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Abstract: Titanium and its alloys have been extensively used as implant materials in clinic settings.
However, implant-associated bacterial infection or inflammation remains a primary cause of im-
plantation failure, which threatens human health, and has already become a global issue. Recently,
a superhydrophobic surface endowed with a water contact angle higher than 150◦ has attracted
widespread attention in antibacterial applications for their self-cleaning and low-adhesion properties,
which has emerged as an important path in preventing biofilm formation. This review first describes
the basic theories of wettability. In the second section, we explain biofilm formation, which is a
primary pathogenic occurrence in the development of infection in implants. In the last and most
important section, we summarize the progress of superhydrophobic titanium-based implants and
recent antibacterial applications. This review will attract great interest from both research scientists
and clinicians, which will help to rapidly expand superhydrophobic titanium-based implants for
antibacterial applications.
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1. Introduction

Currently, bone and joint pathology is linked to approximately 50% of chronic illnesses
in patients in Europe who are over 65 years old [1]. This situation gives rise to an increasing
need for a series of implants. Although autografts are considered as the gold standard [2],
in numerous cases, it is still impossible for all patients to have their own tissues trans-
planted [3]. In such cases, artificial prosthetic materials are generally considered to be
an alternative solution. Besides the demand for artificial bone and joint implants, in the
past several decades, dental implants have also developed into a crucial component in the
prosthetic rehabilitation of the tooth root [1]. It is estimated that the number of implants is
still increasing and will exceed one million per year [4].

It is well known that titanium-based alloys, as the gold standard, are utilized in apply-
ing repair to a bone or a specific part replacement, such as dental implants, bone plates,
and screws, due to their high strength, good anticorrosion performance, and sufficient
biocompatibility [5]. Typically, ASTM grade V titanium (Ti6Al4V) is one of the applied
materials, which is most frequently used in orthopedic applications. The mechanical char-
acteristics and chemical reactivity of titanium alloys of grades II, III, and IV are significantly
different to those of grade V, making them more appropriate to be utilized in dental implant
applications [6]. As a kind of biophilic metal, titanium is highly biocompatible with bone,
which is reliant on surface characteristics, such as surface roughness [7], chemistry [8],
and wettability. In comparison to smoother surfaces, surface topographical changes at the
micrometer level, such as those caused by acid etching and sandblasting, have a remarkable
impact on cell differentiation, local factor creation, bone formation, and (ultimately) os-
seointegration [9,10]. The surface roughness, chemistry, and wettability can be controlled to
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support osseointegration properties [11]. For example, the titanium substrates of nanoscale
structures can enhance osteoblast differentiation and local factor creation when combined
with micro-/submicro-scale roughness, suggesting the possibility of better implant osseoin-
tegration abilities [12]. However, infection may occur after medical device implantation
due to bacterial adhesion in a certain period [13,14]. According to a previous report, there
are signs that 90% of implants are related to inflammation and 50% of implants are related
to irreversible tissue destruction [15]. Taking dental implants as an example, the most
common failure cause is a peri-implant inflammatory disease, such as peri-implantitis. This
can result in bone loss and even cause damage to the service life of the implant [16].

Therefore, more and more researchers are interested in strategies used to prevent bacte-
rial growth and biofilm formation, relying on either the chemical approaches of bactericidal
activity to kill the bacteria attached to the surface or the physical approaches of antibiofoul-
ing activity to inhibit the initial bacterial attachment to the surface [17]. A wide range of
antimicrobial agents, including antibiotics, bacteriostatic and bactericidal chemicals (such as
chlorhexidine, triclosan, silver preparations, and antimicrobial peptides) [18], fluoride, and
plant extracts, inhibiting metabolic enzymes and their small molecular substances [19–21],
have been used to prevent biofilm maturation by bactericidal inhibition, the inhibition of
bacterial adhesion, and the destruction of the extracellular matrix of plaque. However,
such methods do not have the value of long-term use and may carry certain risks, such as
toxicity and drug resistance. For the bactericidal method, the layer of bacteria killed on the
surface may have an inhibitory effect on the further bacterial killing in a deeper surface,
and the remaining bacterial film could be conducive to the attachment of live bacteria [22].
It is highly desirable to prevent biofilm formation using antimicrobials, rather than biocidal
agents. Consequently, it is generally considered that approaches to prevent the initial
bacterial attachment are much better than those aiming to kill the attached bacteria. Thus,
more research should focus on the inhibition of the initial bacterial adhesion on the surface
of the implants.

