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Abstract: This study aims to systematize the knowledge about innovative solutions to understand
the composition of packaging materials and bioactive substances used in the packaging processes
of meat and meat products, given the contemporary trends and consumer expectations. In edible
packaging, the application of natural and renewable biopolymers is gaining popularity as, unlike
petroleum-based plastic packaging materials, they do not cause environmental problems. Packaging
using active compounds further extends the shelf life of food products compared with traditional
packaging by reducing the adverse effects during storage, such as oxidation, microbial growth, and
moisture loss. On the other hand, the inclusion of natural bioactive substances in packaging provides
an opportunity to increase the shelf life of food products and/or decrease the use of preservatives.
This direction offers a wide field for research due to the multitude of substances, their impact, and
the properties of the packaged product.
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1. Introduction

Petroleum-based plastics are one of the most commonly used packaging materials
due to their stiffness, flexibility, desirable barrier properties, inexpensiveness, and ease of
processing [1]. As conventional packaging materials for meat or meat products, synthetic
materials in the form of foil are used, often in combination with, e.g., cardboard outer
packaging. The most commonly used synthetic plastics for meat packaging include the
following: polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyester
(PET), polyamide (PA), polyvinylidene chloride (PVDC), and ethylenvinyl alcohol [2].
However, the mass use of such materials has resulted in serious environmental problems,
such as the depletion of natural resources, garbage pollution, and global warming, as they
are both nonrenewable and nondegradable [3–5].Therefore, the efforts of scientists and
industry have been directed towards sustainable strategies by developing innovations in
the field of packaging materials and packaging methods [6]. An expected property of new
packaging materials is that they are reusable, recyclable, or biodegradable once they have
served their purpose [7,8]. Therefore, the food industry is looking for an environmentally
friendly replacement of non-biodegradable plastics with biodegradable plastics [9].

Active packaging (AP) is a novel packaging method that utilizes various active com-
pounds such as antioxidants, antimicrobials, moisture absorbers, gas absorbers, and ultra-
violet absorbers. These active components interact with the packaged food product or the
surrounding environment to extend its shelf life by maintaining food quality, safety, and
integrity. Compared with traditional packaging, packaging using active compounds further
extends the shelf life of food products by reducing the harmful effects during storage, such
as oxidation, microbial growth, and moisture loss [6,10].

Recently, there has been huge progress in the construction of AP systems using various
methods such as dip coating [11], layer-by-layer assembly [12], electrospinning [13], solvent
casting [14], extrusion [15], and homogeneous emulsification [16,17]. AP technologies
can be based on either synthetic or natural materials, and some of them contain active
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ingredients such as antioxidants, antimicrobials, vitamins, flavors, and dyes [18]. In edible
packaging, using natural and renewable biopolymers is gaining popularity as they, unlike
petroleum-based plastic packaging materials, do not cause environmental problems. In
edible films, substances that comply with food regulations should be present, and these
films need to be economical, easy to apply, and environmentally friendly [19]. Edible films
are classified based on their structural material, namely hydrocolloids (polysaccharides
and proteins), lipids, and composites [20]. The limitation for edible packaging is the risk of
their contamination and thus becoming inedible. Regardless, if not eaten, edible packaging
is inherently biodegradable [21]. New packaging materials ensure higher functionality of
the packaging, extending the shelf life and ensuring higher quality and safety of packaged
meat [7]. Currently, many novel AP materials are gaining huge interest in the food industry.
AP can inhibit the growth of microorganisms on the surface of the food product, enhance
its nutritional and sensory properties, increase the shelf life of some food products, and
decrease the environmental impact of packaging [22]. As a novel method, innovative
packaging not only extends the quality and shelf life of the food product but also monitors
its quality during transport and storage. AP and intelligent packaging have been adopted
of late to ensure the traceability, safety, and quality of food products [23,24]. The main
task of intelligent packaging is to capture and provide information about changes in the
quality of packaged goods during transport and storage. They provide information about
the conditions of the packaged product, without affecting its quality [25].

In contrast to traditional food packaging, functionalized packaging systems that are
developed to load various bioactive compounds in matrix materials can lead to wide-
ranging biological effects such as antibacterial and antioxidant effects and thus protect the
food product from harmful environmental factors [26–28]. Active packages are developed
by embedding a plant-based bioactive material in a polymer. Essential oils are in the
spotlight as active ingredients due to their antimicrobial and antioxidant properties [29,30].

This study aimed to systematize the knowledge about innovative solutions to un-
derstand the composition of packaging materials and bioactive substances used in the
packaging of meat and meat products, given the contemporary trends and consumer ex-
pectations. This will help demonstrate the positive effects of using innovative methods in
the packaging of meat and its products.

2. Natural Polymers in Food Packaging

The environmental problems caused by conventional polymers have necessitated the
search for alternative packaging materials. Biodegradable films based on biopolymers
have become such an alternative [31]. In 2020, bio-based plastics used in food packaging
amounted to 0.99 million tons, accounting for 47% of the total production of bio-based
plastics [1]. The raw materials for the production of biopolymers are relatively plentiful,
and the production of biopolymers consumes agricultural waste, which, together with the
environmental benefits, makes the production of biopolymers profitable [32].

