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Abstract: NiO has been found to be highly outstanding in producing H2 and O2 from H2O through
magnetic stirring, while its capability for the reduction of CO2 through mechanical stimulation has
not been investigated. Presently, NiO particles have been employed to promote the conversion of
H2O and CO2 enclosed in reactors into flammable gases through magnetic stirring. For a 150 mL
glass reactor filled with 50 mL water, 1.00 g of NiO particles, and 1 atm of CO2, 24 h of magnetic
stirring using a home-made Teflon magnetic rotary disk resulted in the formation of 33.80 ppm
CO, 10.10 ppm CH4, and 12,868.80 ppm H2. More importantly, the reduction of CO2 was found
to be substantially enhanced through coating some polymers and metals on the reactor bottoms,
including 25.64 ppm CO and 70.97 ppm CH4 obtained for a PVC-coated reactor and 30.68 ppm CO,
52.78 ppm CH4, 3.82 ppm C2H6, and 2.18 ppm C2H4 obtained for a stainless steel-coated reactor.
Hydroxyl radicals were detected using fluorescence spectroscopy for NiO particles under magnetic
stirring in water. A tribo-catalytic mechanism has been proposed for the conversion of H2O and
CO2 into flammable gases by NiO particles under magnetic stirring that is based on the excitation of
electron-hole pairs in NiO by mechanical energy absorbed through friction. These findings not only
reveal a great potential for mechanical energy to be utilized for CO2 conversion but are also valuable
for fundamental studies.

Keywords: tribo-catalysis; H2 generation; CO2 reduction; NiO; friction

1. Introduction

As one of the most abundant clean energies in ambient environments, mechanical
energy is receiving more and more attention to be harvested for chemical reactions [1–8].
In research, piezoelectric materials are mechanically stimulated to deform with voltages
generated across them, which have been demonstrated useful for water splitting [9–13],
organic pollutant degradation [14–18], tooth whitening [19], and tumor therapy [20–22].
The piezoelectricity of the materials employed plays a vital role in the conversion of me-
chanical energy to chemical energy in these utilizations, and this type of energy conversion
has been widely termed as piezo-catalysis and is confined to piezoelectric materials only.
As a result, technologies suitable for both piezoelectric and non-piezoelectric materials
to harvest mechanical energy have been intensively pursued [4]. It is well known that
mechanical energy can be readily absorbed by materials through friction and converted
into other forms of energy, including chemical energy, heat, and light [23]. As a matter of
fact, a concept for the conversion of mechanical energy to chemical energy by materials
through friction, namely tribo-catalysis, had been proposed several decades before [24].
However, there had been no common, specific applications for tribo-catalysis for a long
period of time [25]. In 2019, Li et al. first reported tribo-catalytic degradation of organic pol-
lutants by Ba0.75Sr0.25TiO3 nanoparticles [1]. Additionally, in the following couple of years,
tribo-catalytic degradation of organic pollutants has already been investigated for many
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other materials, including both piezoelectric and non-piezoelectric ones [2,3,5,6,26,27]. It is
particularly interesting that tribo-catalytic reduction of CO2 has very recently been revealed
for TiO2 nanoparticles [28,29], which demonstrates a direct utilization of mechanical energy
for CO2 conversion. Obviously, tribo-catalysis must have been strangely neglected for
decades, and many more investigations are highly desirable to fully explore its potential in
harvesting mechanical energy from ambient environments.

It should be pointed out that Cu2O and some other metal oxides had been investigated
with regards to their capability to split water through magnetic stirring by Domen et al. in
1998 [30], in which the mechanical energy supplied by magnetic stirring was proposed to be
converted to chemical energy of H2 and O2 with Cu2O functioning as a mediator or catalyst.
This was the first time that the concept of mechano-catalysis was proposed. Subsequently,
it was discovered that NiO performed outstandingly among dozens of metal oxides in the
production of both H2 and O2 [31]. A mechanism based on redox reactions between metals
and metal oxides has been proposed for the formation of H2 and O2 from H2O by metal
oxides under magnetic stirring [32]. This mechanism is quite different from tribo-catalysis
and the implications of Domen et al.’s findings for tribo-catalysis have been quite neglected.
With all these recent findings for tribo-catalysis, it is meaningful to carefully investigate
the capability of NiO and other metal oxides for the conversion of H2O and CO2 as well
through friction. Currently, we have conducted such an investigation for NiO and obtained
some highly interesting results. Through magnetic stirring, NiO particles are found to
be able to convert H2O and CO2 enclosed in reactors into flammable gases of CO, CH4,
and H2, among which H2 has an especially high concentration. More interestingly, some
plastics and metals have been coated separately on the reactor bottoms to form friction
with NiO particles in magnetic stirring, and the concentrations of CO and CH4 are found to
have substantially increased. These results should be highly important for tribo-catalysis,
both fundamentally and practically.