Over the past several years, superhydrophobic surfaces endowed with a water contact
angle more than 150◦ have attracted great attention because of their unique properties, such
as water repellency [23,24], self-cleaning [25–27], anticorrosion [28–31], anti-icing [32,33],
and oil–water separation [34,35]. It was not until 1997 that Barthlott and Neinhuis con-
cluded that the self-cleaning effect of the lotus leaf (called the lotus effect) is attributed to
the presence of the papilla on the microstructure and epicuticular wax [36]. Based on this
principle, Jiang et al. revealed that the primary cause generating the superhydrophobicity
of lotus leaves was due to the synergistic effect of hierarchical micro/nanoscale structures
and low-surface energy material modification [37], which can form an air layer on the
surface and physically inhibit bacterial adhesion. From that point, research on wettabil-
ity of solid surfaces was renewed as a dynamic research topic [38]. It was reported that
superhydrophobic surfaces have minimal bacterial attachment after 24 h without any obser-
vation of biofilm formation [39]. The antibiofouling performance for a superhydrophobic
surface is ascribed to the entrapped air layer, which can effectively reduce the contact
area between bacteria and material surfaces, leading to reduced bacterial adhesion [40].
Therefore, superhydrophobicity has received increasing attention in the bacteriostatic field
of titanium-based implants.

In this review, we first briefly describe the basic theories of wettability [13,38]. In
addition, the second section explains biofilm formation, which is considered to be the most
essential pathogenic factor in the production process of infection in implants [13]. In the
last and most important section, we summarize the recent progress of bioinspired superhy-
drophobic titanium-based implants and their antibacterial applications. Superhydrophobic
titanium-based implants could minimize microbial adhesion by altering the surface-free en-
ergy of the titanium dioxide–polytetrafluorethylene (TiO2-PTFE) nanocomposite coatings,
which was significantly influenced by both PTFE and TiO2 concentrations [41]. We hope
this review will enhance the prosperous development of superhydrophobic titanium-based
implants in antibacterial applications.
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2. Theories of Wettability

Wettability, as one of the most important properties on solid surfaces, can affect a
variety of processes, such as adsorption, adhesion, wetting, friction, and lubrication [42].
According to wettability, the liquid can spread on the solid surface when they make contact
with each other [43]. The wettability on a solid surface is synergistically determined by
the microscopic structure and surface chemical composition. When a liquid is dropped
onto the solid surface to contact the substrate, a solid-liquid-gas three-phase contact line
is formed. The droplet can form a certain angle once it reaches a stable state on the solid
surface. In such a case, the contact angle of the droplet on a solid surface is defined as the
angle between the tangent plane of the liquid-gas boundary and the solid-liquid boundary
at the intersection of three-phase (solid-liquid-gas) contact. The contact angle value is an
essential indicator to qualitatively assess wettability on solid surfaces [44].

2.1. Young’s Equation

In 1805, a classical equation for wettability was given by Thomas Young, representing
a force equilibrium at the three-interface (solid-liquid-vapor) contact line [45]. The balance
of interfacial tensions is γSV, γSL, and γLVcosθ at the contact line. A droplet is spread onto
a flat surface to form a contact angle on the solid surface. At equilibrium, there interfacial
tensions should be counteracted, so the state can be expressed by Young’s equation (1),
according to Figure 1:

γSV = γSL + γLV cos θ (1)

which can be evolved as following form:

cos θ =
γSV − γSL

γLV
(2)

where γSV, γSL, and γLV represent the interfacial tensions of solid-vapor, solid-liquid,
and liquid-vapor, respectively; θ means the intrinsic contact angle on an ideal smooth
solid surface.
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Figure 1. Definition of the contact angle.

2.2. Wenzel’s Model

As is well known, Young’s equation is applicable to an ideal smooth solid surface,
neglecting the influence factors containing roughness, swelling, dissolution, as well as
chemical heterogeneity. In this case, it is difficult to measure the genuine contact angle
for the rough surfaces using Young’s equation. As a consequence, Wenzel’s model was
introduced by considering the surface roughness [46,47]. In Wenzel’s model, grooves on
solid surfaces can be entirely filled with the liquid when the liquid droplet contacts the
rough solid surface, as shown in Figure 2a. Thus, it is difficult for the droplet to move or
roll off from the solid surface due to the large contact area and the strong adhesion between
them. In this situation, Wenzel’s equation is proposed (3):

cos θ∗ = r cos θ (3)
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where r (r ≥ 1) is the roughness factor (defined as the ratio of the actual contact area of the
solid-liquid interface to the geometric projected contract area [46,47]), and θ∗ represents
the apparent contact angle. Wenzel’s equation indicates that both hydrophilicity and
hydrophobicity are increased with the increase in roughness. In other words, a rough
hydrophilic surface becomes more hydrophilic when θ < 90◦, and a rough hydrophobic
surface turns more hydrophobic when θ > 90◦, as compared to a smooth surface under
the same surface chemical modification condition. Hence, it has been pointed out that
it is an effective way to realize the non-wettability of a surface endowed with a high
contact angle more than 150◦ by constructing a rough surface structure according to
Wenzel’s equation [38]. Rose petal is a particular example of Wenzel’s model (as shown in
Figure 2b), called the “Petal” state. When a water droplet is dripped onto the rose petal,
the droplet can hang even if the rose petal turns upside down [48]. In such a case, a sticky
superhydrophobic surface with high adhesion to water is formed on the rose petal.
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Wenzel’s and Cassie’s model, and (f) the “Gecko” model of the PS nanotube surface. The orange
region shows the sealed air, while the remaining air pockets connected to the atmosphere represent
the open air.