Biopolymers are popular in food packaging because they are edible and safer for
humans. For applications in food packaging, the most frequently studied nanocomposite
biomaterials are proteins, carbohydrates, and their derivatives [33–36]. To achieve an
environmentally friendly alternative and promote sustainability goals, cellulose- and starch-
based nanocomposites can be incorporated into packaging systems [37]. Examples of
natural antioxidants for lipid food include, among others, edible films and coatings with
an active coating based on cellulose derivatives, chitosan, alginate, galactomannans, or
gelatin [38].

Cellulose is the most abundant biopolymer in the world, making it an ideal raw mate-
rial for use in sustainable packaging materials. Cellulose ethers, such as methylcellulose,
hydroxypropylcellulose, hydroxypropylmethylcellulose, and carboxymethylcellulose, are
suitable for the production of packaging films [7,39]. Cellulose is obtained from natural
sources such as wood, cotton and food waste, agricultural waste, cereal bran, and fruit
skins [40]. Its availability from many different sources and being biodegradable, envi-
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ronmentally friendly, and inexpensive have made cellulose an often-preferred material
in packaging [41]. Besides being edible and biodegradable, its sensory and organoleptic
properties are beneficial; therefore, cellulose can be used in the encapsulation of bioactive
substances to enhance the nutritional properties of food products [40].

Starch is one of the most crucial biodegradable polymers because of its abundance,
low cost, biodegradability, and renewability [42,43]. Starch-based films have been used in
food packaging and preservation technologies as they show excellent film-forming ability
and unique gelatinization properties, along with their odorless, tasteless, and colorless
nature [5,44]. So far, starch-based films have been extensively used in the packaging of
different types of food products (such as meat, fruit, oil, and cheese) as they have good
organoleptic and gas barrier properties [45,46]. However, starch-based materials are brittle
and hydrophilic, which limits their processing and use. Starch is mixed with various
synthetic and natural polymers to improve its properties; this increases the strength of the
processing properties of the materials [47].

Another biopolymer is chitosan, which is derived from chitin. Chitosan films have
shown good antibacterial and antioxidant performance for food packaging. The amino
and hydroxyl groups in the structure of chitosan affect its antimicrobial activity against
gram-positive and gram-negative bacteria [48]. Chitosan-based films have a high gas
barrier. Their brittleness eliminates the use of plasticizers such as polyols (glycerin, sorbitol,
and polyethylene glycol) or fatty acids (stearic and palmitic) [47].

Being a water-soluble natural polymer, gelatin is a protein of biological origin, which
shows high biodegradability, biocompatibility, water absorption, nonimmunogenicity, and
commercial availability. Thanks to these properties, various forms of gelatin (e.g., foils,
scaffolds, capsules, filters) are used in cosmetics, pharmacy, medicine, food, and water
filtration [49]. However, due to its hydrophilicity, its structure needs to be stabilized
because, in the absence of biopolymer stabilization, gelatin-based materials tend to dissolve
and lose their structure [50].

Among the methods available for gelatin structure stabilization, protein crosslinking
is one of the most commonly used approaches to achieving hydrolytic stability of samples
based on gelatin [51]. Crosslinkers such as glutaraldehyde and genipin are extensively
used in this regard. However, there exist potential toxicity issues, along with the need for
intensive detoxification strategies considering residual unreacted glutaraldehyde groups.
In addition, the high cost of genipins is one of the primary disadvantages while using
these crosslinkers [51,52]. The gelatine-based packaging material has a good oxygen barrier
compared to other biopolymers and has the ability to be welded, which is important in
the production of packaging. The production of gelatin foils is relatively simple; it does
not require special conditions for drying and forming the foil [53]. To prevent the risk of
toxicity and achieve cost-effectiveness, heat treatment of gelatin along with sugar particles
has recently been introduced as an alternative chemical crosslinking method [54,55]. The
resulting condensation reaction between proteins and sugar is called the Maillard reaction
(MR) [50].

Gelatin-based materials show different properties (e.g., solubility, swelling, antioxidant
activity, preservation of morphology after immersion) based on the degree of MR, which
depends on parameters such as type of sugar, reaction time, temperature, and pH of the
solution. As crosslinkers, pentoses (e.g., ribose) are more reactive than hexoses (e.g., glucose)
and disaccharides (e.g., lactose) [56], whereas an increase in the percentage of sugar (up to a
certain point), temperature, or pH of the solution induces a further extended response [50,57,58].

To enhance the bioavailability and stability of thiamine in raw and cooked red meat
and salmon samples, the thiamine nanofiber nanocoating process has been successfully
applied. Specifically, for salmon samples, this process is found to be more effective regard-
ing bioavailability. In addition, it ensures a continuous increase in the thiamine content
in red meat and fish samples under cold storage conditions for 3 days. Whereas a maxi-
mum bioavailability of 87% was reported for nanocoated red meat samples, for salmon
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samples, a 94% bioavailability was achieved. Therefore, given these results, in future, this
nanotechnology application may play a leading role in the food industry [59].

