite for various bioconvection systems. Gyrotactic micro-organisms
are those that travel in water against the direction of gravity. The base fluid density is
increased by these gyrotactic bacteria when they swim in a certain direction. Bioconvection
is essential to bioengineering and bioimaging. According to the available data, several sci-
entists have employed various bioconvection models to examine bioconvection movement
mechanisms. Pedley et al. [36] studied the growth of bioconvection models in a uniform
suspension of gyrotactic micro-organisms. Waqas et al. [37] examined a second-grade
nanoliquid, including its gyrotactic micro-organisms. Rao et al. [38] explored the effects of
gyrotactic micro-organisms for bioconvection in a convectional nanofluid. Hayat et al. [39]
examined the slip and bioconvection aspects of the peristalsis of nanomaterials. Hussein
et al. [40] discussed the bioconvective peristaltic flow of Jeffrey nanofluids. Akbar et al. [41]
analyzed the peristaltic motion for motile gyrotactic micro-organisms of Eyring Powell
nanoliquids. Avramenko et al. [42] reported the aspects of bioconvection instability of
gyrotactic motile micro-organisms.

One of the areas of coating research that has had its fair share of successes and failures is
compliant walls. The topic has fascinated, perturbed, and occasionally contented engineers
and scientists for the past four decades as they search for ways to forgo the transition
from laminar to turbulent flow, suppress flow-induced noise, reduce skin-friction drag in
turbulent wall-bounded flows, and suppress vibrations [43,44]. The findings of Kramer [45]
showed a compliant coating design based on dolphin epidermis, with reports of remarkable
transition delay and drag reduction in hydrodynamic flows, which is what initially sparked
interest in the topic. Regarding the dependability of the available analytical, numerical,
and experimental data, there are several significant problems.

The present investigation looks at the impacts of bioconvective magnetohydrodynamic
peristaltic Carreau–Yasuda bionanomaterials in a symmetric channel with gyrotactic micro-
organisms. Compliant/stretchy channel walls are subjected to slip boundary conditions.
A Carreau–Yasuda nanofluid is used in this study with integrated features of random
motion and thermophoresis. The aspects of thermal radiation and ohmic heating are also
considered. Numerical solutions for velocity, nanoparticle concentration, temperature, and
motile micro-organism profiles were found. Finally, the key findings of the study are listed.
This is a study that might be very useful in the field of biomedical and nanotechnology.

2. Problem Formulation

We consider two-dimensional peristaltic flow of a Carreau–Yasuda nanofluid. Here,
we choose a symmetric channel of width 2d1. A Cartesian co-ordinate system (x, y) is
used, such that the y−axis and x−axis are transverse and parallel to the channel walls.
The motion of gyrotactic micro-organisms, which constitutes bioconvection, preserves
the nanoparticles suspended in the nanofluid. The channel is subjected to a (B0) constant
magnetic field that is applied perpendicularly. The elastic walls are traversed by sinusoidal
waves. The wall shapes are defined by [5].

y = ±η(x, t) = ±
[

d1 + asin
2π

λ
(x− ct)

]
, (1)

where λ, c, and a denote wavelength, wave speed, and amplitude, respectively. The related
expressions for Carreau–Yasuda fluid S are defined by [31,32].

S = µ
( .
γ
)

A1, (2)
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µ
( .
γ
)
= µ∞ + (µ0 − µ∞)

[
1 +

(
Γ

.
γ)a*

] n−1
a* , (3)

.
γ =

√
2tr(D2), D =

1
2

A1 =
1
2

[
(gradV) +

(
gradV)T

]
. (4)

From (3), µ∞ and µ0 represent the infinite and zero share rate viscosities. In the present
study, we assumed that µ∞ is zero. Further, Γ and a∗ are the material variables. Additionally,
n represents the power law index. The expression A1 is the first Rivlin Ericksen tensor. The
thermal transfer incorporates thermophoresis and Brownian motion. The expressions for
the problem under these assumptions are as follows:

∂u
∂x

+
∂v
∂y

= 0, (5)

ρ f

(
∂u
∂t + u ∂u

∂x + v ∂u
∂y

)
= − ∂p

∂x + ∂Sxx
∂x +

∂Sxy
∂y − σB2

0u + g(1− F0)ρ f βT(T − T0)