2.3. Cassie–Baxter Model

Wenzel’s equation discloses the relationship between the apparent contact angle and
the intrinsic contact angle on a homogeneous rough surface. For another alternative contact
between the liquid surface and the solid surface, the liquid no longer fully contacts the
solid surface at every point below the droplets [49]. In this condition, Wenzel’s equation is
not applicable because it cannot explain the reason why the water droplets on the lotus
leaves exhibit an extremely low sliding angle, as well as contact angle hysteresis. Due to
the low adhesive force of the water droplets in Cassie’s model, they behave in a non-wet-
contact mode on the solid surfaces, which can readily roll off, as exhibited in Figure 2c [43].
The apparent contact angle on this rough surface in the form of Cassie’s model can be
characterized in the following Cassie–Baxter Equation (4):

cos θ∗ = f1 cos θ1 + f2 cos θ2 (4)

In the Cassie–Baxter equation, f 1 and f 2 are the surface area fractions of substances 1
and 2 (f 1 + f 2 = 1). θ1 and θ2 are the intrinsic contact angles of the liquid on two different
substances. θ∗ is the apparent contact angle on material surfaces. If the surface is composed
of a porous structure or other kind of rough structure which can preserve air, substances
1 and 2 can represent solid and air, respectively. In such a case, f 2 is the area fraction of
trapped air. Due to f 1 + f 2 = 1, and θ2 = 180◦, Equation (4) can be simplified as:

cos θ∗ = f1 cos θ1 − (1 − f1) (5)
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Based on Equation (5), the apparent contact angle increases when the area fraction of
trapped air, denoted as (1−f 1), increases. The trapped air on the microgrooves of the rough
solid surface can effectively prevent wetting and greatly contribute to improving the surface
hydrophobicity. In general, a smaller f 1 indicates the lower interfacial fraction of solid at the
contact line. In Cassie’s model, the liquid no longer passes through the gaps that separate
them [49], which can result in a high apparent contact angle on a rough hydrophobic surface.
The “Lotus” state should be regarded as a particular example of Cassie’s model (shown in
Figure 2d) due to the self-cleaning properties of the lotus leaf that are vitally dependent
on its micro- and nanoscale hierarchical structure [50]. Currently, since the self-cleaning
effect of such surfaces is extremely beneficial to a variety of applications, investigations of
superhydrophobic surfaces are mostly concentrated on the fabrication of surfaces in the
"Lotus" state. In fact, when a droplet makes contact with the majority of realistic samples,
the coexistence of Wenzel’s and Cassie’s model frequently exists (as shown in Figure 2e).
Additionally, a high-adhesive example of the "Gecko" model is also present (Figure 2f),
which derives from a novel superhydrophobic condition of the polystyrene (PS) nanotube
surface [51]. In such model, there are two different types of entrapped air, i.e., open air that
is connected to the atmosphere and sealed air inside the PS nanotubes.

A stronger understanding of the different types of wetting states is necessary to im-
prove the theoretical development and effectively design new superhydrophobic surfaces.
Furthermore, studies on superhydrophobic surfaces with various states have a significant
effect on both basic research and actual applications.

3. Interaction between Bacteria and Material Surfaces

To develop antibacterial superhydrophobic titanium-based implants, it is necessary to
understand the interaction between bacteria and material surfaces. Bacteria are essentially
single-celled organisms. However, they can attach to both inactive and active surfaces
to create well-organized three-dimensional (3D) colonies that are known as biofilms in
nature [52]. Biofilm formation is a multi-step (often periodic) process with several distinct
stages, and the interaction between bacteria and material surfaces can be approximately
separated into four steps [16], which are graphically summarized in Figure 3.

Coatings 2023, 13, x FOR PEER REVIEW 6 of 24 
 

 

 
Figure 3. Schematic representation of biofilm formation. 

1. The first step involves the bacterial attachment to material surfaces via cell-surface-
associated adhesion [53–55]. The bacterial attachment to materials is primarily gov-
erned by steric interactions, electrostatic interplays, van der Waals forces, and protein 
adhesion, all of which are beneficial to making bacteria attach to the surface [56,57]. 
The process of bacterial attachment is invertible. 

2. The subsequent step is the bacterial colonization on material surfaces, which is me-
diated through particular cellular and molecular interactions, such as adhesion pro-
teins, protein appendages, and extracellular polymeric substance (EPS) generation 
[58]. The process of the bacterial colonization is nonreversible. 

3. The third step is the formation and maturation of the biofilm. Bacteria that colonize 
surfaces will develop bacterial microcolonies and produce EPS (primarily polysac-
charides and other macro-molecules), which can be helpful to biofilm formation. The 
maturation process includes EPS formation, cell agglomeration, chemical reactions, 
quorum sensing, and microcolony production. A biofilm will shield bacteria in a self-
generated polysaccharidic matrix from the fluid shear force and protect the effects of 
systematic pharmaceutical treatments once it has grown on the surfaces [58].  