The most successful edible protein film available on the market is a sausage casing
made of collagen. The films reduce leakage and prevent discoloration and fat oxidation
of thawed and chilled beef steaks. Collagen-based films are used for processed meats to
increase juiciness, reduce drip. For many years, the Japanese meat industry has commer-
cially used films and coatings based on polysaccharides. During processing, the coatings
dissolve and integrate with the meat, which has a positive effect on the texture and reduces
weight loss, ensuring higher yield [60].

3. Electrospinning

Nanofibers are obtained using electrospinning techniques that use electrostatic forces
to form fibers and non-electrospinning techniques that use mechanical force. These include
phase separation, drawing, template synthesis, self-assembly, etc. [61].

Electrospinning is a versatile, cost-effective, and convenient method to produce nano-
/microfibers with a high surface-area-to-volume ratio, controlled dimensions, high load
capacity, low weight, and wide-ranging flexibility [62]. Furthermore, with decades of
evolution, electrospinning nanofibers can now be designed with various structures and
morphologies to perform specific functions, such as uniaxial [63], hollow [64], core–shell [65],
and porous structures [66].

Electrospinning is an easy and versatile nanotechnique for producing nonwoven
nanofiber films. Its advantages are as follows: a high surface-area-to-volume ratio, increased
porosity, small interfibrous pore size, and high gas permeability. It is widely used in natural
and synthetic polymers [5,67]. Thus, electrospinning has gained interest in, among others,
textiles, agriculture, water treatment, air filtration, energy storage, cosmetics, electronics
and sensors, pharmaceuticals, biomedical products, and packaging [49,50,68].

Among innovative approaches to packaging, electrospinning has gained huge inter-
est in the biomedical and the food industries, especially in meat packaging [23,69–72].
The rapid development of electrospinning has resulted in numerous applications in var-
ious fields, including biomedicine [73], food packaging [74], sensors [75], protective ma-
terials [76], textiles [77], energy [78], oil–water separation, and others [17,79]. Several
applications of electrospinning have been found in food science, e.g., protecting bioac-
tive ingredients from external factors by encapsulating them [80–82] and extending the
shelf life of a food product by improving its bioavailability and controlled release of
biomolecules [83–85].

Compared with traditional casting films, electrospun nanofibers show numerous
unique characteristics such as high surface-area-to-volume ratio, nanoporous structure,
high porosity, and high absorption capacity [62,86], which make them more sensitive to the
surrounding changes in acidity/alkalinity and make it possible to control the release of the
contained bioactive compounds. Thus, of late, electrospun nanofibers have gained much
attention in developing food packaging films [14,87,88].

In addition, being a nonthermal process, electrospinning helps maintain the structure
stability, particularly when using additives with low thermal stability at high tempera-
tures. The process of electrospinning can be briefly divided into three steps as follows:
(1) formation of a conical shape (“tailor’s cone”) by a charged drop of a polymer solution;
(2) formation of a jet at the end of the cone if the electric field strength is sufficient to
overcome the viscoelastic force of the solution; and (3) deposition of a solid jet on the col-
lector surface and production of many fibers, with rapid volatilization of the solvent [5,89].
To obtain fibers using solution electrospinning, various materials—including synthetic
and natural polymers and their combinations—can be utilized. Among them, synthetic
polymers such as polystyrene and polyvinyl chloride, biocompatible and biodegradable
synthetic polymers like polylactic acid and polylactic-co-glycolic acid, conductive polymers
such as polyaniline and polypyrrole, and natural polymers such as chitosan, alginate,
collagen, and gelatin can be directly electrospun into nanofibers [50,90–94].
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The electrospinning technique has been used to develop high-performance packaging
materials in the food industry, due to its unique advantages: it can produce (1) micro-
/nanofibers to encapsulate unstable bioactive molecules and load with nanoparticles;
(2) edible packaging nanofibers from biopolymers, which show excellent biosafety; and
(3) nanofibers for the controlled release of bioactive compounds under a specific stimu-
lus [17].

Natural polymers, especially polysaccharides and proteins, are frequently used to
produce nanofibers due to their biocompatibility, nontoxicity, food-grade properties, and
biodegradability [95]. In addition, their diversity of functional groups enables a wide range
of active ingredients to be bound or trapped using molecular interactions [96]. Functional
electrospun mats can be used to develop nanocomposite material from a diverse range
of performance-enhanced plastics for packaging applications. In addition, they can be
used to reinforce the physical properties of both plastics and bioplastics as transparent
gas barrier layers or even as new technologies for designing bioactive packaging with
antimicrobial protection and delivering nutraceuticals to food products [97]. Numerous
electrospinning stimuli-responsive materials have recently been synthesized, which can
achieve the controlled release of active substances, thus producing a long-term biological
effect [98,99].

