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Abstract: Laser surface treatment is a very useful technology for the fabrication of functional surfaces.
In this study, novel antifouling surfaces are fabricated by laser cladding of TC4 and Ni60 mixed mate-
rials in various mass ratios on the surfaces of 316L stainless steel substrates. Parametric studies are
carried out to investigate the effects of the mixed powder mass ratios and laser cladding parameters
on the antifouling performance of the laser clad coatings (LCCs). The antifouling mechanism of
the LCCs is investigated by using the water contact angle/surface energy measurement, scanning
electron microscope (SEM) surface observation, and phase composition analysis via XRD (X-ray
diffractometer) testing. The experimental results show that the LCCs with Ni60/TC4 mass ratio
of 3/7 has better antifouling performance in this study. The antifouling performance of the LCC
decreases with the increase in laser scanning speed. Surface energy and surface topography have
a significant effect on the antifouling performance of LCCs. In order to get the optimal antifouling
performance of LCCs, the Ni60/TC4 mass ratio and laser cladding parameters should be optimized.

Keywords: antifouling coating; laser cladding; microbial attachment rate; surface energy; surface
topography; Ni60/TC4

1. Introduction

Biofouling is ubiquitous in the marine environment and is a major concern in the
shipping industry. The growth of organisms on a vessel hull or ship increases frictional
drag that reduces ship speed or requires increased power and fuel consumption to maintain
its speed [1]. Slime films alone can increase powering costs by 21%, with heavy calcareous
biofouling increasing the cost by up to 86% [2]. The economic costs of ship fouling have
been a driving force behind the development of antifouling technologies, a growing global
industry that is now worth at least USD 4 billion annually. Dafforn et al. [3] reviewed
existing information regarding the ecological impact of biocides in a wide range of organ-
isms and highlighted directions for the management of antifouling paints, and focused
particularly on representatives of the recent past biocides.

Traditionally, there are three types of antifouling coatings: base material soluble
antifouling paint, base insoluble antifouling paint, and organic tin self-polishing antifouling
paint. However, traditional antifouling coatings release harmful substances into the sea
when they are dissolved, which harms the marine environment. Therefore, a number
of studies have been carried out on the development of biological antifouling coatings.
Salama et al. [4] extracted the metabolites of macro-algae from the Red Sea, added them to
varnish, and coated them on a nylon mesh board. Experimental results showed that the
panel-attached biofouling with seaweed extract was significantly reduced. Bers et al. [5]
studied the extracts from the keratin membrane of the shell of the purple mussel and found
that these extracts could effectively prevent the attachment of barnacle larvae, bacteria, and
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algae. Guenther et al. [6] found that the surface of starfish consists of a thin layer of cuticle
covered by an epidermis, which can effectively inhibit the attachment of algae, barnacles,
polychaeta, bryozoans, and sea squirts. Lai et al. [7] isolated 12 compounds from soft corals,
two of which had good antifouling performance.

Low surface energy antifouling coatings are also widely used in marine equipment
antifouling. At present, the most widely used low surface energy coatings are mainly
divided into two categories: organic fluorine and silicone. Schumacher et al. [8] prepared
morphologies with different characteristic sizes, geometric shapes, and roughness on the
surface of polydimethylsiloxane elastomers and studied the effects of different morpholo-
gies on the attachment of algae and spores. Qu et al. [9] prepared a new type of low surface
energy antifouling coating by nano-TiO2 modification of synthetic silicon-modified acrylic
resin, which was reported to have a good antifouling effect. Qiu et al. [10] developed a
number of marine antifouling coatings based on fluorocarbon copolymers. Selim et al. [11]
successfully developed a novel super-hydrophobic silicone/β -MnO2 nanorods composite
for marine fouling release (FR) coatings.

In recent decades, bionic studies have shown that many organisms, such as lotus leaves,
sharks, taro leaves, crabs, starfish, shells, and geckos, have self-cleaning functions due
to their special surface micro-structures. Inspired by these natural self-cleaning surfaces,
bionic surfaces have been fabricated, and their antifouling performance has been investi-
gated [12–18]. In the fabrication of these bionic antifouling surfaces, various techniques
were employed, such as polydimethylsiloxane (PDMS)-embedded elastomeric stamping
(PEES) method [12], resin replication [13–15], electron lithography or photolithography [16],
and laser surface modification [17,18].