4. The last step is bacterial proliferation. Bacteria start to proliferate under the protec-
tion of the biofilm on material surfaces. Consequently, bacteria will cover the surfaces 
entirely. 
From the point of interaction between bacteria and material surfaces, it is easy to 

deduce that the bacterial reduction strategies can be split into four steps according to the 
four-step interplay mentioned above, as illustrated in Figure 4. Currently, the strategies 
primarily concentrate on inhibiting bacterial proliferation. It is confirmed that although 
surface coatings containing Ag or Cu can prevent bacterial attachment, colonization and 
biofilm growth, they are proven to be excessively toxic due to the release of metal ions 
[58–67]. Superhydrophobic surfaces can inhibit bacterial adhesion on the surfaces from 
etiology, which has become an important path to prevent biofilm formation [68]. These 
kinds of surfaces can weaken bacterial adhesion to a solid surface, enabling bacteria to be 
easily removed before a dense biofilm is formed on material surfaces [69]. 

Figure 3. Schematic representation of biofilm formation.

1. The first step involves the bacterial attachment to material surfaces via cell-surface-
associated adhesion [53–55]. The bacterial attachment to materials is primarily gov-
erned by steric interactions, electrostatic interplays, van der Waals forces, and protein
adhesion, all of which are beneficial to making bacteria attach to the surface [56,57].
The process of bacterial attachment is invertible.

2. The subsequent step is the bacterial colonization on material surfaces, which is medi-
ated through particular cellular and molecular interactions, such as adhesion proteins,
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protein appendages, and extracellular polymeric substance (EPS) generation [58]. The
process of the bacterial colonization is nonreversible.

3. The third step is the formation and maturation of the biofilm. Bacteria that colonize
surfaces will develop bacterial microcolonies and produce EPS (primarily polysac-
charides and other macro-molecules), which can be helpful to biofilm formation. The
maturation process includes EPS formation, cell agglomeration, chemical reactions,
quorum sensing, and microcolony production. A biofilm will shield bacteria in a
self-generated polysaccharidic matrix from the fluid shear force and protect the effects
of systematic pharmaceutical treatments once it has grown on the surfaces [58].

4. The last step is bacterial proliferation. Bacteria start to proliferate under the protection of
the biofilm on material surfaces. Consequently, bacteria will cover the surfaces entirely.

From the point of interaction between bacteria and material surfaces, it is easy to
deduce that the bacterial reduction strategies can be split into four steps according to the
four-step interplay mentioned above, as illustrated in Figure 4. Currently, the strategies pri-
marily concentrate on inhibiting bacterial proliferation. It is confirmed that although surface
coatings containing Ag or Cu can prevent bacterial attachment, colonization and biofilm
growth, they are proven to be excessively toxic due to the release of metal ions [58–67].
Superhydrophobic surfaces can inhibit bacterial adhesion on the surfaces from etiology,
which has become an important path to prevent biofilm formation [68]. These kinds of
surfaces can weaken bacterial adhesion to a solid surface, enabling bacteria to be easily
removed before a dense biofilm is formed on material surfaces [69].
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4. Antibacterial Applications

The most common causes of healthcare-associated infections (HCAIs) are Staphylococ-
cus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis), which are responsible
for 31–52% of infections in orthopedic prostheses, 40–50% of infections in prosthetic heart
valves, 50–70% of infections in prosthetic catheter biofilm, and 87% of infections in the
bloodstream [70]. Pseudomonas aeruginosa (P. aeruginosa), a bacterium frequently present in
soil and water, can also cause surgical site infections after hip replacement operations as
well as chronic infections. Furthermore, P. aeruginosa has the ability to quickly form strong
biofilms that can support other pathogenic types. Recent studies have pointed out that
the appearance of bacterial biofilms is still a significant factor in triggering the implant
looseness and hastening the failure of implant surgical procedures [71–73]. Once biofilm-
associated infection occurs in clinics, secondary revision surgery will be unavoidable,
resulting in additional pain, economic costs, and even significant psychological trauma for
patients [74]. As a result, it is critical to conduct related research to confer the implants with
antibacterial properties.

The most frequent cause of implant-related infections is attributed to Escherichia coli (E.
coli) and S. aureus in the development of antibacterial titanium-based alloys [16]. The accu-
mulation of bacterial biofilms on the implant surface is vulnerable to bacterial attachment,
leading to peri-implant infection. When bacteria fully attach to the surface, the implant
will most probably lose its effectiveness because biomaterial-associated infections (BAIs)
are highly resistive to the innate immune system, antimicrobial agents, and chemotherapy
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drugs. The concept of antibacterial implants was introduced to titanium-based implants
which are widely applied in orthopedic, dental, craniofacial surgeries and so on [75–78]. Re-
cently, superhydrophobic titanium-based implants with bacterial inhibition properties have
attracted significant attention, especially in medical fields. Therefore, we will now summa-
rize superhydrophobic titanium-based implants known for their antibacterial applications
in orthopedic, dental, and cardiovascular implants.