Nanofiber mats are promising candidates in AP [100]. In the AP industry, nanofibers
are highly useful tools to protect and deliver bioactive compounds to their destination at the
desired time [101,102]. Electrospun nanofibers can improve the barrier and antimicrobial
properties of materials in food packaging depending upon their functional properties.
These nanofibers can also be utilized as nanosensors to detect and monitor the conditions
of the food product during transport and storage [103]. These biological polymers can
be based on proteins, lipids, or polysaccharides [104–106]. This advanced technology is
originally derived from the enrichment of antioxidants in packaging designs [107–110].

Electrospun fibers show a good capacity to charge active substances, and their huge sur-
face area leads to a rapid response to internal and/or external factors by releasing/activating
the trapped compounds in a timely manner [90,95,111].

Thus, as a new technology, electrospinning can improve the overall quality and extend
the shelf life of fresh or packaged meat products [95], including (1) protecting products from
microbial contamination [3,71,112], (2) preventing lipid and protein oxidation [113,114],
(3) developing sensory properties [70,84], and (4) improving the functional and nutritional
characteristics of meat products [22]. Electrospinning enables the incorporation of antimi-
crobial compounds into the matrixes/or packaging mats and allows for a functional effect
on the surface of meat or products—where the microbiological activity is located—instead
of mixing them directly with food [115].

Starch-based films with nanofibers show an extremely high surface activity, which
makes them potential candidates for active food packaging due to their nanosize [17]. In
addition, the morphology and structure of electrospun starch fibers can be easily altered
to protect numerous active substances and enhance the mechanical and barrier proper-
ties [116]. Several factors like fiber orientation, additional ingredients [117,118], and final
processing [119] can influence their properties required for food packaging [5].

Results show that zein-based coatings are more suitable in the packaging of food
products with a high water content [120]. Yildiz et al. [121] developed an electrospun
chitosan/polyethylene/curcumin nanofiber to monitor the freshness of chicken meat.
Duan et al. [14] showed that curcumin-loaded nanofibers provide the ability to monitor
chicken spoilage in the real world.

The challenge is to overcome the unreliability of bio-based plastics. There is a need
to develop a multilayer mixture using additives [1]. In conclusion, electrospinning seems
to be a promising technique with potential applications in the fields of functional food
products and AP [102]. The advantage of electrospinning is its simplicity, the possibility of
using it in a wide range of materials, and its low cost [61].



Coatings 2023, 13, 333 6 of 18

4. Antioxidant and Antimicrobial Compounds

Many meat products are considered highly perishable because of their high nutrient
content. Temperature is the major factor in the activation of the growth of microorganisms
and chemical reactions; thus, the cooling temperature has a significant impact on their
properties. However, variations in the temperature during storage and transport can impair
the quality of the products, e.g., by increasing microbial growth and chemical reactions
such as increasing peroxides and thiobarbituric acid (TBA) values [122,123].

To increase the commercial value and safety of beef, cold storage methods and cold
chain logistics have been developed and widely used. These methods are used in pre-
serving raw beef, especially in freezing and chilling [124,125]. Freezing below −18 ◦C
significantly extends the shelf life of meat products but degrades the quality of the meat
in the freezing–thawing process. In comparison, storage at 4 ◦C can preserve the sensory
quality of meat and lower the energy consumption; however, it cannot inhibit the growth
of microbes completely, in particular some psychrophiles, so the shelf life of the products is
limited [28,124].

The meat industry is interested in achieving packaging durability goals and producing
modern solutions based on bio-based, biodegradable, compostable, recyclable, or reusable
materials [126]. Increasing demand for meat has urged significant advances in meat
packaging, guaranteeing healthy and safe products. Meanwhile, the safety and quality of
meat are dependent on the packaging materials and technologies applied [112,127].

Innovations in food packaging nanomaterials are primarily attributable to their follow-
ing distinct characteristics: excellent optical, barrier, and thermal properties, antimicrobial
activity, and advanced sensing properties affecting their chemical, physical, and biological
potential unlike their bulk counterparts [37,128].

Nanomaterials consisting of TiO2 [129,130], SiO2 [131,132], AgNPs [133], graphene [134],
and nanocellulose [135] possess remarkable characteristics such as high catalytic activity and
conductivity, which make them quintessential candidates for biosensory abilities [37].

Exemplary electrochemical immunosensors that are appropriate for the detection of
Salmonella in meat samples have recently been found in the literature [136]. For example,
graphene is a fully reliable biosensing nanomaterial that can be easily integrated with
smart packaging systems. Graphene-based nanofibers and electrodes are applied in the
development of a flexible detector for ethanol [137], histamine [138], and ammonia [37,139].
Among these films, pigment-based natural colorimetric films have gained considerable at-
tention due to their nontoxicity, biocompatibility, nature of pH sensing, and others [140,141].
These pH-sensitive colorimetric films can show visible color changes while reacting with
non-neutral volatile gases generated from high-protein degraded food products, which
can provide visual information about the quality and microbial contamination of the food
product [14,86,142,143].