In laser surface modification, Sun et al. [17] fabricated super-hydrophobic surfaces
with controllable periodic structures on AISI304 stainless steel by a picosecond laser. They
investigated their anti-biofouling performance through seawater immersion experiments
for five weeks in the summertime. It was reported that a nearly 50% decrease in the average
microbe attachment area ratio was obtained. Giorgi et al. [18] used a laser micro polishing
technique to reduce the surface roughness and waviness of cold-rolled AISI 304 stainless
steel plates and studied their surface bacteria cleanability. Experimental results showed
that the laser micro polishing process was effective on bacteria cleanability.

The literature study shows that current antifouling coatings have obvious problems.
On the one hand, with the continuous scouring of seawater, the concentration of the chemi-
cal coatings will be reduced, resulting in the reduction of their antifouling effectiveness. On
the other hand, antifouling technology based on surface micro texturing is time-consuming
and expensive, so it is difficult to apply to mass production in practice. In addition, sili-
cone resin and fluoride resin in low surface energy antifouling coatings are too expensive
because they cannot be used as a coating material alone but need to be further processed
to meet the application requirements; they have poor mechanical properties and require
complicated spraying operation.

In this study, a novel green antifouling method is developed by means of laser cladding
technology. The solid antifouling coating fabricated by laser cladding has a long service
life and efficient antifouling performance, which can be effectively applied to marine
engineering, providing a feasible approach for marine antipollution and energy saving.

2. Experiment
2.1. Preparation of Antifouling Coatings

The RC-LDM8060 laser equipment (Nanjing Yuchen Laser Technology Co., Ltd., Nan-
jing, China) was employed for the laser cladding of the antifouling coatings in this study.
The laser cladding was carried out in a closed chamber equipped with a gas circulation
purification system that strictly controlled the oxygen and water to be less than 50 ppm.
Figure 1 is a schematic diagram of the laser cladding treatment.
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Figure 1. Schematic diagram of laser cladding.

The 316L stainless steel with a size of 350 mm × 250 mm × 5 mm was used as
the substrate in this study. Mixed powders of TC4 and Ni60 were used as the laser
cladding materials, as both have excellent anti-corrosion properties. The composition of
TC4 (Ti6Al4V alloy) and Ni60 powders are shown in Tables 1 and 2, respectively.

Table 1. Chemical composition of TC4 (Ti6Al4V alloy) powder.

Element Al Fe N O V C H Ti

Mass fraction (%) 5.5~6.5 0.25 0.05 0.13 3.5~4.5 0.08 0.012 Bal.

Table 2. Chemical composition of Ni60 powder.

Element C Cr Si B Fe Ni

Mass fraction (%) 0.5 18.0 4.5 3.0 15.0 Bal.

A total of 11 specimens were prepared, including one original substrate specimen and
10 laser clad specimens with a size of 30 mm × 40 mm × 5 mm, presented in Figure 2. The
material mass ratio and laser processing parameters for the laser cladding are shown in
Table 3.
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Table 3. Mass ratio of mixed powder and laser processing parameters.

Specimen Number Powder Mass Ratio
(Ni60:TC4) Laser Power (W) Laser Scanning

Speed (mm/min)

0 316L stainless steel / /
1 TC4 only 1400 1200
2 2:8 1400 1200
3 3:7 1400 1200
4 4:6 1400 1200
5 3:7 1200 1300
6 3:7 1300 1300
7 3:7 1400 1300
8 3:7 1000 1000
9 3:7 1000 1200
10 3:7 1000 1400

2.2. Experimental Methodology
2.2.1. The Microbial Attachment Testing

The eleven LCC specimens were divided into three groups, group I (specimens No. 0,
1, 2, 3, and 4), group II (specimens No. 5, 6, and 7), and group III (specimens No. 8, 9, and
10). The three groups were put into three separate beakers filled with seawater, and the
three beakers were placed in a constant thermostatic water bath, as illustrated in Figure 3.
The beakers were filled with seawater (from east China sea in Lingang, Pudong District,
Shanghai, China) that was refreshed once a day for 40 days. Then, the specimens were taken
out from the beakers for observation with fluorescence microscopy (Olympus Corporation,
Tokyo, Japan). After that, the fluorescence images were processed by the ImageJ software
for statistical analysis of the microbial attachments. It should be noted that the microbial
colonies in the original images obtained from fluorescence microscopy are presented in
blue color; they were dyed red with the ImageJ software in order to increase their clarity.
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2.2.2. The Wettability Testing