4.1. Orthopedic Implants

Orthopedic implants, including hip or knee prostheses, spine screws, and spine fusion
cages, are often quickly infected in a very few number of days or weeks after surgery due
to the surgical wound infection [79]. Similar pathobiology involves titanium reconstruction
plates, temporomandibular joint prostheses, trauma mini-plates, and other maxillofacial
operation devices. As a result, BAIs that emerge up to a few days or weeks after the surgery
are regarded as a surgical site infection (SSI) [80]. Generally, a material infection that
emerges up to three months after the surgery is considered a peri-operative infection (early
infection) caused by SSI or wound contamination. In this situation, antibacterial activity is
required during the peri-operative and initial post-operative stages. Tang et al. [81] pre-
pared superhydrophobic nanotube-structured TiO2 films through the following processes:
electrochemical oxidation with 0.5 wt.% HF electrolyte; calcination; and self-assembly in
a methanol solution of hydrolyzed 1wt.% 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane
(PTES). S. aureus adhesion on surfaces with different wettability levels for 2 h and 4 h,
respectively, is demonstrated in Figure 5. The TiO2 nanotube-structured superhydrophobic
surface showed a water contact angle as high as 156◦, while the hydrophilic surface (tita-
nium treated with anodic oxidation and calcination) and the hydrophobic surface (titanium
treated by PTES) had water contact angles of 54◦ and 133◦, respectively. The amounts of bac-
teria adhered on the surfaces was quite different according to the surface wettability. After
cocultivation for 2 h, S. aureus attached to the hydrophobic and superhydrophobic surfaces
was much less and more scattered (as shown in Figure 5b1,c1), whereas S. aureus attached
to the hydrophilic surfaces was more and tended to aggregate (as shown in Figure 5a1).
Similar trends were also found after cocultivation for 4 h. The researchers came to the
conclusion that although bacteria were not entirely absent on superhydrophobic surfaces
and the number of attached bacteria slightly increased with increases in the cocultivation
time, they were far less and more scattered as compared to those on the hydrophilic and
hydrophobic surfaces. To be more specific, superhydrophobic surfaces can resist S. aureus
adhesion most effectively among the three types of titanium-based surfaces. Lotus-inspired
superhydrophobic TiO2 nanotube arrays were capable of preventing S. aureus adhesion
because of the self-cleaning effect, revealing that superhydrophobic surfaces might help to
decrease the device-related infection risks and might be applied in orthopedic implants.
Patil et al. [82] prepared a biologically active superhydrophobic Ti-6Al-4V alloy surface by
combining annealing with a laser ablation process within the minimum processing time.
On Ti-6Al-4V surfaces, a sequence of pits with spacings of 40 µm, 60 µm, and 80 µm were
created using a nanosecond Nd:YAG laser. After annealing for 120 min, a 40 µm super-
hydrophobic Ti-6Al-4V alloy surface, a 60 µm superhydrophobic Ti-6Al-4V alloy surface,
and an 80 µm hydrophobic Ti-6Al-4V alloy surface had water contact angles of 162◦, 150◦,
and 136◦, respectively. The antibacterial experiment of the superhydrophobic surface was
tested against E. coli and S. aureus, as shown in Figure 6. It is investigated that E. coli and
S. aureus developed biofilms on plain Ti-6Al-4V alloy surfaces (as shown in Figure 6a1,a2).
As illustrated in Figure 6b–d, no such kind of biofilm forms on superhydrophobic and
hydrophobic surfaces because of their hydrophobic nature, the presence of nano titania,
and their corresponding antibacterial properties. Therefore, it can be extensively applied
in orthopedic and dental implants applications. Vanithakumari et al. [83] created a su-
perhydrophobic titanium surface with anti-biofouling and self-cleaning characteristics
through direct laser patterning. As shown in Figure 7a, the bare titanium, used as the
control group, was completely covered by bright red fluorescence, suggesting the existence
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of the highest amount of actively metabolizing bacterial cells. Figure 7b–d indicate a cer-
tain amount of reduction in actively metabolizing bacterial cells. However, as compared
to the valley region, far more active cells were present in the spiky area. It is amazing
that there was no red fluorescence in Figure 7e, suggesting that the actively metabolizing
cells were absent on it. In comparison to the control titanium samples, the total viable
count (TVC) values for 20 µm and 50 µm superhydrophobic titanium surfaces revealed a
decrease of two orders of magnitude in bacterial adhesion, while 80 µm and 100 µm super-
hydrophobic titanium surfaces revealed a decrease of four orders of magnitude. With the
increase in the line spacing for the superhydrophobic titanium surface, it was observed that
bacteria adhesion was significantly reduced. DeFlorio et al. [84] fabricated a long-lasting
fluorine-free superhydrophobic Ti6Al4V surface with a water contact angle reaching up
to 169.9 ± 0.3◦ through an alkaline hydrothermal process and alkyl silane modification.
As shown in Figure 8, the adhesion for both kinds of bacteria, including S. aureus and
P. aeruginosa, to superhydrophobic surfaces was decreased by more than one order of
magnitude. A 1.72 ± 0.23 order reduction (98.1 ± 50.7% reduction) for P. aeruginosa and
a 1.55 ± 0.13 order reduction (97.2 ± 18.1% reduction) for S. aureus, as compared to the
unmodified Ti6Al4V, were calculated. These superhydrophobic titanium alloy surfaces may
considerably improve arthroplasty patient outcomes and reduce the risk of nosocomial
infections when employed in applications of hard-tissue fracture fixation apparatus or total
joint arthroplasty.
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alloy surface samples. Reprinted with permission from Ref. [82]. Copyright 2018, American Society
of Mechanical Engineers.
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Figure 7. Epifluorescence pictures for (a) bare titanium laser-patterned superhydrophobic titanium
with different line spacings, (b) 20 µm spacings, (c) 50 µm spacings, (d) 80 µm spacings, and (e)
100 µm spacings. The samples were dyed with acridine orange after being exposed to Pseudomonas
sp. culture for 6 h. The insets provide the total viable count (TVC) values (CFU/cm2) for various
samples exposed to Pseudomonas sp. culture. Reprinted with permission from Ref. [83]. Copyright
2021, Elsevier.
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4.2. Dental Implants