To delay lipid oxidation and reduce chemical additives causing health disorders,
functional packaging using natural antioxidants is applied to extend the shelf life of meat
products [112,144,145].

Antioxidant and antimicrobial compounds used in food packaging are of different
origins: natural, such as essential oils, nisin, curcumin, α-tocopherol and vitamins, phenolic-
rich plant and pomace extracts, allyl isothiocyanate, and chitosan [146,147]; synthetic
antioxidants, such as butylhydroxytoluene and its analogs, butylhydroxyanisole, and
t-butylhydroxyquinone [23]; or antimicrobial, such as organic acids (acetic, sorbic and
ascorbic, benzoic and propane), nitrites, and nitrates [148,149].

Thymol, which is the primary component of thyme oil (classified as Generally Recog-
nized As Safe by United States Food and Drug Administration), is a promising alternative to
chemical preservatives with good antimicrobial and antioxidant properties [150]. Although
thymol’s potential as a food preservative has been widely discussed, its use in film/coating
formulations is highly limited due to its high volatility and hydrophobicity [151]. Given
these issues, particular attention has been paid to the encapsulation of plant-derived bioac-
tive compounds in biopolymer nanocarriers [26,28]. Lin et al. [152] used gelatin nanofibers
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that contain thyme essential oil/ε-polylysine β-cyclodextrin nanoparticles to control the
growth of Campylobacter jejuni on the surface of poultry with no effects on the sensory and
textural properties and color. The packaged chicken samples showed lower aerobic bacteria
counts, total volatile basic nitrogen, trimethylamine and TBA content, and pH values [123].

Cinnamaldehyde (3-phenyl-2-propenal), a component of natural cinnamon oil with a
common flavor, is one of the important antioxidant and antimicrobial agents. It can be used
to improve the quality of food products and extend their shelf life. Its sensitivity to heat,
light, humidity, oxygen, and liquid form at room temperature necessitates its encapsulation.
Zein nanofiber mass containing 1000 ppm loaded with cinnamaldehyde showed good
bactericidal activity against Staphylococcus aureus PTCC 1337 (Persian Type Culture Col-
lection (PTCC)) and Escherichia coli O157:H7 with no significant adverse effects on texture
or color in nitrite-reduced sausages [123]. The number of E. coli and S. aureus (colony-
forming unit/g samples) decreased in all sausages during storage due to the presence of
zein nanofibers with cinnamaldehyde as an antibacterial agent and nitrates [123]. Many
studies [84,153–155] reported that cinnamaldehyde, zein nanofibers with cinnamaldehyde,
and nitrites show long-term growth inhibition of S. aureus and E. coli. After 10 days of
storage, samples with packages containing phase change materials used for temperature
buffering did not contain E. coli and S. aureus bacteria [123].

Using unstable substances in AP, positive results are observed in nanoencapsulation
techniques, including nanoparticles, nanoemulsions, and nanocapsules. This prevents
the degradation of, for example, saffron bioactive compounds under adverse conditions
until they are delivered for physiological purposes [156]. In this context, electrospinning
and electrospraying have recently gained increased interest in encapsulating bioactive
ingredients and food packaging. These methods are simple, versatile, nonthermal, and thus
highly suitable for the encapsulation of heat-sensitive compounds [157–159]. Studies [159]
have indicated that electroyarn containing 30% zein and 10% saffron extract show great
potential in extending the shelf life of seafood products and delaying their spoilage during
cold storage.

An overview of sample compositions of novel packaging materials, as well as the
bioactive substances used and the spectrum of their effects on the quality of packaged food
products, is presented in Table 1.

Table 1. Examples and effects of using bioactive substances in packaging materials.

Substance Matrix Positive Effects Obtained Product Source

Antimicrobial effect

Tea tree oil Nanofiber membrane
Inhibition of 99.99% Salmonella

after 4 days of operation without
affecting the sensory quality

Chicken meat [160]

Cinnamon essential oil
(as core)

Encapsulated in Eudragit
L100 (as a shell) by coaxial
electrospinning technology

Controlled release, good
antibacterial efficacy against E. coli

and S. aureus
Pork loin [161]

Pomegranate peel
extract (PE)

Electrospun
chitosan/polyethylene oxide

(CS/PEO) active
nanofibers/active

CS/PEO/PE nanofibers

Effective inhibition of E. coli
O157:H7 on samples at 4 and 25 ◦C

for 7 and 10 days, respectively,
compared to control packaging

Beef [112]

Thyme (EO) Silk fibroin nanofibers Salmonella typhimurium reduction
from 6.64 to 2.24 log CFU/g Chicken meat [70]
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Table 1. Cont.