2. Materials and Methods
2.1. Fabrication of Teflon Magnetic Rotary Disks

To ensure as many NiO particles as possible form friction with reactor bottoms during
magnetic stirring, Teflon magnetic rotary disks were designed and fabricated. As shown in
Figure 1, a cross-shaped groove (4 mm wide × 2 mm deep) formed on one major surface
of a Teflon disk (φ 35 mm × 5 mm), and 18 magnets (φ 5 mm × 5 mm) assembled and
mounted on the other surface of the disk, which was then encapsulated by epoxy. With
the groove facing downward, such a Teflon magnetic rotary disk can be driven to rotate
in a reactor through an ordinary magnetic stirrer, and NiO particles are able to enter the
interface between the disk and the reactor bottom through the groove.
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Figure 1. Photographs of a home-made Teflon magnetic rotary disk, back side and front side,
separately.

2.2. Forming Plastic and Metallic Coatings on the Bottoms of Quartz Glass Reactors

Some commercial quartz glass reactors of φ 50 mm × 75 mm (150 mL) were used
directly, while others were first modified through coating plastic and metallic disks of
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φ 49 mm × 1 mm separately on their bottoms. In this way, reactors with different bottoms
of glass, plastics, and metals were obtained separately and could be used for comparison.

2.3. Materials Characterizations

The crystal structure of NiO powders investigated in this study was measured by X-ray
diffraction (XRD, SmartLab SE, Rigaku, Japan) with Cu Kα radiation. The morphology
and microstructure of the NiO powders were observed by a scanning electron microscope
(SEM, Zeiss GeminiSEM 500, Oberkochen, Germany).

2.4. Tribo-Catalytic Activity Measurement

In a typical experiment, 1.00 g of NiO particles, 50 mL of deionized water, and a
Teflon magnetic rotary disk were placed separately in a reactor. It is worthy to note
that in initial investigations by Domen et al. on splitting water by NiO particles under
magnetic stirring, only 0.1 g of NiO particles were dispersed in 200 mL of deionized
water [30,31]. During our series of tribo-catalysis studies, we discovered that using a
much larger amount of tribo-catalyst relative to deionized water can substantially improve
tribo-catalytic efficiency [1,27–29]. CO2 gas (99.99%) was bubbled through the water for
1 h to remove air, at which point the reactor was gas-tight. The Teflon magnetic rotary
disk was driven to rotate at 400 rpm through a magnetic stirrer (Chijiu 84-1, Shanghai,
China) outside. The reactor was kept in darkness, and the ambient temperature was kept
at 25 ◦C. After some designated times of magnetic stirring, the gaseous products inside the
reactor were sampled and analyzed through a gas chromatograph (GC-2014C, Shimadzu,
Kyoto, Japan) equipped with a thermal conductivity detector (GC-TCD, Kyoto, Japan) and
two flame ionization detectors (GC-FID1, GC-FID2, Kyoto, Japan). However, the oxygen
content of the gaseous products cannot be measured using this method.

There were many configurations for H2O and CO2 enclosed in the reactors to be
converted through magnetic stirring in this study. For every configuration, at least three
independent experiments were conducted. According to their data obtained through
gas chromatograph measurement, one experiment was chosen as representative for the
configuration, and its data were adopted.