Peri-implantitis, a kind of late infection, is a mechanism that causes dental implants to
be frequently infected a couple of months or even years later after being implanted [85,86].
This is because of the unique features of the peri-implant mucosa [87] and the diversity
of oral biofilm formation. Usually, infections related to dental implants are extremely
complex, multifactorial, and difficult to treat. The most frequent bacterial infections associ-
ated with dental implants are Gram-positive bacteria (such as S. epidermidis, S. aureus, and
Enterococcus spp.) and Gram-negative bacteria (such as P. aeruginosa) [88–90]. Gherlone
et al. [91] investigated bacterial microleakage from inside to outside the implant-abutment
component with a novel design of comparing internal conical connections to eight dif-
ferent internal connections in vitro. The internal portion of each implant was cultivated
with E. coli suspension to assess the bacterial microleakage. The results indicate that no
contamination can be found for the test connection (an internal connection featured by
a double-taper principle) group in the first 6 h, with 7 out of 10 implants exhibiting no
contamination even after 96 h. It was concluded that the best combination to obtain a lower
rate of infection will be the association between surface treatment and innovative conical
connection without bacterial microleakage. Since infection prevention is a requirement for a
successful implant, superhydrophobic titanium-based surfaces are desired. Souza et al. [92]
fabricated a novel superhydrophobic coating via the one-step glow discharge plasma tech-
nique, which is a potential biocompatible method used to significantly decrease microbial
adhesion and biofilm formation on titanium-based medical implants, as shown in Figure 9.
It drastically decreased (approximately eight-fold) the change for polymicrobial adhesion
(bacterial and fungal) and biofilm formation in vitro (as shown in Figure 9a). Surprisingly,
it can be seen that the superhydrophobic coating can alter the microbiological profile of
biofilms developed in the mouth cavity, decreasing pathogens associated with peri-implant
disease by up to ≈seven-fold (as shown in Figure 9f). As compared to control titanium
discs, biofilms produced on superhydrophobic surfaces are more sensitive to chlorhexidine
(CHX) (0.5%) antibacterial agents (as shown in Figure 9g). It is noted that the silanization
of titanium implant materials is one of the most common applications. Siliconizing the
titanium surface with a silane primer can drastically lower the surface energy and increase
the hydrophobicity. Matinlinna et al. [93] demonstrated that the fabrication of silane primer
using 3-acryloxypropyltrimethoysilane + bis-1,2- (triethoxysilyl) ethane can increase the
hydrophobicity and lower the surface energy without influencing the surface roughness.
It was subsequently proven that the property changes reduced the formation of Candida
albicans (C. albicans) colonies in a previous study [94]. Fadeeva et al. [95] constructed the
lotus leaf mimics on titanium substrates using the femtosecond laser ablation method with
large grain-like convex characteristics of 10-20 µm and dual roughness characteristics of
about 200 nm. In contrast to the non-laser ablated surface with an apparent contact angle
of 73◦, the prepared biomimetic superhydrophobic titanium surface showed a contact
angle value as high as 166◦. As illustrated in Figure 10, the biomimetic superhydrophobic
surface can resist the rod-like P. aeruginosa adhesion effectively while the spherical S. aureus
colonized, which could be due to the biophysical impacts of tough nano-scale pillars (inde-
pendent of trapped air) on Gram-negative bacteria [96]. Vanithakumari et al. [97] described
a novel method that can be used to fabricate stable superhydrophobic titanium surfaces
with excellent antibacterial characteristics via anodization and annealing, in combination
with coating graphene oxide (GO) and silane treatment. The GO coated the anodized and
annealed titanium samples via the electrophoretic deposition (EPD) technique in an aque-
ous GO suspension, followed by immersion in the perfluorooctyltriethoxy silane solution
with the addition of silica nanoparticles (Si nps). In comparison to the control samples, the
silane–graphene oxide (SGA) samples coated with a water contact angle value around 173◦