Substance Matrix Positive Effects Obtained Product Source

Oregano (EO) Sodium alginate foil

A reduction in Listeria population
of approximately 1.5 log at 8 ◦C
and 12 ◦C at the end of storage

and almost 2.5 log at 4 ◦C

Ham [162]

Chitosan
Electrospun fibers based on
chitosan and poly(ethylene

oxide) CS/PEO

The ability to maintain safety and
extend the shelf life by a week Fresh red meat [163]

Gallic acid + chitosan
or carvacrol + chitosan Starch foil

Complete inhibition of the growth
of Listeria monocytogenes for

4 weeks of storage, starch films
filled with chitosan or chitosan

and carvacrol delayed the growth
of the microbiota by 1–2 weeks

Ham [164]

Electrospun gelatin-
glycerine-ε-polylysine

nanofibers
Gelatine Growth inhibition of

L. monocytogenes Beef [165]

Lemon (LEO)

Thermally stable and porous
vermiculite (VML),

LEO/VML complex, coupled
with konjac

glucomannan-grafted-poly
(acrylic acid)/polyvinyl

alcohol composite

Long-term LEO control release
effectively inhibiting E. coli growth
during storage, thus extending the
shelf life of chilled pork by 3 days

Pork [166]

Methyl ferulate Zein

Effectively inhibition of
microorganism growth in fish
meat and slowing down of the

production and accumulation of
alkaline substances, thus

controlling the increase in pH and
maintaining freshness

Fish [167]

Thyme
EO/ε-polylysine
β-cyclodextrin
nanoparticles

Gelatin nanofibers
Controls the growth of C. jejuni on

the surface of poultry without
affecting the sensory evaluation

Poultry meat [152]

Eugenol Gelatin nanofibers

Strong antibacterial
activity/growth retardation of

total mesophilic aerobic and total
psychrophilic bacteria

Meat products [102]

Covered with poly-
caprolactone/chitosan

nonwoven fabric
(film 1) covered with

polycaprolac-
tone/chitosan

nonwoven fabric
reinforced with

Colombian propolis
extract (film 2)

Linear low-density
polyethylene film

Improving color stability and
microbiological stability

of pork samples
Pork [168]

Antioxidant effect

Rosemary extract Low-density polyethylene Significant inhibition of
lipid oxidation Pork patties [169]
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Table 1. Cont.

Substance Matrix Positive Effects Obtained Product Source

Chitosan Gelatin foil Delaying the oxidation of fats and
the formation of methemoglobin Beef [170]

Cinnamon (85%) +
rosemary essential

oil (15%)
Whey protein Significant inhibition

of lipid oxidation Salami [171]

Green tea extract Polyamide
Very good antioxidant capacity

and extending the shelf life from
6 to 23 days

Minced meat [172]

Antioxidant + antimicrobial action

Beetroot peel extract Gelatin–sodium
alginate coating

Minimum inhibitory concentration
of 2.5 mg/mL against

Gram-positive bacteria (S. aureus
and E. coli) and Gram-negative
bacteria (Salmonella enterica and

L. monocytogenes); delaying
chemical oxidation and improving

sensory characteristics

Beef meat [173]

Lactobacillus
plantarum postbiotics Bacterial nanocellulose

Reduction (~5 log cycles) in the
number of L. monocytogenes in

minced meat. L. plantarum
postbiotics showed moderate
antioxidant activity in meat

Minced meat [174]

Anethum
graveolens (EO) Plantago major seed mucosa

Action against E. coli, S. aureus,
and fungi extending the shelf life

of meat from 6 to 18 days; and
inhibition of the growth of bacteria

and slowing down of
oxidative changes

Beef meat [175]

Clove and argan oils Poly(lactic acid) films coated
with chitosan oil

Low oxygen permeability, high
radical scavenging activity, and

strong growth inhibition of
L. monocytogenes, S. typhimurium,

and E. coli

Beef meat [176]

Aqueous green
tea extract Chitosan coating

Improvement in physicochemical
properties (pH, color, and lipid
oxidation) and microbiological
properties of samples during

storage; the inclusion of 0.1% and
0.5% green tea water extract in the

1% chitosan coating effectively
retards the formation of

malondialdehyde and microbial
growth, while having a beneficial
effect on the pH and intensity of

red pork color

Pork cutlet
with bone [177]
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Table 1. Cont.

Substance Matrix Positive Effects Obtained Product Source

ZnO nanoparticles
with propolis

Composite film based on
pullulan/chitosan

(PLN/CTS)

Strong antibacterial activity
against E. coli and L. monocytogenes:

in meat samples wrapped in
PLN/CTS/ZnO/PPS foil before
packaging, the value of the total

aerobic bacteria count (TABC)
remained at the level of 6.7 Log
CFU/g after 8 days of storage,

controls showed a rapid increase
(TABC) of ~6 Log CFU/g after

6 days and finally ~9 Log CFU/g
within 8 days; excellent

antioxidant activity: after 15 days
of storage, while the peroxide

values (PV) of packaged meat in
the control group increased
sharply to 22 meq/kg, meat

wrapped in PLN/CTS/ZnO/PPS
film showed a much lower

peroxide count of ~10 meq/kg,
showing approximately 55%

reduced lipid oxidation

Pork loin [178]