The SL200B contact angle meter (made by Solon Information Technology Co., Ltd.,
Shanghai, China) was used to measure the contact angle and surface energy of the LCC
surfaces, which is used to characterize the wettability and the antifouling mechanism of
the LCC surfaces. Usually, the contact angle is measured directly, but the surface energy is
calculated indirectly based on contact angle measurements with various models. In this
study, Young’s model, as shown in Equation (1), was used to calculate the surface energy
of LCC surfaces:

σs = σsl + σl ·cosθ (1)

where σs is the surface energy of a solid, σsl is the interfacial tension between a liquid and a
solid, σl is the surface tension of a liquid, and θ is the contact angle between a liquid and
a solid.
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2.2.3. The Mechanism of Antifouling Surface

In order to investigate the mechanism of antifouling performance of the LCCs, the
Bruker D2 PHASER X-ray Diffractometer (XRD, Bruker, Billerica, MA, USA) was employed
for the phase composition analysis, the SEM (Hitachi S-3400N scanning electron microscopy,
Hitachi, Tokyo, Japan) was used to observe the surface topographies, and the EDS (energy
dispersive spectroscopy, model 550i, IXRF, Houston, TX, USA) was used to analyze the
chemical composition of the LCCs.

3. Results and Discussion
3.1. The Antifouling Performance of LCCs
3.1.1. Effect of Ni60/TC4 Mass Ratio

The microbial attachment rates of specimens group I (No. 0, 1, 2, 3, and 4) with
different mixed powders of Ni60 and TC4 were observed by fluorescence microscopy.
For better observation, the original blue dots in the microbial attachment images were
replaced with red dots by the ImageJ software (version 1.8.0), as shown in Figure 4; while
the microbial attachment rates are presented in Figure 5. The red dots shown in Figure 4
represent the micro-organisms attached to the surfaces of the specimens.
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It is observed in Figure 5 that the micro-organism attachment rates of specimens
No. 1–4 are smaller than that of specimen No. 0 (originally stainless steel) and that specimen
No. 3 has the minimum microbial attachment rate of 1.07% in the micro-organism attached
area. As shown in Table 3, the Ni60/TC4 mass ratio of specimen No. 3 is 3/7, the laser
cladding power is 1400 W, and the laser scanning speed is 1200 mm/min, indicating
that with these laser cladding parameters, the specimen No. 3 has better antifouling
performance or self-cleaning function than that of specimens No. 0, 1, 2, and 4.

3.1.2. Effect of Laser Cladding Power

Figure 6 shows the images of micro-organisms attached to the specimens of group
II, while the microbial attachment rates of LCC specimens of group II are demonstrated
in Figure 7. It is observed from Figure 7 that the LCC specimen No. 6 has the minimum
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microbial attachment rate of 1.56%; this specimen was processed with a laser cladding
power of 1300 W, a laser scanning speed of 1300 mm/min, and a Ni60/TC4 mass ratio of
3/7. This indicates that with the laser scanning speed of 1300 mm/min, the LCC fabricated
with laser cladding power of 1300 W has better antifouling performance than that of 1200 W
and 1400 W. However, this conclusion may not be applied to other laser scanning speeds.
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3.1.3. Effect of Laser Scanning Speed

Figure 8 shows the images of the micro-organisms attached to the LCC specimens
No. 8, 9, and 10; while the microbial attachment rates are presented in Figure 9.
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Figure 9. Micro-organism attachment rates of specimens No. 8–10.

It is observed from Figure 9 that with the same laser cladding mixed powder mass
ratio and laser cladding power, the microbial attachment rate on the laser clad coating
increases with increasing laser scanning speed in the range of 1000–1400 mm/min. The
minimum observed microbial attachment rate is 1.06%, with a laser cladding power of
1000 W, a laser scanning speed of 1000 mm/min, and a Ni60/TC4 mass ratio of 3/7.

3.2. Wettability of LCCs

In order to investigate the antifouling mechanism of the LCCs, the wettability of the
LCC specimens in terms of the water contact angle and surface energy are investigated.