showed a reduction of 3–5 orders in the bacterial density of Gram-negative Pseudomonas sp.
and Gram-positive Bacillussp. As shown in Figure 11, there was no orange fluorescence
over the whole superhydrophobic SGA sample surface with the minimum magnitude of
bacterial adhesion, indicating the best resistance to bacterial attachment among all the
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samples. The excellent anti-biofouling property of the SGA surface can be attributed to
the synergistic effect of silanized silica nanoparticles with a low surface energy and the
antibacterial property of GO sheets for the corresponding sharp edges, which can make the
surface less favorable to bacterial adhesion. Manoj et al. [98] fabricated a superhydrophobic
titanium surface utilizing an ethanol solution of myristic acid and HCl via concurrent
anodic oxidation and adsorption. Similar to epifluorescence micrographs, CLSM imaging
reveals green fluorescence on the sample surfaces, as shown in Figure 12a–d. After a long
incubation period for 48 h, Bacillus sp. covered the uncoated titanium surface to develop a
dense biofilm with a thickness of 34 ± 0.9 µm, while the coated superhydrophobic surface
showed a thickness of 16 ± 0.7 µm, as shown in Figure 12e. Pseudomonas sp. showed
similar trends in biofilm formation reduction (the thickness values of uncoated and coated
superhydrophobic surfaces were 41 ± 0.6 µm and 20 ± 1 µm, respectively). As compared
to the uncoated titanium surface, the superhydrophobic surface showed a 0.5% reduction
in biofilm formation in both of the bacterial cultures.
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Figure 9. The antimicrobial activity of the control and superhydrophobic titanium samples in vitro:
(a) polymicrobial adhesion after 2 h, (b) Candida albicans (C. albicans) adhesion after 2 h, (c) Streptococcus
mutans (S. mutans) adhesion after 4 h, (d) SEM and the CLSM pictures for the biofilm, (e) average
total biovolume biofilm after 24 h, (f) average colony-forming units of polymicrobial biofilm after
24 h, and (g) average colony-forming units of biofilm after 24 h with exposure to chlorhexidine (CHX)
(0.5%) for 3 h. * means p < 0.05, using the Bonferroni t-test. Reprinted with permission from Ref. [92].
Copyright 2020, American Chemical Society.
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Chemical Society.
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Figure 11. Epifluorescence photomicrographs and line intensity profiles for different samples in-
cubated in (A) Gram-negative bacteria (Pseudomonas sp.) and (B) Gram-positive bacteria (Bacillus
sp.) for 6 h. (a,b) polished titanium, (c,d) anodized titanium, (e,f) anodized and annealed titanium,
(g,h) GO coated on anodized and annealed titanium, and (i,j) silane and GO coated on anodized and
annealed titanium. Reprinted with permission from Ref. [97], Copyright 2020, Elsevier.
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illustration of bacterial adhesion for (f) the uncoated surface and (g) the coated superhydrophobic 
surface. Reprinted with permission from Ref. [98]. Copyright 2020, Elsevier. 
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problems of stent implantation, and can significantly impact the risk of in-stent restenosis 

Figure 12. CLSM images of the uncoated surface (a,c) and the coated superhydrophobic surface (b,d)
incubated in Bacillus sp. for 48 h. (e) biofilm thickness for the uncoated and coated superhydrophobic
surfaces after exposure to Bacillus sp. and Pseudomonas sp. for 48 h, and a diagrammatic illustration
of bacterial adhesion for (f) the uncoated surface and (g) the coated superhydrophobic surface.
Reprinted with permission from Ref. [98]. Copyright 2020, Elsevier.