Catechin and lysozyme Gelatin foil

Extending the shelf life and
reducing the total number of
bacteria, yeasts, and molds.
Effective inhibition of lipid

oxidation and microbial growth

Minced pork [179]

Origanum virens (EO) Whey protein
concentrate (WPC)

Inhibition of total microbial load,
higher acidity, and protection

against discoloration; the EO-WPC
film had a positive effect on the

retardation of chain reactions of fat
oxidation in alheiras

Traditional
Portuguese

sausages (paínhos
and alheiras)

[180]

Terminalia arjuna extract Maltodextrin and
calcium alginate

Lipid oxidation was inhibited, and
the number of yeasts and molds

was reduced
Chevon sausages [181]

Ethanol
propolis extract

Chitosan film enriched with
cellulose nanoparticle

Pseudomonas spp., LAB (lactic acid
bacteria), and Enterobacteriaceae

slow down the growth of
microorganisms and the oxidation

of lipids and proteins

Ground beef [182]

Resveratrol Gelatin/zein mats

Good antibacterial activity against
E. coli and S. aureus, antioxidant
activity to inhibit discoloration,

and extended shelf life

Pork [183]

Curcumin (CUR) Packaging nanofibers based
on gelatin/chitosan (GA/CS)

Inclusion of CUR significantly
improved the antioxidant and

antimicrobial activity of
GA/CS/CUR nanofibers

Meat and seafood [184]
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Table 1. Cont.

Substance Matrix Positive Effects Obtained Product Source

Cloves (CL) and
cinnamon (CI) Corn starch (CS)

Inclusion of CL and CI EO in CS
film at 3% significantly reduced

the microbial population and
thiobarbituric acid reactive

substances (TBARS) values in raw
meat during refrigerated storage

Beef [185]

Spice EO (Laurus nobilis,
LEO; and Rosmarinus

officinalis, REO)

Polyvinyl
alcohol electroyarn

Active packaging coatings
containing LEO and REO

extended the shelf life by reducing
the process of lipid oxidation and

reducing the number of Listeria
during cold storage

Chicken
breast fillets [69]

5. Summary

The introduction of new technologies in food packaging has made the packaging
market dynamic. This involves many changes in, among others, the verification of the
usability of new materials in industrial conditions, especially in terms of their impact on
the quality and safety of packaged food products. A promising direction is using natural
polymers for this purpose, which offers a possibility to solve the problems as a result of
the generation of huge amounts of waste by the food industry. However, the inclusion of
natural bioactive substances in packaging provides an opportunity to extend the shelf life
of food products and/or reduce the use of food preservatives. This provides a wide field
for research due to the multitude of substances and the spectrum of their impact, together
with the properties of the packaged product.
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Characterization of Biodegradable Food Contact Materials under Gamma-Radiation Treatment. Materials 2023, 16, 859. [CrossRef]
[PubMed]

48. Priyadarshi, R.; Rhim, J.-W. Chitosan-Based Biodegradable Functional Films for Food Packaging Applications. Innov. Food Sci.
Emerg. Technol. 2020, 62, 102346. [CrossRef]

49. Okutan, N.; Terzi, P.; Altay, F. Affecting Parameters on Electrospinning Process and Characterization of Electrospun Gelatin
Nanofibers. Food Hydrocoll. 2014, 39, 19–26. [CrossRef]

50. Etxabide, A.; Akbarinejad, A.; Chan, E.W.C.; Guerrero, P.; de la Caba, K.; Travas-Sejdic, J.; Kilmartin, P.A. Effect of Gelatin
Concentration, Ribose and Glycerol Additions on the Electrospinning Process and Physicochemical Properties of Gelatin
Nanofibers. Eur. Polym. J. 2022, 180, 111597. [CrossRef]

51. Krishnakumar, G.S.; Sampath, S.; Muthusamy, S.; John, M.A. Importance of Crosslinking Strategies in Designing Smart Biomateri-
als for Bone Tissue Engineering: A Systematic Review. Mater. Sci. Eng. C 2019, 96, 941–954. [CrossRef]

52. Kwak, H.W.; Park, J.; Yun, H.; Jeon, K.; Kang, D.-W. Effect of Crosslinkable Sugar Molecules on the Physico-Chemical and
Antioxidant Properties of Fish Gelatin Nanofibers. Food Hydrocoll. 2021, 111, 106259. [CrossRef]

53. Hanani, Z.A.N.; Roos, Y.H.; Kerry, J.P. Use and Application of Gelatin as Potential Biodegradable Packaging Materials for Food
Products. Int. J. Biol. Macromol. 2014, 71, 94–102. [CrossRef]

54. Kchaou, H.; Benbettaïeb, N.; Jridi, M.; Abdelhedi, O.; Karbowiak, T.; Brachais, C.-H.; Léonard, M.-L.; Debeaufort, F.; Nasri, M.
Enhancement of Structural, Functional and Antioxidant Properties of Fish Gelatin Films Using Maillard Reactions. Food Hydrocoll.
2018, 83, 326–339. [CrossRef]