−
(

ρp − ρ f

)
gβc(C− C0)−

(
ρm − ρ f

)
γg(F− F0),

(6)

ρ f

(
∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

)
= −∂p

∂y
+

∂Syx

∂x
+

∂Syy

∂y
− σB2

0v, (7)(
∂T
∂t + u ∂T

∂x + v ∂T
∂y

)
= α

(
∂2T
∂x2 + ∂2T

∂y2

)
+ 1

ρ f c f

{
∂u
∂x Sxx +

∂v
∂y Syy +

(
∂u
∂y + ∂v

∂x

)
Sxy

}
+τ

[{(
∂T
∂y

)2
+
(

∂T
∂x

)2
}

DT
Tm

+
(

∂C
∂x

∂T
∂x + ∂C

∂y
∂T
∂y

)
DB

]
+ 1

ρ f c f
σB2

o u2 − ∂qr
∂y ,

(8)

∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

=

(
∂2C
∂x2 +

∂2C
∂y2

)
DB +

DT
Tm

(
∂2T
∂x2 +

∂2T
∂y2

)
, (9)

∂F
∂t

+ u
∂F
∂x

+ v
∂F
∂y

= − bWc

(C1 − C0)

(
∂

∂x

(
F

∂C
∂x

)
+

∂

∂y

(
F

∂C
∂y

))
+

(
∂2F
∂x2 +

∂2F
∂y2

)
DN . (10)

The subjected boundary conditions are

u± β1Sxy = 0 at y = ±η, (11)(
−τ1

∂3

∂x3 + m1
∂3

∂x∂t2 + d ∂2

∂t∂x

)
η = ∂Sxx

∂x +
∂Sxy
∂y − ρ f

(
∂u
∂t + u ∂u

∂x + v ∂u
∂y

)
−

σB2
0u + g(1− F0)ρ f βT(T − T0)−

(
ρp − ρ f

)
gβC(C− C0)−

−
(

ρp − ρ f

)
gγ(F− F0) at y = ±η,

(12)

T ± β2
∂T
∂y

=

{
T1
T0

}
, C± β3

∂C
∂y

=

{
C1
C0

}
, F =

{
F1
F0

}
at y = ±η. (13)

In the above equations, (v, u) designate the components of velocity in the (y, x) plane,(
ρp
)

is the density of the nanoparticles,
(

ρ f

)
is the nanofluid density, (ρm) is the motile

micro-organisms density, (g) is gravity, (D N) is the micro-organisms diffusion coefficient,
(ν) is for kinematic viscosity, (σ) is for electric conductions, (p) is for pressure and (α) is for
thermal diffusivity, and (d) is for viscous damping coefficient. Further, (DT) describes the
thermophoretic diffusion and Brownian movement coefficient, (DB), τ

(
=
(

ρc)p/
(

ρc) f

)
,

for the ratio of the liquid’s heat capacity to the material’s effective heat capacity, (γ) is the
average volume of the micro-organisms, (b) is the chemotaxis constant, (τ1) is the tension
of the elastic, (Wc) is the maximum cell-swimming speed, (m1) is the area per unit mass,
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(Tm) is the mean temperature, C1, C0 and T1, T0 are the concentration and temperature at
the top and lower walls, respectively. Further, (F1, F0) is the fraction volume at the upper
and lower walls. The radiant heat flow satisfies the Rossland approach:

qr = −
4
−
σ

3
−
k

∂T4

∂y
, (14)

where (
−
σ,
−
k) are the constant of the Stefan–Boltzman coefficients and mean absorption,

respectively. The expanded form of T4 can be written as

T4 = 4T3
0 T − 3T4

0 , (15)

thus, we have

qr = −
16
−
σT3

0

3
−
k

∂T
∂y

. (16)

When considering stream function u = ψy, v = −δ(ψx), and using the nondimensional
variables:

u∗ = u
c , v∗ = v

c , x∗ = x
λ , y∗ = y

d1
, t∗ = ct

λ , η∗ = η
d1

, p∗ = d2
1 p

cλµ0
,

θ = T−T0
T1−T0

, φ = C−C0
C1−C0

, β∗1 = β1µ0
d1

, β∗i = β1
d1
(i = 2, 3),

S∗ij =
d1Sij
cµ0

, χ = F−F0
(F1−F0)

, ξ = F0
(F1−F0)

.