4.3. Cardiovascular Implants

Titanium implants for long-term intravascular usage (such as heart valves, blood
pumps, and pacemaker leads) and short-term intravascular usage (such as catheters and
guide wires) are biomaterials made from titanium, which can be brought into contact with
blood. The preservation of uninterrupted blood flow is fundamentally dependent on the
high hemocompatibility of implanted or interventional medical apparatus, such as stents
or lead wires. Moreover, the inflammation and hyperplasia of tissue are also the main
problems of stent implantation, and can significantly impact the risk of in-stent restenosis
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and biosecurity [99]. The superhydrophobic surfaces can be employed as antibacterial
surfaces endowed with the self-cleaning effect in cardiovascular implants. Bartlet et al. [40]
created an array of titanium dioxide nanotubes via anodic oxidation, chemical etching, and
surface silanization in sequence, exhibiting superhydrophobicity. ImageJ was utilized to
calculate the amounts of both live and dead bacteria on different sample surfaces. It can
be concluded that the superhydrophobic titanium nanotube can inhibit S. aureus and P.
aeruginosa effectively (as shown in Figure 13), preventing bacteria from forming biofilms on
the surfaces of the implanted medical apparatus for a long time, such as mechanical heart
valves, pacemakers, and heart assist devices. Zhang et al. [99] constructed a controllable su-
perhydrophobic surface on a medically pure titanium with following steps of an ultraviolet
laser treatment, ultrasonic acid process, and surface modification in sequence. Figure 14
shows that there is no distinct inflammation and excessive proliferation through the histo-
logical evaluation, showing that the superhydrophobic surface is effective in eliminating
the adhesion of blood cells and thrombosis. Montgomerie et al. [100] created a superhy-
drophobic surface by constructing titania nanoflowers using the hydrothermal synthesis
method and vapor-phase silanization with 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane.
As shown in Figure 15, almost no bacteria can be observed on the nanoflower surface
followed by silanization treatment (NF-s), i.e., superhydrophobic titanium surface after
incubation for 6 h and 24 h. The findings mentioned above indicate that the prepared
superhydrophobic NF-s surface is of great help to inhibit adhesion and biofilm formation
for both Gram-positive and Gram-negative bacteria, which has a promising application
prospect in blood-contacting medical apparatus, such as stents and heart valves.
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Figure 13. S. aureus and P. aeruginosa adhesion on various sample surfaces after cultivation for 6 h and
24 h. Ti, NT, NT-S1, and NT-S2 represent unmodified titanium, unmodified TiO2 nanotube arrays,
superhydrophobic TiO2 nanotube arrays, and superhydrophilic titania nanotube arrays, respectively
(* means p < 0.05). Reprinted with permission from Ref. [40]. Copyright 2018, Elsevier.
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after implanting the hollow titanium substrate tube, (d2) amplified photographs of (d1), (e1) results 
of the Masson staining of the blood vessel after implantation of the hollow superhydrophobic tube, 
(e2) amplified photographs of (e1). The scale bars for (b1, c1, d1, and e1) and (b2, c2, d2, and e2) are 500 
nm and 200 nm, respectively. Reprinted with permission from Ref. [99]. Copyright 2021, American 
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Figure 14. Histopathological evaluation of a blood vessel at the stent implantation site. (a) process of
implanting a hollow tube in a rabbit, (b1) results of hematoxylin–eosin staining of the blood vessel
after implanting the hollow titanium substrate tube, (b2) amplified photographs of (b1), (c1) results
of hematoxylin–eosin staining of the blood vessel after implantation of the hollow superhydrophobic
tube, (c2) amplified photographs of (c1), (d1) results of the Masson staining of the blood vessel after
implanting the hollow titanium substrate tube, (d2) amplified photographs of (d1), (e1) results of the
Masson staining of the blood vessel after implantation of the hollow superhydrophobic tube, (e2)
amplified photographs of (e1). The scale bars for (b1, c1, d1, and e1) and (b2, c2, d2, and e2) are 500
nm and 200 nm, respectively. Reprinted with permission from Ref. [99]. Copyright 2021, American
Chemical Society.
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5. Conclusions and Perspectives

In this review, the basic theories of wettability were described at first. The second
section interpreted biofilm formation, which is a primary pathogenic occurrence in the
development of infection in implants. In the last section, recent progresses in design-
ing superhydrophobic titanium-based implants and their antibacterial applications were
summarized and discussed in detail. The mechanism used to prevent bacterial adhesion
for superhydrophobic titanium-based implant surfaces was attributed to the trapped air
layer on material surfaces. Nevertheless, there are still some problems to overcome in
future research.

(1) The antibacterial mechanism of superhydrophobic titanium-based implants. To date,
there is no efficient way of promoting biofilm elimination or totally preventing in-
fection recurrence, especially in clinical practice. It is generally assumed that the
mechanism to prevent bacterial adhesion for superhydrophobic titanium-based im-
plant surfaces is ascribed to the trapped air layer on material surfaces to reduce the
contact area between bacteria and material surfaces, resulting in reduced bacterial
adhesion from etiology. Nevertheless, bacterial adhesion on surfaces made of superhy-
drophobic titanium has not yet been studied thoroughly and systematically. Therefore,
it is essential to investigate the antibacterial mechanism on superhydrophobic surfaces
that can inhibit bacterial adhesion from etiology.

(2) The bacteria types tested on superhydrophobic surfaces. At present, bacteria tested on
superhydrophobic surfaces are limited to a certain extent, mainly focusing on S. aureus,
E. coli, and P. aeruginosa in most previous studies. As a variety of bacteria may play
different functions in the bacteria–implants interplay, more bacteria species should
be investigated to identify whether superhydrophobic surfaces have broad-spectrum
antibacterial activity.

(3) The durability of superhydrophobic surfaces. Studies have focused on the long-lasting
antimicrobial activity of superhydrophobic surfaces. Once the entrapped air-bubble
layer is lost, superhydrophobic titanium-based implants will most probably fail, and
the biofilm will subsequently be formed. Although some initial advancements have
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been reported, further research is necessary to enhance the durability of superhy-
drophobic surfaces.

Currently, more and more scientists are focused on dealing with various challenges and
enhancing the characteristics of titanium-based implant coatings in different ways. Further
investigation on the potential applications of superhydrophobic coatings in titanium-based
implants is required. Research in the future should be extra focused on bridging the gap
between existing research and practical applications. We believe that more superhydropho-
bic titanium-based implants with improved antibacterial properties and biocompatibility
can become more available for scientific and clinical applications in the foreseeable future
and benefit to an enormous number of patients.
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