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Various physical vapor deposition (PVD) techniques, such as molecular beam epitaxy,
electron beam physical vapor deposition, pulsed laser deposition (PLD), arc discharge, mag-
netron sputtering and/or ion beam sputtering, are currently used for coating or growing
thin films on solid substrates. Although the first time a PLD technique was mentioned was
in 1965 [1], major breakthrough only began being reported in 1987, when Dijkkamp et al. [2]
used this method to grow YBa2Cu3O7x thin films. Since then, huge interest and develop-
ments in the use of this unique PVD process have been evidenced [3–5].

One should note that the PLD process is based on the capability of laser radiation, usu-
ally in the ultraviolet range, to efficiently interact with solid-state or liquid targets, resulting
in the congruent ablation of materials from the target surface and subsequent deposition
on a substrate. Depending on the laser characteristics and target material properties, their
interaction generates an intense nano/microscopic process, which, consequently, leads to
instantaneous localized heating (in the order of tens of thousands of degrees Celsius [6])
and the vaporization of material.

Over the years, PLD has emerged as a relatively simple, highly versatile, and powerful
method to fabricate either nanoparticles or high-quality thin films [7,8], both in single and
variable compositions. In this respect, PLD became a noteworthy approach to fabricate
either simple metals, ceramics, glasses, and polymer films or complex oxides, and even
biological materials [9,10], to achieve peculiar or hardly to approach by other techniques
functionalities in engineering, chemistry, biology, and medicine. In respect to other PVD
techniques, this is mainly due to the fact that PLD exhibits some unique features, including
(i) the ability to stoichiometrically transfer a target material to the substrate (even for very
complex materials), (ii) versatility (the high-intensity, focused pulsed laser can ionize a
majority of materials to obtain either simple or multielement complex compounds, multi-
layers, nanoparticles, and nanostructures), (iii) accurate control over the growth rate and
flexibility in the use of experimental parameters (i.e., ambient gas nature and pressure, gas
flow rate, substrate temperature, laser incident intensity, number of applied pulses, fre-
quency repetition rate, pulse duration, and the wavelength, but also the substrate-to-target
separation distance, target composition and structure, and power density), (iv) the ability
to deposit multicomponent layers, (v) an unlimited degree of freedom in the geometry of
the experimental set-up, and (vi) its clean and safe nature (due to the use of light).

In recent decades, sustained efforts have been carried out to modify and adapt the
geometrical configuration of PLD experimental set-ups with the aim of improving the
overall quality of the synthesized nanoparticles and thin films. In this respect, one should
mention (i) scanning multicomponent pulsed laser deposition [11], (ii) combined PLD and
magnetron sputtering [12], (iii) multibeam PLD [13], (iv) off-axis PLD [14], (v) combina-
torial PLD [15,16], and (vi) reactive pulsed laser deposition [17–19]. Moreover, the PLD
conventional technique was extended after the application of appropriate modifications for
the processing of organic materials, ranging from polymers to proteins and even living cells,
which were previously reported to be definitively altered after interacting with high-power

Coatings 2023, 13, 393. https://doi.org/10.3390/coatings13020393 https://www.mdpi.com/journal/coatings

https://doi.org/10.3390/coatings13020393
https://doi.org/10.3390/coatings13020393
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/coatings
https://www.mdpi.com
https://orcid.org/0000-0002-6408-6056
https://orcid.org/0000-0001-9486-0420
https://doi.org/10.3390/coatings13020393
https://www.mdpi.com/journal/coatings
https://www.mdpi.com/article/10.3390/coatings13020393?type=check_update&version=2


Coatings 2023, 13, 393 2 of 3

laser radiation. This version of PLD is known as matrix-assisted pulsed laser evaporation
(MAPLE) [20–22].

After various developments over more than half a century, PLD has evolved from
simply being a pure laboratory-based research approach to an industry-relevant instrument
for large-area applications [23,24]. Thus, the nanoparticles produced with PLD can be
fabricated on an industrial scale for the generation of energy in optoelectronics, information,
and data storage. Thin-film synthesis via PLD is now frequently used to improve the
bulk material surface performances, such as structural, morphological, chemical, optical,
electrical, and/or mechanical.

The aim of this Special Issue is, therefore, to discuss the recent progress in trends in
PLD of both nanoparticles and thin-film applications. The topics of interest are devoted,
but not limited to, the use in a range of different technologies, including medical implants,
drug delivery, sustainable materials, environmental sensors, light emitters, the protection of
cutting and drilling tools, multilayers, magnetic devices, high-temperature and high-current
density superconductors, solar cells, energy storage, in situ microstructuring, and catalysts.
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