3.2.1. Effect of Ni60/TC4 Mass Ratio

The contact angle measurement on each LCC specimen was repeated 5 times and
averaged. Figure 10 illustrates the images of contact angle measurements, while Figure 11a,b
present the measured contact angle and surface energy of LCC specimens No. 0–4, respectively.
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It is observed from Figure 11 that all the surface contact angles of LCC specimens
No. 1, 2, 3, and 4 are larger than that of the original specimen (316L stainless steel substrate),
and the surface energy of the LCC specimens is smaller than that of the untreated material.
For example, when the mass ratio of Ni60/TC4 is 3/7, the LCC has the maximum surface
contact angle and the minimum surface energy. With the increasing Ni60/TC4 mass ratio
in the laser cladding powder, the contact angle of the laser clad coating increased, but the
surface energy decreased. However, when the mass ratio of mixed powder Ni60/TC4 is
larger than 3/7, say 4/6, in this study, the surface contact angle of the LCC specimen is
slightly decreased, but its surface energy is significantly increased.
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By comparing the measured contact angles and surface energies of LCC specimens
No. 0–4, shown in Figure 11, with their antifouling performance, shown in Figure 5, it can
be concluded that the contact angles and surface energies of the LCC surfaces are closely
related to their antifouling performance and that the surface energy has a more significant
correlation with the antifouling performance of the LCC surface than that of the surface
contact angle. This would suggest that surface energy can be used as an important control
parameter in the design of antifouling LCC surfaces.

3.2.2. Effect of Laser Cladding Power

The contact angles and surface energies of LCC specimens No. 5, 6, and 7 were
measured by means of the contact angle meter, which is demonstrated in Figure 12, and
the measured contact angles and surface energies of these three LCC specimens are shown
in Figure 13.
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Figure 13. Measured (a) contact angle and (b) surface energy of LCC specimens No. 5–7 with
Ni60/TC4 mass ratio of 3/7 and laser scanning speed of 1300 mm/min.

It is observed in Figure 13 that the LCC specimen No. 6 with the laser cladding power
of 1300 W, the laser scanning speed of 1300 mm/min, and Ni60/TC4 mass ratio of 3/7 has
a maximum contact angle of 135.51◦ and the minimum corresponding surface energy of
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6.34 mJ/m2. With increasing laser cladding power, the contact angle of laser clad coating
increases first and then decreases. The surface energy decreases first and then increases,
indicating that the contact angle of the LCC is not increasing linearly with laser cladding
power. The effects of laser cladding power on the surface energy and the micro-organism
attachment rate of the LCC specimen are very similar.

3.2.3. Effect of Laser Scanning Speed

Figure 14 illustrates the contact angle images of LCC specimens No. 8–10, and the
measured contact angles are shown in Figure 15a, while the measured surface energies of
these specimens are shown in Figure 15b.
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Ni60/TC4 mass ratio of 3/7 and laser cladding power of 1000 W.

Figure 15 shows that the LCC specimen No. 8 has a maximum contact angle of 121.51◦

and a minimum corresponding surface energy of 11.51 mJ/m2, with a laser cladding
power of 1000 W, a laser scanning speed of 1000 mm/min, and a Ni60/TC4 mass ratio
of 3/7. It is clearly observed that under the same mixed powder mass ratio of laser
cladding material and laser cladding power, the surface contact angle of laser clad coating
decreases with increasing laser scanning speed, whereas the surface energy of laser clad
coating is enhanced with increasing laser scanning speed. This is consistent with the effect
of laser scanning speed on the micro-organism attachment rate of the LCCs under the
same conditions.

Therefore, based on the above analysis of experimental results, it may be concluded
that the antifouling performance of the LCC surface is decreased with increasing laser scan-
ning speed, as the laser and powders interacting period is shorter. Thus, fewer antifouling
composites can be generated. Therefore, in order to improve the antifouling performance
of LCCs, the laser scanning speed, laser cladding power, and laser cladding material mass
ratio should be properly designed or optimized.

3.3. Phase Composition

In order to further investigate the antifouling mechanism of LCCs, X-ray diffractometry
(XRD) was employed to analyze the phase composition of the LCC specimens in group
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I with different mass ratios of Ni60/TC4 mixed powders. Figure 16 shows the phase
composition analysis of the LCC specimens. It is observed in Figure 16 that a larger amount
of Fe, Ni, and FeNi3 composites are observed from specimens No. 3 and 4 because these
two specimens have larger content of Ni60 in their mixed cladding powders. Particularly,
the diffraction intensity of FeNi3 in specimen 3 is larger than that of other specimens,
indicating that the better antifouling performance of specimen No. 3 may attribute to the
larger amount of FeNi3 generated by laser cladding of the specimen, but further study is
required in the future to verify this finding.
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(a) No. 1 (pure TC4); (b) No. 2 (2/8); (c) No. 3 (3/7); (d) No. 4 (4/6).