55. Etxabide, A.; Vairo, C.; Santos-Vizcaino, E.; Guerrero, P.; Pedraz, J.L.; Igartua, M.; de la Caba, K.; Hernandez, R.M. Ultra Thin
Hydro-Films Based on Lactose-Crosslinked Fish Gelatin for Wound Healing Applications. Int. J. Pharm. 2017, 530, 455–467.
[CrossRef]

56. Etxabide, A.; Kilmartin, P.A.; Maté, J.I.; Prabakar, S.; Brimble, M.; Naffa, R. Analysis of Advanced Glycation End Products in
Ribose-, Glucose- and Lactose-Crosslinked Gelatin to Correlate the Physical Changes Induced by Maillard Reaction in Films. Food
Hydrocoll. 2021, 117, 106736. [CrossRef]

57. Etxabide, A.; Urdanpilleta, M.; Gómez-Arriaran, I.; de la Caba, K.; Guerrero, P. Effect of PH and Lactose on Cross-Linking
Extension and Structure of Fish Gelatin Films. React. Funct. Polym. 2017, 117, 140–146. [CrossRef]

58. Stevenson, M.; Long, J.; Seyfoddin, A.; Guerrero, P.; de la Caba, K.; Etxabide, A. Characterization of Ribose-Induced Crosslinking
Extension in Gelatin Films. Food Hydrocoll. 2020, 99, 105324. [CrossRef]

http://doi.org/10.1016/j.carbpol.2017.04.025
http://doi.org/10.1016/j.ijbiomac.2016.07.107
http://doi.org/10.1016/j.aiepr.2023.01.001
http://doi.org/10.1016/j.fpsl.2022.100997
http://doi.org/10.1016/j.ijbiomac.2019.05.143
http://doi.org/10.1201/b21347
http://doi.org/10.1016/j.tifs.2021.04.016
http://doi.org/10.1016/j.aiepr.2019.11.002
http://doi.org/10.3390/polym14061126
http://doi.org/10.1080/10408398.2022.2036097
http://doi.org/10.1016/j.carbpol.2016.04.113
http://www.ncbi.nlm.nih.gov/pubmed/27312611
http://doi.org/10.1016/j.ijbiomac.2019.03.190
http://www.ncbi.nlm.nih.gov/pubmed/30926503
http://doi.org/10.3390/ma16020859
http://www.ncbi.nlm.nih.gov/pubmed/36676596
http://doi.org/10.1016/j.ifset.2020.102346
http://doi.org/10.1016/j.foodhyd.2013.12.022
http://doi.org/10.1016/j.eurpolymj.2022.111597
http://doi.org/10.1016/j.msec.2018.11.081
http://doi.org/10.1016/j.foodhyd.2020.106259
http://doi.org/10.1016/j.ijbiomac.2014.04.027
http://doi.org/10.1016/j.foodhyd.2018.05.011
http://doi.org/10.1016/j.ijpharm.2017.08.001
http://doi.org/10.1016/j.foodhyd.2021.106736
http://doi.org/10.1016/j.reactfunctpolym.2017.04.005
http://doi.org/10.1016/j.foodhyd.2019.105324


Coatings 2023, 13, 333 14 of 18

59. Yaman, M.; Sar, M.; Ceylan, Z. A Nanofiber Application for Thiamine Stability and Enhancement of Bioaccessibility of Raw,
Cooked Salmon and Red Meat Samples Stored at 4 ◦C. Food Chem. 2022, 373, 131447. [CrossRef]

60. Shaikh, S.; Yaqoob, M.; Aggarwal, P. An Overview of Biodegradable Packaging in Food Industry. Curr. Res. Food Sci. 2021, 4,
503–520. [CrossRef]

61. Alghoraibi, I.; Alomari, S. Different Methods for Nanofiber Design and Fabrication. In Handbook of Nanofibers; Barhoum, A.,
Bechelany, M., Makhlouf, A., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–46, ISBN 978-3-319-42789-8.

62. Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev.
2019, 119, 5298–5415. [CrossRef]

63. Liu, P.; Wu, S.; Zhang, Y.; Zhang, H.; Qin, X. A Fast Response Ammonia Sensor Based on Coaxial PPy–PAN Nanofiber Yarn.
Nanomaterials 2016, 6, 121. [CrossRef]

64. Das, S.K.; Afzal, M.A.F.; Srivastava, S.; Patil, S.; Sharma, A. Enhanced Electrical Conductivity of Suspended Carbon Nanofibers:
Effect of Hollow Structure and Improved Graphitization. Carbon 2016, 108, 135–145. [CrossRef]

65. He, P.; Zhong, Q.; Ge, Y.; Guo, Z.; Tian, J.; Zhou, Y.; Ding, S.; Li, H.; Zhou, C. Dual Drug Loaded Coaxial Electrospun PLGA/PVP
Fiber for Guided Tissue Regeneration under Control of Infection. Mater. Sci. Eng. C 2018, 90, 549–556. [CrossRef]
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