2.5. Detection of Hydroxyl Radicals

Typically, in a flat-bottomed glass beaker (φ 45 mm × 60 mm), 1.00 g of NiO particles
were suspended in 50 mL of a 0.5 mM terephthalic acid (TA) aqueous solution containing
2 mM of NaOH. The mixture was magnetically stirred through a Teflon magnetic rotatory
disk at a speed of 400 rpm on a magnetic stirrer in the dark at room temperature (25 ◦C). Dur-
ing the test, 3 mL of solution was taken out at each 2 h interval and centrifuged at 8000 rpm
for 5 min to remove NiO powder, and then the fluorescence spectra were measured on a
fluorescence luminescence spectrophotometer (FL, Hitachi F4600, Tokyo, Japan) using the
315 nm excitation light. Hydroxyl radicals react with TA to form 2-hydroxyterephthalic
acid (TAOH), which has a characteristic photoluminescence signal centered at 425 nm.

3. Results and Discussion

In research by Domen et al. on water splitting by metal oxides under magnetic stirring,
some of the metal oxides employed were powders with micrometer-sized grains [30,31].
Additionally, in our study on tribo-catalysis, we have also observed that those powders of
interest are not necessarily nanoparticles, which form a sharp contrast with those in photo-
catalysis. As a matter of fact, we had compared several kinds of NiO commercial powders
and then chose one to be employed in this study, which was obtained from Sinopharm
Chemical Reagent Co., Ltd. (Shanghai, China) with a purity of 99.0%. Its XRD pattern and
microstructure are shown in Figure 2. As shown in Figure 2a, all the diffraction peaks are
seen at 37.2◦ (111), 43.3◦ (200), 62.9◦ (220), 75.4◦ (311), and 79.4◦ (222), which match well
with the standard diffraction pattern of NiO (JCPDS #47-1049). No obvious impurity peaks
were detected, indicating this commercial NiO powder had a high phase purity. The SEM
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image (Figure 2b) shows that its NiO particles were quite uneven in size, ranging roughly
from 100 nm to 1 µm. Some particles were irregular polyhedrons with distinct edges, which
suggested a high crystallinity. A recent paper [33] clearly demonstrated the importance of
high crystallinity for tribo-catalysts.
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Teflon magnetic stirring rods were not designed for applications in tribo-catalysis.
Instead, Teflon magnetic rotary disks have been deliberately designed to form a large
interface with beaker/reactor bottoms in magnetic stirring and should be especially suitable
for applications in tribo-catalysis [27]. In a previous investigation, greatly enhanced tribo-
catalytic degradation of organic pollutants has been observed for TiO2 nanoparticles, using
the well-known commercial photocatalyst P25 when Teflon magnetic rotary disks are
adopted in magnetic stirring [27]. Additionally, in this study, we tested first the Teflon
magnetic rotary disks we fabricated to drive TiO2 nanoparticles of P25 to convert H2O
and CO2 enclosed in reactors to CO, CH4, and H2, and some of the results are shown in
Figure 3. In a control experiment in which a Teflon magnetic rotary disk was driven to
rotate via magnetic stirring in deionized water in a gas-tight reactor, a small quantity of
flammable gases (2.10 ppm CH4, 2.50 ppm CO, and 6.00 ppm H2) was detected 24 h after
magnetic stirring started. While for the experiment with 1.00 g P25 of TiO2 nanoparticles
dispersed in deionized water in a gas-tight reactor, as much as 9.10 ppm of CH4, 29.00 ppm
of CO, and 40.50 ppm of H2 were produced after 24 h of magnetic stirring. Obviously, the
addition of P25 had dramatically promoted the conversion of H2O and CO2.

In previous investigations on the tribo-catalytic conversion of H2O and CO2 by TiO2
nanoparticles, four Teflon magnetic stirring rods were employed simultaneously in mag-
netic stirring to enhance the friction energy absorbed by TiO2 nanoparticles [28,29]. Though
TiO2 nanoparticles had been found to have a tribo-catalytic effect on the conversion of
H2O and CO2 to CO, CH4, and H2, the efficiency was extremely low. Compared with
these results, the Teflon magnetic rotary disks show a clear advantage for applications in
tribo-catalytic H2O and CO2 conversion. A special experiment had also been conducted in
one of these previous investigations [28], in which a home-made glass magnetic stirring
rod was used. As no polymers were involved, the formation of CO and CH4 under this
configuration directly demonstrated the tribo-catalytic conversion of H2O and CO2.