3.4. Surface Topography

The experimental results of the micro-organism attachment rate suggest that the
antifouling performance of the LCCs first increases and then decreases with an increase of
Ni60 content in the mixed powder. In order to explore the reason behind this phenomenon,
the surface topographies of the LCC specimens in group I were observed by scanning
electron microscopy (SEM) with the combination of energy dispersive spectroscopy (EDS,
model 550i) for chemical composition analysis.

Figure 17 shows the topographies of the laser clad pure TC4 coating surfaces (specimen
No. 1), where macro cracks are observed in Figure 17a, and potholes with unmelted
pure TC4 particles are shown in Figure 17b. Microbes in seawater can easily adhere and
reproduce in the areas of macro cracks and potholes, causing the deterioration in the
antifouling performance of LCC specimen No. 1.
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Figure 17. Surface topographies of laser clad coating (specimen No. 1). (a) Macro cracks; (b) Potholes
and unmelted pure TC4 particles.

Figure 18 presents the topographies of the LCC with the Ni60/TC4 mass ratio of 2/8
(specimen No. 2). Micro cracks are also clearly observed in Figure 18a, and the black
transition metal titanium carbide (TiC) is observed in Figure 18b. With the addition of Ni60
in the mixed powder for laser cladding, the cracks on the surfaces of the coating are much
smaller, and the overall compactness of the LCC is improved. Compared with the pure
TC4 LCC of specimen No. 1, the antifouling performance of specimen No. 2 is improved.
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Figure 18. Surface topographies of LCC with Ni60/TC4 mass ratio of 2/8 (specimen No. 2). (a) Micro
cracks; (b) Titanium carbide (TiC).

Figure 19a demonstrates the topography of LCC specimen No. 3 with a Ni60/TC4
mass ratio of 3/7. The surface of this coating is more smooth than that of specimen No. 2,
without observable micro-cracks and pits under the same observation magnification as that
in Figure 18. Considering that specimen No. 3 has a lower microorganism attachment rate
than that of LCC specimens No. 1 and 2, it is reasonable to conclude that the surface quality
(or the surface topography) of the LCC is critical to its antifouling performance.
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Figure 19b shows the topography of LCC specimen No. 4 with a Ni60/TC4 mass ratio
of 4/6, which is similar to that of the LCC specimen No. 3. However, due to the increase of
Ni60 in the mixed laser cladding powders, a flake type of gamma (Fe, Ni) alloy has been
generated by the laser cladding, and the coating surface is partially covered by this alloy.
As a result, the antifouling performance of the LCC specimen No. 4 is slightly decreased,
although the coating has better compactness and other mechanical properties.

It can be summarized from the above SEM analysis that properly increasing the Ni60
content in the mixed cladding powder can improve the quality of the LCC surface and thus
improve its antifouling performance. However, excessive Ni60 may lead to the generation
of a large amount of gamma (Fe, Ni) alloy in the coating, which may affect its antifouling
performance. In order to get the optimal antifouling performance of LCCs, the Ni60/TC4
mass ratio and laser cladding parameters should be optimized.

4. Conclusions

A novel antifouling coating fabricating method is developed in this study by means
of the laser cladding of mixed Ni60/TC4 powders on 316L stainless steel substrates. The
effects of the laser processing parameters and the mass ratios of mixed powder on the
antifouling performance of LCCs were investigated. The antifouling mechanism of LCCs
was explored by the contact angle/surface energy analysis, phase composition analysis,
and micro-structural observation of the LCC surfaces. The conclusions may be drawn
as follows:

(1) The laser cladding parameters and mass ratios of mixed laser cladding powders
have a significant effect on the contact angle, surface energy, and, thus, the antifouling
performance of the LCCs. The surface energy of an LCC surface has a more significant
correlation with its antifouling performance than its surface contact angle.

(2) In this study, when the Ni60/TC4 mass ratio was 3/7, the antifouling performance
of LCCs were improved. Specimens 3 and 8 demonstrated the best antifouling performance
but were fabricated with different laser power and scanning speeds, which indicates that
the optimal antifouling surface can be obtained by properly choosing the combination of
the mass ratio of laser cladding powders, laser cladding power, and laser scanning speed.

(3) The XRD analysis and SEM observation show that with increasing Ni60 content,
the LCC surface has a superior quality without cracks and potholes, but larger amounts of
a gamma (Fe, Ni) alloy were generated in the LCCs. In order to get the LCC with the best
antifouling performance, the Ni60/TC4 mass ratio and laser cladding parameters should
be optimized.
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