(17)

in Equations (5)–(13). After omitting the asterisk, we can write

∂2

∂y2

(
1 + Wea∗ (n−1)(1−β)

a∗

(
∂2ψ

∂y2

)a∗
)

∂2ψ

∂y2 −M2 ∂2ψ

∂y2 + Gr ∂θ
∂y − Gc ∂φ

∂y

−G f ∂χ
∂y = 0,

(18)

(1 + PrRn)
∂2θ

∂y2 + NbPr
∂θ

∂y
∂φ

∂y
+ NtPr

(
∂θ

∂y

)2
+ BrM2

(
∂ψ

∂y

)2
+ BrSxy

∂2ψ

∂y2 = 0, (19)

Nt
∂2θ

∂y2 + Nb
∂2φ

∂y2 = 0, (20)

∂2χ

∂y2 − Pe
∂χ

∂y
∂φ

∂y
− Peξ

∂2φ

∂y2 − Peχ
∂2φ

∂y2 = 0. (21)

The boundary conditions become

∂ψ

∂y
± β1

[
∂2ψ

∂y2 +
(1− β)(n− 1)Wea∗

a∗

(
∂2ψ

∂y2

)a∗+1]
= 0 at y = ±η, (22)

[
E1

∂3

∂x3 + E2
∂3

∂x∂t2 + E3
∂2

∂x∂t

]
η

= ∂3ψ

∂y3 + ∂
∂y

[
∂2ψ

∂y2 + (1−β)(n−1)Wea∗

a∗

(
∂2ψ

∂y2

)a∗+1
]

−M2 ∂ψ
∂y + Grθ − Gcφ− G f χ at y = ±η,

(23)

θ ± β2
∂θ

∂y
=

{
1
0

}
, φ± β3

∂φ

∂y
=

{
1
0

}
, χ =

{
1
0

}
at y = ±η. (24)

The continuity in Equation (5) is automatically satisfied. In the above expression, we
witnessed that the small Reynolds number and large wavelength suppositions [2] are in-
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voked. Here, ε, δ, Ec, Re, Pr, M, Sc, Br, Nb, Nt, We, Rn, (E1, E2, E3), Gc, Pe, G f , Gr, and β are
ratio of amplitude, wave number, Eckert number, Reynolds and Prandtl numbers, Hartman
number, Schmidt number, Brinkman number, Brownian motion variable, thermophoresis
parameter, Weissenberg number, radiation parameter, elasticity parameters, concentration
Grashof variable, Bioconvection Peclet number, Bioconvection Grashof number, thermal
Grashof number, and viscosity ratio parameter, respectively. These are defined by

ε = a
d1

, δ = d1
λ , Ec = c2

c f (T1−T0)
, Re = ρcd1

µ0
, Pr = ν

α , M =
√

σ
µ0

B0d1,

Sc = ν
DB

, Br = PrEc, Nb = DBτ(C1−C0)
ν , Nt = DTτ(T1−T0)

Tmν , We = Γc
d1

,

Rn =
16
−
σT3

0

3
−
kk∗

, E1 = − d3
1τ

λ3µ0c , E2 =
cm1d3

1
λ3µ0

, E3 =
d3

1d
λ2µ0

,

Gc =
gβC(ρp−ρ f )d2

1(C1−C0)
µ0c , Pe = bWc

DN
, G f =

(ρm−ρ f )gγ(F1−F0)d2
1

µ0c ,

Gr =
gβT(1−F0)ρ f (T1−T0)d2

1
µ0c , β = µ∞

µ0
.

(25)

3. Numerical Method

The system constituting Equations (18)–(21) with the associated boundary conditions
(22)–(24) are solved numerically via the shooting method by the program NDSolve using
the fourth-order Runge–Kutta algorithm with the help of Mathematica. This approach
helps with tiny step size errors and small errors and has strong internal consistency for
boundary value problems.

4. Results and Discussion

The results for velocity, temperature, and the profiles of the motile micro-organisms
were examined graphically. Further, the nanoparticle concentrations and rates of heat
transfer were scrutinized by tabling the results.