In evacuated reactors filled with water only, NiO particles have been found to be
highly outstanding in the production of H2 and O2 through magnetic stirring. Now that the
conversion of CO2 is receiving more and more attention worldwide, it is highly interesting
to examine how H2O and CO2 enclosed in reactors will be converted by NiO particles
through magnetic stirring, and a representative result is also shown in Figure 3. On the
one hand, the production of CH4 and CO by NiO particles is quite similar to that of TiO2
nanoparticles. On the other hand, the production of H2 by NiO particles is more than
300 times as much as that for the TiO2 nanoparticles. In some senses, such a striking
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contrast confirms the finding by Domen et al. on the exceptional capability of NiO for the
mechanical production of H2 more than 20 years ago [30,31], which has remained a great
challenge to achieve a satisfactory fundamental understanding.
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Such a large amount of flammable gases observed for NiO particles suggests that NiO
will be an important material for the conversion of mechanical energy to chemical energy
through friction. It should be pointed out, however, that its amounts of CO and CH4 are
smaller than that of H2 by more than two orders of magnitude, which indicates that NiO
is not so effective for the conversion and recycling of CO2 through the use of mechanical
energy. We have conducted a series of explorations to increase the amounts of CO and CH4
produced by NiO particles through friction. In one exploration, we modified as-received
reactors by coating polymer disks on their bottoms. Such a simple modification greatly
affected the amounts and compositions of flammable gases produced by NiO particles
through magnetic stirring, as shown by those obtained for PP, PMMA, and PVC-coated
reactors in Figure 4. For every reactor, a control experiment was conducted in which no NiO
particles were dispersed in the ionized water of the reactor. Perhaps due to the relatively
complicated interactions between Teflon and coatings of PMMA and PVC in magnetic
stirring [34], relatively large amounts of H2 were produced in the control experiments with
these two reactors. It can be clearly seen that for all three reactors, the addition of NiO
particles increased the amount of H2 by more than 10-fold. More interestingly, for PP and
PVC reactors, the total amounts of CO and CH4 produced by NiO particles were very
impressive. Compared with the flammable gases produced by TiO2 nanoparticles shown in
Figure 3, these results suggest that the tribo-catalytic conversion of H2O and CO2 by NiO
particles can be considerably tailored to yield high productions of both H2 and C1 products
of CO and CH4.

Similarly, we have modified some reactors by coating some metallic disks on their
bottoms, and the results are also very interesting, as shown in Figure 5. In the control
experiments, only small amounts of CO and CH4 were produced after 24 h of magnetic
stirring. In the experiments with the addition of NiO particles, not only were the amounts
of CO and CH4 dramatically increased, but quite large amounts of H2 were also produced.
It should be pointed out that the results obtained for these three reactors are quite different
from one another. The amount of H2 obtained for the Cu-bottomed reactor was much
smaller than the other two reactors, and for the stainless steel-bottomed reactor, not only
were the amounts of H2, CO, and CH4 the highest among these three reactors, but small
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quantities of C2H6 and C2H4 were also observed. Obviously, the friction between NiO
particles and these metals influences the conversion of H2O and CO2 in a very complicated
way. These results further confirm that the tribo-catalytic conversion of H2O and CO2 by
NiO particles can be greatly tailored, and many more investigations are highly desirable.
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Figure 5. The production of flammable gases after 24 h of magnetic stirring for Cu, Ti, and stainless
steel (SUS316) reactors. For every reactor, two experiments were conducted in which no NiO particles
and 1.00 g of NiO particles were added to the deionized water, separately.