4.1. Velocity

The consequences of the relevant parameters for velocity are presented in Figures 1–8.
The effect of the velocity slip parameter, β1, is depicted in Figure 1. It was noticed that
the velocity of the fluid arises via the velocity slip parameter β1. Figure 2 demonstrates
the aspects of the Grashof number, Gr, against velocity. An enhancement in temperature
is observed against the Grashof number Gr. The sketch of the bioconvection Rayleigh
variable, G f , is illustrated in Figure 3. As we can see, the velocity of the fluid declines
with a larger G f . The features of the buoyancy ratio variable, Gc, on the velocity profile are
shown in Figure 4. The graph represents how the Gc boosts fluid velocity. The impacts of
the Hartman number, M, on the velocity are revealed in Figure 5. This graph makes it clear
that the liquid’s velocity is decreasing. The implications of the bioconvection Peclet number
Pe, on the velocity profile can be seen in Figure 6. The observed outcomes show that a
rise in Pe increases the velocity. The impact of the Weissenberg number, We, is portrayed
against velocity (see Figure 7). In this figure, we can see that the velocity of the liquid
increases. The wall parameters E1, E2, and E3 are exhibited in Figure 8. It was detected
that velocity is an increasing function of E1 and E2, and it decreases for E3 in view of the
damping effect.
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4.2. Temperature

The influence of various pertinent parameters on temperature θ is captured through
Figures 9–17. Figure 9 represents the outcomes of the bioconvection Rayleigh parameter,
G f , with temperature. The temperature of the fluid declines as the bioconvection Rayleigh
variable, G f , increases. The influence of the Grashof number, Gr, on temperature is
displayed in Figure 10. As we can see, increasing the values of Gr causes the material’s
temperature to increase. Figure 11 depicts the thermal field against the Brownian movement
variables Nb. With increasing Brownian diffusion, Nb, the average kinetic energy of the
fluid increases. As a result, the temperature acclivities. Figure 12 depicts the effect of the
thermal radiation parameter Rn on the temperature. This graph demonstrates that the
temperature declines when the radiation variable, Rn, Increases. Figure 13 portrays the



Coatings 2023, 13, 314 11 of 23

impressions of the Brinkman variable, Br, on the temperature. As a high Brinkman variable,
Br, intensifies, the outcomes of the viscous dissipation results in temperature acclivities.
The impact of the thermal slip parameter, β2, is shown via Figure 14. By enhancing the
values of the thermal slip parameter, β2, we can see that temperature increases. The effects
of the buoyancy ratio variable, Gc, are displayed in Figure 15. An increasing trend is
noticed for temperature vs. the buoyancy ratio variable Gc. The thermal field vs. the
Weissenberg number, We, is shown in Figure 16. The temperature decreases as the mass
Weissenberg number, We, increases. The consequences of the wall parameters E1, E2, and
E3 are presented in Figure 17 for temperature. It is shown that temperature is an increasing
function of E1 and E2, and it decreases with E3 in view of the damping outcome.
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4.3. Profiles of Motile Micro–Organisms

Figures 18–22 show the influence of the measured variables on the profiles of the motile
micro-organisms χ. The influence of the bioconvection Peclet number, Pe, is presented in
Figure 18 against the motile micro–organisms profiles. It is shown that the motile micro–
organisms profiles decline with an increasing bioconvection Peclet number Pe. Figure 19
presents the results for ξ. The motile micro–organisms profile increases with increases in ξ.
The impact of the thermophoresis variable, Nt, on the profile of the motile micro–organisms
is displayed in Figure 20. An increment in the thermophoresis variable, Nt, decreases the
profile of the motile micro–organisms. The bioconvection Rayleigh variable, G f , is exhibited
in Figure 21. From this figure, it can be seen that the motile micro–organisms profile, χ,
decreases for the bioconvection Rayleigh variable G f . Figure 22 shows the Weissenberg
number We. As can be seen in this figure, the micro–organisms profile, χ, of the fluid
declines via the Weissenberg number We.
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4.4. Concentration

The impacts of different pertinent variables, like ξ, β3, G f , Gc, Pe, Nb, and Nt, on
concentration φ(0) are displayed in Table 1. The concentration field decreases in the
presence of ξ. By enhancing the values of the mass slip variable, β3, the concentration
decreases. It is observed that the concentration field is an increasing function of the
Rayleigh variable G f . The concentration of the nanofluid decreases as the value of the
buoyancy ratio parameter, Gc, increases. In the presence of the bioconvection Peclet number,
Pe, the concentration field decreases. The concentration of the nanofluid has the opposite
behavior for the thermophoresis, Nt, and Brownian movement, Nb, variables.
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Table 1. Influences of distinct physical variables on φ(0).

ξ β3 Gf Gc Pe Nb Nt φ(0)

0.5 0.1 0.3 0.2 2 0.1 0.1 0.18773
1 0.18648

0.5 0.2 0.16171
0.3 0.13874
0.1 0.5 0.18979

0.9 0.19382
0.3 0.5 0.18171

0.9 0.17599
0.2 3 0.18593

4 0.18468
2 0.4 0.27067

0.7 0.28265
0.1 0.2 0.06122

0.3 0.03627

4.5. Heat Transfer Rate

The influence of the sundry variables on the rate of heat transfer, −θ′(η) is examined
in Table 2. The results of the bioconvection Rayleigh parameter, G f , are displayed in Table 2.
It can be noticed that the rate of heat transfer declines. The rate of heat transfer declines via
the Weissenberg number We. Increasing the Brownian movement, Nb, variable enhances
the rate of heat transfer. An increasing trend is noticed for the Grashof number Gr. It is
shown that the rate of heat transfer increases via the bioconvection Peclet parameter Pe.
The heat transfer rate declines via the thermal radiation variable Rn and viscosity ratio
parameter β.

Table 2. Influences of distinct physical variables on −θ′(η).

Gf We Nb Gr Pe Rn β −θ′(η)

0.5 0.3 4 0.5 1 1.5 0.1 0.0367749
0.7 0.0279817
0.5 0.4 0.0342317

0.5 0.0127678
0.3 5 0.048036

6 0.0553885
4 0.7 0.0651841

0.9 0.0974947
0.5 1.5 0.0435089

2 0.0492939
1 1 0.0836686

1.8 0.0112577
1.5 0.2 0.0367803

0.5 0.0365506

4.6. Trapping

Plots for the trappings are drawn in Figures 23 and 24. Figure 23a,b is plotted for
the Weissenberg number We. From this Figure, we noticed that the size of the bolous
increases. Figure 24a,b is plotted to see the impact of the Hartman number; as we can see,
an increment in the Hartman number increases the size of the bolus.
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5. Conclusions

The effects of motile gyrotactic micro-organisms on the bioconvection peristaltic
flow of a nanofluid were studied. The non-Newtonian Carreau–Yasuda model was used
in this study. The slip conditions impose on the elastic channel walls. The impacts of
joule heating, viscous dissipation, and thermal radiation were also taken into account.
The governing problem was solved numerically. The velocity of the fluid increases with
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increments in the velocity slip (β 1) and thermal Grashof (Gr)variables. The bioconvection
Rayleigh (G f ) and Peclet (Pe) numbers have an inverse behavior on velocity. Temperature
increases via Brownian motion (Nb) and the Brinkmann number (Br). The behaviors of
the radiation variable (Rn) and the buoyancy ratio parameter (Gc) on temperature are
reversed. The motile micro-organisms decrease via the bioconvection Peclet number (Pe)
and thermophoresis (Nb) variable. The rate of heat transfer increases via the Grashof
number (Gr) and the bioconvection Peclet parameter (Pe). The concentration declines via
the bioconvection Peclet number (Pe). The results of Hayat et al. [13] are recovered when
(Gr, Gc, G f , We, Rn)→ 0.

Author Contributions: Conceptualization, Z.N. and H.Y.; methodology, Z.N.; software, Z.N.; valida-
tion, Z.N. and H.Y.; formal analysis, Z.N. and H.Y.; investigation, Z.N. and H.Y.; writing—original
draft preparation, Z.N.; writing—review and editing, H.Y.; visualization, Z.N.; funding acquisition,
H.Y. All authors have read and agreed to the published version of the manuscript.
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Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia (Grant No. 2478).

Institutional Review Board Statement: Not applicable.
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Data Availability Statement: Not applicable.
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Nomenclature

(x,y) Cartesian co-ordinates
a wave amplitude
c wave speed
p pressure
d coefficient of viscous damping
n power law index
C concentration
(u,v) velocity components
t time
d1 half channel width
g gravitational acceleration
k thermal conductivity
T temperature
Wc maximum cell swimming speed
Greek symbols
α thermal diffusivity
ρ density, kg/m3

σ electric conductions
Γ material constant
σ electric conductions
λ wave length
δ wave number
(β1,β2,β3) slip parameters
ψ stream function
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