It should be pointed out that a quite unique back-and-forth conversion between NiO
and Ni has been proposed to account for the overall water splitting by magnetic stirring
stimulated NiO [32]. Now that tribo-catalysis has been revealed for more and more metal
oxides, it is meaningful to carefully investigate the mechanism for the conversion of H2O
and CO2 by NiO through friction. It is well known that the hydroxyl radical is one of
the most reactive radicals for many catalytic reactions in aqueous solutions [35–39]. In
this study, we have conducted a routine experiment to detect the formation of hydroxyl
radicals for NiO under magnetic stirring in an aqueous solution. For terephthalic acid
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suspended with NiO particles, the peak signal of 2-hydroxyterephthalic acid at 425 nm
in fluorescence spectroscopy increased steadily with increasing magnetic stirring time,
as shown in Figure 6. Meanwhile, 2-hydroxyterephthalic acid was not detected during
magnetic stirring in the absence of NiO. As 2-hydroxyterephthalic acid is formed through
the reaction between terephthalic acid and hydroxyl, it indicates that hydroxyl radicals are
continuously generated in water when NiO particles are kept stimulated through magnetic
stirring in water. This result strongly suggests that the conversion of H2O and CO2 by NiO
under magnetic stirring is realized through the participation of reactive radicals.
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Figure 6. Fluorescence spectra of the 2-hydroxyterephthalic acid solutions taken from a terephthalic
acid solution suspended with NiO particles and magnetically stirred (inset: fluorescence intensity of
2-hydroxyterephthalic acid at 425 nm over time).

As a matter of fact, the production of flammable gases by NiO under magnetic stirring
is quite similar to that by TiO2 nanoparticles [28,29], for which a tribo-catalytic mechanism
based on the excitation of electron-hole pairs in TiO2 through mechanical energy has been
proposed. With NiO as a typical metal oxide semiconductor, it is reasonable to apply this
mechanism for the results in this study, which can be expressed as:

NiO + Friction energy→ NiO + e− + h+, (1)

where e− represents an electron excited to the conduction band (CB) and h+ represents a
hole formed in the valence band (VB).

Once electron-hole pairs are excited in NiO, they are able to produce some reactive
radicals in ambient aqueous solutions, including hydroxyl radicals, in the following way:

OH− + h+ →·OH. (2)

These radicals are well known for their roles in the degradation of organic pollutants,
water splitting, and reduction of CO2 [1–8,28,29]. Obviously, the conversion of H2O and
CO2 into flammable gases by NiO particles as a tribo-catalyst can be explained in terms of
these radicals, which can be schematically expressed in Figure 7.

This is only a simplified mechanism for the formation of these flammable gases by
magnetic stirring stimulated NiO particles, some specific details are still a great challenge to
be understood. First of all, it is highly difficult to understand why the coating materials on
reactor bottoms have such profound influences on the formation of flammable gases by NiO
particles under magnetic stirring, not only on the amount but also on the composition of
the flammable gases. Secondly, when NiO particles and TiO2 nanoparticles are stimulated
through magnetic stirring in glass-bottomed reactors, why are they quite similar for the
production of CO and CH4 but greatly different for the production of H2? As a matter of
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fact, Domen et al. had explored this great difference for the production of H2 among various
materials more than 20 years ago, and there has been no satisfactory answer to date [40,41].
Many more investigations are expected to be conducted to achieve an understanding of the
singular tribo-catalytic behavior of NiO and to promote the development of tribo-catalysis
as a whole.
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Figure 7. Schematic illustration for the catalytic production of flammable gases by a NiO particle via
friction in water.

4. Conclusions

For a commercial glass reactor (150 mL) filled with 50 mL of water, 1.00 g of NiO
particles, and 1 atm CO2, as much as 33.80 ppm of CO, 10.10 ppm of CH4, and 12868.80 ppm
of H2 were produced after 24 h of magnetic stirring using a home-made Teflon magnetic
rotary disk. The conversion of H2O and CO2 by NiO particles has been further found to be
greatly adjustable. The reduction of CO2 can be dramatically enhanced by coating some
polymers and metals on reactor bottoms. As much as 25.64 ppm of CO and 70.97 ppm of
CH4 were obtained for a PVC coating, and 30.68 ppm of CO, 52.78 ppm of CH4, 3.82 ppm
of C2H6, and 2.18 ppm of C2H4 were obtained for a stainless steel coating. Hydroxyl
radicals were detected through fluorescence spectroscopy for NiO particles under magnetic
stirring, which supports a tribo-catalytic mechanism for the conversion of H2O and CO2
into flammable gases by mechanically stimulated NiO particles. The incredible diversity
in tribo-catalysis observed among different materials to date not only reveals a great
potential for particulate semiconductors to utilize mechanical energy through friction but
also presents a great challenge for fundamental research.
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